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Abstract To elucidate the role of centriolar satellites in ciliogenesis, we deleted the gene

encoding the PCM1 protein, an integral component of satellites. PCM1 null human cells show

marked defects in ciliogenesis, precipitated by the loss of specific proteins from satellites and their

relocation to centrioles. We find that an amino-terminal domain of PCM1 can restore ciliogenesis

and satellite localization of certain proteins, but not others, pinpointing unique roles for PCM1 and

a group of satellite proteins in cilium assembly. Remarkably, we find that PCM1 is essential for

tethering the E3 ligase, Mindbomb1 (Mib1), to satellites. In the absence of PCM1, Mib1

destabilizes Talpid3 through poly-ubiquitylation and suppresses cilium assembly. Loss of PCM1

blocks ciliogenesis by abrogating recruitment of ciliary vesicles associated with the Talpid3-binding

protein, Rab8, which can be reversed by inactivating Mib1. Thus, PCM1 promotes ciliogenesis by

tethering a key E3 ligase to satellites and