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Several functional connectivity approaches require the definition of a set of regions of interest (ROIs) that act as network nodes.
Different methods have been developed to define these nodes and to derive their functional and effective connections, most of
which are rather complex. Here we aim to propose a relatively simple “one-step” border detection and ROI estimation procedure
employing the fuzzy 𝑐-mean clustering algorithm. To test this procedure and to explore insular connectivity beyond the two/three-
region model currently proposed in the literature, we parcellated the insular cortex of 20 healthy right-handed volunteers scanned
in a resting state. By employing a high-dimensional functional connectivity-based clustering process, we confirmed the two patterns
of connectivity previously described. This method revealed a complex pattern of functional connectivity where the two previously
detected insular clusters are subdivided into several other networks, some of which are not commonly associated with the insular
cortex, such as the default mode network and parts of the dorsal attentional network. Furthermore, the detection of nodes was
reliable, as demonstrated by the confirmative analysis performed on a replication group of subjects.

1. Introduction

One powerful method for studying brain organization is the
graph-theoretical approach [1]. Similar to other connectivity
methods, such as seed-based functional connectivity and
diffusion-tensor-imaging approaches, this method requires
the definition of a set of regions of interest (ROIs) that act as
network nodes [2]. Several techniques have been employed to
functionally derive these nodes and their connections [3, 4].
The definition of such nodes often involves complicated func-
tional connectivity estimation and border detection proce-
dures [5]. Here, we suggest a relatively simple “one-step” bor-
der detection andROI estimation procedure. In particular, we
propose to take advantage of one of the characteristics of the
fuzzy 𝑐-mean clustering algorithm [6].This procedure allows
a fixed percentage of voxels with a borderline pattern of
connectivity to be nonunequivocally attributed. The further
we move from the centre towards the border of a cluster,

the more the characteristics of the pattern of connectivity
are intermixed with those of the neighbouring clusters (e.g.,
nonunequivocally determined). As was recently shown by
Smith et al. [7], the maximization of spatial independence
could lead to suboptimal detection of networks that share
significant spatial overlaps. Our method maximizes the
temporal independence because the criterion used in the
clustering algorithm is the correlation between the time series
of each voxel and the time series of the centre of each cluster.

Previous clustering studies [6, 8–10] performed the clus-
tering procedure at subject level. Given the relative deficiency
of time points (about 120–200 points in a six-minute run),
this procedure has good reliability only for low-dimensional
parcellation (e.g., with a limited number of clusters). In line
with other investigations [2, 11, 12], we concatenated the time
courses across all subjects to constitute a very big dataset
that allowed us to obtain a higher clustering dimensionality.
Far from representing a step backwards, this “fixed-effect”
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approach permits good estimation of a common set of
clusters (and thereby of nodes) for a given group of subjects.
Subsequently, the between-subject variance was taken into
consideration, so that each node’s functional connectivity
pattern was evaluated at the subject level and summarized
using a random-effect analysis. This method is very similar
to the dual regression approach [13], according to which the
independent component analysis (ICA) was first applied to
the concatenated dataset.

To investigate how this node detection method performs
with real data, we applied our procedure to the insular surface
of 20 healthy subjects scanned in a resting state. A second
dataset of 18 healthy volunteers was used for replication
testing. We chose the insular surface because the insula is a
complex and pivotal [14] brain area in which different inputs
from the body and the external world are highly integrated
[15]. This brain region has been parcellated by using different
measures, such as resting-state functional connectivity [8, 10,
14], task-related functional connectivity [16, 17], and diffusion
tensor imaging [18, 19], into two [8, 16, 20–23], or three
[9, 10], or more clusters [4, 5, 17, 24], each of which has a
unique pattern of connectivity. A recent paper by Kelly et al.
[25] demonstrated a convergence between resting state, task-
based functional connectivity, and anatomical coactivations
at several different parcellation levels (from two to 12 clusters
per side; with more than 12 clusters, reliability dropped by
about 50%), thus supporting a common hierarchical struc-
ture within the insular cortex.

Given these premises, it would be of great interest to
test this new node detection method in search of a resting-
state functional parcellation of the insular surface. As an
additional consideration, we suppose that high-dimensional
clustering [11] can make it possible to demonstrate the exis-
tence of a more complex pattern with “echoes” [12] of several
brain networks nested within the two main insular patterns
previously reported.

2. Methods

2.1. Main Group. Main group consists of twenty healthy
right-handed volunteers (10 females, with a mean age of
32.6 ± 11.2). Replication group comprises eighteen healthy
right-handed volunteers (nine females, with a mean age of
25.3 ± 4.2). All subjects were free of neurological or psychi-
atric conditions, were not taking any medication known to
alter brain activity, and had no history of drug or alcohol
abuse. Handedness was ascertained with the Edinburgh
Inventory [26]. We obtained written informed consent from
every subject, in accordance with the Declaration of Helsinki.
The study was approved by the institutional committee on
ethical use of human subjects at the University of Turin.

2.2. Task and Image Acquisition. Images were acquired dur-
ing a resting-state scan on a 1.5 Tesla INTERA scanner (Phil-
ips Medical Systems). Functional T2∗ weighted images were
acquired using echoplanar (EPI) sequences, with a repetition
time (TR) of 2000ms, an echo time (TE) of 50ms, and a
90∘ flip angle. The acquisition matrix was 64 × 64, with a

200mm field of view (FoV). A total of 200 volumes were
acquired, with each volume consisting of 19 axial slices;
slice thickness was 4.5mm with a 0.5mm gap, while in-
plane resolution was 3.1mm. Two scans were added at the
beginning of functional scanning to achieve steady-state
magnetization before acquiring the experimental data. A set
of three-dimensional high-resolution T

1
-weighted structural

images was acquired, using a fast field echo (FFE) sequence,
with a 25ms TR, an ultrashort TE, and a 30∘ flip angle. The
acquisition matrix was 256 × 256 and the FoV was 256mm.
The set consisted of 160 contiguous sagittal images covering
the whole brain.

2.3. Data Analysis. Datasets were preprocessed and analysed
using BrainVoyager QX software (Brain Innovation, Maas-
tricht, The Netherlands).

Functional images were preprocessed to reduce artefacts
as follows [27]: (i) slice scan time correction was performed
using a sinc interpolation algorithm; (ii) 3D motion correc-
tion was applied using a trilinear interpolation algorithm
according to which all volumes were spatially aligned to the
first volume by rigid body transformations, and the roto-
translation information was saved for subsequent elabora-
tions; (iii) spatial smoothing was performed using a Gaussian
kernel of 8mm FWHM. Several nuisance covariations were
regressed out from the time courses to control for the effects
of physiological processes, such as fluctuations related to car-
diac and respiratory cycles and motion [28–30]. Specifically,
we included nine additional covariations from white matter
(WM), global signal (GS) [31], and cerebrospinal fluid (CSF),
as well as six motion parameters. Subsequently, time courses
were temporally filtered in order to keep only frequencies
between 0.008 and 0.08Hz and normalized.

Following the preprocessing, we implemented some steps
to improve intersubject analysis of the anatomical location of
brain activations. For each subject the functional scans were
coregistered with a relatively high-resolution structural scan.
This coregistration was done using both the slice positioning
as stored in the raw data’s headers and fine adjustments
calculated comparing the intensity values of the data sets.
After this we transformed each subject’s 3D structural data
into Talairach space [32]. This was obtained by translating
and rotating the cerebrum on the plain passing through the
anterior and the posterior commissure; then, the borders of
the cerebrum were identified. The coregistration matrix of
anatomical and functional data consisted of the parameters
of rotation and translation during the coregistration step
and the parameters of Talairach normalization. Finally, by
applying the anatomical-functional coregistration matrix we
transformed into Talairach space the functional time course
of each subject and created the volume time course.

We applied a fuzzy 𝑐-mean algorithm to the time courses
of all the insular voxels and clustered these voxels on the
basis of their temporal similarity. As is typical of fuzzy
clustering techniques, a certain percentage of voxels can be
nonunivocally attributed to the parcels. The percentage of
nonunivocally attributed voxels (the fuzziness coefficient) is
an arbitrary parameter. In line with other studies [33], we
chose 20% of nonunivocally attributed voxels.
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The fuzzy clustering technique parcels out a subset of 𝑁
voxels in𝐶 “clusters” of activation [34]. Signal time courses of
all voxels were z-standardized. We subsequently confronted
the voxel’s time courses x

𝑛
(𝑛 = 1 ⋅ ⋅ ⋅ 𝑁) with each other

and derived a representative cluster of time courses (cluster
centroids) v

𝑐
(𝑐 = 1 ⋅ ⋅ ⋅ 𝐶). On the basis of this unsupervised

method, and starting from the original fMRI time series,
we got a predefined number of spatial modes, which were
composed of a spatial map and an associated centroid time
course. Accordingly, a voxel is assigned to a cluster with
reference to the similarity (e.g., by correlation) of its time
course to the cluster centroid.This similarity is determined in
a fuzzyway, whichmeans that a voxel is not uniquely assigned
to one cluster (hard clustering) because the similarity is
expressed by the “membership” 𝑢

𝑐𝑛
of voxel 𝑛 to cluster 𝑐.

Centroids v
𝑐
andmemberships 𝑢

𝑐𝑛
are both updated in an

iterative procedure [35], which terminates when successive
iterations do not further change memberships. Cluster cen-
tres are determined via classical cluster-algorithm distance
measures and are expressed as follows:
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where 𝑑 is the distance between a voxel and a cluster centre
and 𝑚 is the coefficient that determines the fuzziness of
the procedure; 𝑚 “tunes out” the noise in the data and lies
between 1 (smallest fuzziness) and infinity. The most com-
monly used of the several distance measures of 𝑑 are the
Euclidean distance, 𝑑

𝐸
, and the Mahalanobis distance, 𝑑

𝑀

[36], which are defined as
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(3)

Σ
𝑐
is the covariance matrix of cluster 𝑐. The Mahalanobis

distance takes in the elliptical shape of the cluster (i.e., it
weights the differences by the range of variability, described
by Σ
𝑐
, in the direction of the voxel instead of treating all

voxels x
𝑛
equallywhen calculating the distance𝑑 to the cluster

centre k
𝑐
). The Euclidean distance assumes a spherical shape,

without taking into account the shape of clustering, which
corresponds to a covariance matrix Σ

𝑐
with 1 s on the main

diagonal and 0 s elsewhere.
Calculation starts from an initial set of membership

values for the data set in the following matrix form:

𝑈
(0)
= (1−
√2
2
)𝑈+

√2
2
𝑉 (4)

with 𝑈 = 1/𝐶 and 𝑉 a matrix of randomly chosen cluster
centres with initial 𝐶 = 2. Subsequently, the new centroids

andmemberships are calculated using (2).When further iter-
ations do not cause significant change to memberships and
centroids, the procedure stops. With this procedure the fol-
lowing function is minimized:
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This formula calculates the within-class variance over all
clusters, 𝜎2

𝑤
. In other words, a user-defined threshold for

change in 𝜎2
𝑤

is fixed when convergence is reached. The
criterion of convergence is based on the first local optimum
of (5) [37]. Each time series is transformed into its 𝑧-score
in order to avoid a classification of the voxels on signal
amplitude rather than on signal shape. Then, the principal
component analysis (PCA) is performed to reduce data
dimensionality. The number of PCA components was calcu-
lated to retain 95% of the variance.

Optimal number of clusters: The a priori definition of
the number of clusters and the fuzziness coefficient is often
debated in the literature [38]. Usually, the optimal number
of classes is unknown in fuzzy clustering. A number of
cluster-validity indices have been proposed to estimate the
optimal number of clusters in an unsupervised manner (for
a review see [39]). These indices aim to identify compact and
well-separated clusters. In this study, we used the silhouette
validation method [40], which consists in considering the
silhouette coefficient of each element:

𝑠
𝑖
=

𝑏
𝑖
− 𝑎
𝑖

max (𝑏
𝑖
, 𝑎
𝑖
)

, (6)

where 𝑎
𝑖
is the average dissimilarity of the 𝑖-point to all points

in the same cluster and 𝑏
𝑖
is the minimum of the average

dissimilarity of the 𝑖-point to all points in the other cluster.
Unlike Cauda et al. [8], to perform the clustering proce-

dure time courses were concatenated across all subjects; this
step, as has been pointed out by others [2],makes it possible to
obtain a higher clustering dimensionality (i.e., more clusters).

Due to the fuzziness coefficient employed, 20% of voxels
were classified as nonunequivocal. We considered these vox-
els as border voxels, with a time course that showed transi-
tional characteristics between contiguous clusters.

The final step of this procedure was to place a spherical
ROI with a radius of 3mm in the local maxima of each
cluster (i.e., the area ofmaximal similarity between voxel time
courses). See Figure 1 for a graphical representation of the
method.

To investigate the specific pattern of connectivity of each
cluster we employed a variant of the dual regression approach
[13]. In brief, we performed a generalized linearmodel (GLM)
including all the subject-specific time courses of all 12 right-
insular spherical ROIs in a multiple regression analysis. This
method resulted in a subject-specific time course relative to
each ROI, while controlling for the variance explained by all
the other ROIs [12]. Subject-specific patterns of functional
connectivity relative to each ROI were then summarized at
a group-level using a one-sample 𝑡-test.
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Figure 1: Infographic depicting the functioning of the method.

To confirm previous connectivity results [8], we also cal-
culated the functional connectivity of the anterior and poste-
rior insular clusters by grouping together the ROIs belonging
to each cluster (see Figure 2(a)).

To validate our parcellation results we applied our
method to a second dataset (replication group) and compared
the results of the two datasets.

All maps were thresholded at 𝑝 < 0.05 and corrected for
multiple comparisons using the false discovery rate (FDR).

3. Results

Our method was able to separate 12 clusters for each insula.
This number turned out to be the preferred number of clus-
ters after the application of the silhouette validation method
[40]. The algorithm returned the borders of the functionally
homogeneous areas; for each cluster a spherical ROI with
a radius of 3mm was placed in the area with the maximal
homogeneity (see Figure 2(a)). These results were replicable.
Indeed, as shown in Figure 2(c), all the ROIs were also
found in the control group and the locations were almost
overlapping in 17 out of 24 ROIs, while the other ROIs were
displaced by only a few millimetres.

Our calculation of the functional connectivity of the
ROIs belonging to anterior and posterior insular clusters
confirmed the two patterns of connectivity described in a pre-
vious study [8].The anterior pattern, which occupies themost
anterior ventral part of the insular cortex, is characterized
by a cingulate-frontoparietal connectivity that has often been
related to salience detection. In turn, the posterior pattern,
which occupies the posterior dorsal insula, principally shows
a sensorimotor connectivity pattern. However, by consider-
ing all the 12 ROIs and including the ROI time courses in
a multiple regression analysis [12], we discovered a much
more intricate picture. With this method we demonstrated
that these areas are connected to several other networks, such
as the default mode network, the sensorimotor network, and
parts of the dorsal attentional network.

4. Discussion

By focusing on resting-state data, this study has demonstrated
that the proposed fuzzy clustering node detection approach is

able to perform simple yet reliable node detection and surface
parcellation.

By virtue of the fuzzy clustering procedure, we success-
fully generated nodes, and the data obtainedwith thismethod
were replicable with other datasets.Thismethod allows a very
simple one-step border detection procedure, taking advan-
tage of the fact that the borders between areas with homolo-
gous functional connectivity are characterized by a temporal
profile (i.e., time course) with mixed characteristics of time
courses of contiguous regions.These time courses were there-
fore nonunivocally classified.

The fuzzy clustering procedure has proven to be replicable
using a replication dataset. By varying the fuzziness coeffi-
cient it is possible to change the number of voxels that are
attributed to borders, and as a consequence the homogeneity
of the voxels pertaining to the univocally defined parcels.
Furthermore, by applying a high-dimensional clustering
procedure to the analysis of the functional connectivity of
the insula, we were able to detect the connectivity patterns,
or, as defined by Leech et al. [12], the “echoes” of the other
neural networks that we hypothesized might constitute the
hierarchical subparcellation of the aforementioned anterior
and posterior patterns of connectivity: the ventral anterior
cingulo-fronto-parietal “salience detection” network and the
dorsal posterior sensorimotor network, respectively.

As has been previously reported [8, 16, 25, 33], there
was some interhemispheric lateralization in the connectivity
patterns of the insula. Indeed, the localization of the clusters
in the right and the left insula was slightly different, especially
in the posterior insula. These results were confirmed when
we subdivided the ROIs on the basis of their involvement
within the two anterior and posterior clusters. A possible
explanation for this hemispheric asymmetry could involve
some aspects of emotional and sympathetic processing; for
example, the right insula is likely to respond more to sympa-
thetic arousal, and the left insula to parasympathetic nervous
functions [41, 42]. Furthermore, the anatomical connections
of the anterior insula (AI) with areas pertaining to the
ventral attentional network, in particular the temporoparietal
junction (TPJ), have been shown to be lateralized on the right
side [43].This is coherent with the “fight or flight” function of
the sympathetic system, which requires an evaluation of the
potential danger of incoming stimuli.
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Figure 2: High-dimensional clusterization and node creation of the insular cortex. (a) High-dimensional insular clusterization. Homo-
geneous areas are shown in green and borders in blue. The dotted red line outlines the separation between anterior and posterior clusters as
detected in our previous studies [8, 33]. (b) Upper panels: anterior- and posterior-cluster functional connectivity. (b) Lower panels: patterns
of functional connectivity regressing out the common variance. (c) Reliability of node creation. Nodes calculated from the main group are
shown in red, nodes calculated from the replication group in blue. If separated, paired nodes are shown by a dotted red line.

The posterior part of the insula is characterized by smaller
clusters and less homogeneity than the anterior part. Accord-
ingly, hemispheric asymmetry is also more evident in the
posterior than in the AI. These findings support the idea that
the posterior circuits have more heterogeneous connectivity

patterns, in line with Craig’s hypothesis suggesting that the
posterior insula is a sort of data collector linked to many
different networks [15, 44]. As reported in recent studies
[9, 25], this group of posterior clusters mainly exhibits a
sensorimotor pattern of connectivity. Indeed, if we move
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from the more posterior part of the insular surface towards
the middle and anterior parts, the connectivity changes from
visuomotor to prefrontal pathways (BA9), then to sensori-
motor, and back again to prefrontal pathways (BA8) within
the middle insular cortex. In fact, not only action and
perception-related patterns but also some prefrontal patterns
of connectivity are present within the posterior insula. This
is probably due to the involvement of this area in a variety of
different activities, such as pain, language, interoception, and
sexuality, as has been recently reported [17, 25]. Overall, the
posterior insula shows a more specific connectivity pattern
than the AI, which, on the contrary, shows connections with
networks related to the switch of attention between internal
and external stimuli, such as the attentional and default
mode networks. Thus, rather than being specific, this pattern
suggests a general function that can be exploited in a variety
of everyday activities. This has been confirmed by several
papers that have shown how the AI is more aspecifically and
massively activated in a broad series of different behavioural
domains [8, 9, 17, 25]. In line with our data, these studies
linked the activity of the AI with cognitive and emotional
responses, an involvement that, together with saliency detec-
tion [45] and task switching [46], is almost ubiquitous.

Some authors [10, 14, 17, 47–49] have suggested a differ-
entiation or a gradient of connectivity between the dorsal
and ventral AI, a variance that, however, we failed to demon-
strate in our previous papers. Different levels of parcellation
determined by the various methods used to calculate the
optimal number of clusters lead to a different picture of the
insular cortex. This phenomenon is particularly evident in
the results of the study by Kelly et al. [25], which compared
insular parcellations with 𝑛 = 2 and 𝑛 = 3 clusters. In the
parcellation with 𝑛 = 3 clusters the higher number of clusters
made it possible to reveal an anterior ventral cluster that was
not present with 𝑛 = 2.

In the present paper the complex structure of the anterior
insular cortex has been further clarified. We have validated
the recent identification made by Touroutoglou et al. [50] of
two dissociable frontoparietal patterns of functional connec-
tivity, the dorsal and ventral AI, respectively (for a similar
result see also [14]). These two networks (the dorsal one
here referred to as dFP and the ventral one as vFP) probably
subserve only two partially different functions. The dorsal
network is likely to be more involved in the integration of
top-down and bottom-up salient information, whereas the
ventral network is likely to be more involved in aspects of
emotional salience detection as well as the integration of
bodily feelings [50]. These two large-scale networks exhibit a
different pattern of connectivity: the dorsal network is more
centred on dorsolateral and dorsomedial prefrontal cor-
tices plus mid-dorsal cingulate cortices, whereas the ventral
network is more linked to the anterior cingulate, ventral
prefrontal cortices, and TPJ. Other authors have identified
a network that is similar to the dorsal anterior cluster, or,
rather, to a mix of the dorsal and ventral anterior insular
clusters, for example, the frontoparietal control network [51],
and the cingulo-opercular, ventral attentional [52, 53], and
basal ganglia-fronto-insular [53] control networks [14, 46].
The two anterior insular frontoparietal networks show areas

of overlap and might have a shared variance that in some
conditionsmakes these two components less easily separable.

Interestingly, a cluster placed in between and just anterior
to these two areas shows connectivity with the default mode
network.This cluster resides in a position that largely overlaps
with the agranular area described by Marsel Mesulam and
Mufson in 1982 [54].This result seems to validate the hypoth-
esis according to which the AI is placed in a pivotal brain site
so as to continuously reallocate cerebral resources between
internal and external focused networks [55, 56] andmodulate
the switch between goal-oriented attentional and default
mode networks. This supposition would also explain the fre-
quent activation of this brain area in so many different tasks.

5. Conclusions

The dFP and vFP patterns of connectivity, which further sub-
divide the anterior and posterior insular clusters, are probably
overcome by the variance of two other main patterns, but
when this variance is regressed out, a more complex picture
emerges. This phenomenon can be explained by the hier-
archical connectivity structure of the insular cortex, as has
been suggested by some authors [16, 25].The two clusters that
were previously identified in our papers were here divided
into a series of smaller parcels, a procedure in line with
recent studies [18, 25, 57]. This is also in accordance with
the suggested intrinsically hierarchical structure of this area
[5, 24, 58], as hypothesized by Craig and Damasio [15, 41, 59].

In this study we were able to demonstrate that the detec-
tion of nodes using high-dimensional fuzzy 𝑐-mean parcella-
tion is a simple, efficient, and reliable method. This indicates
that the insula displays a potentially hierarchical structure, in
which information coming from the environment and from
the body is integrated and distributed to different areas of
the brain. Although our study confirmed the two (or three)
major insular subdivisions, a more in-depth investigation
also showed that these areas can be further subdivided into
smaller clusters, each characterized by its own pattern of con-
nectivity that can be detected with appropriate techniques.
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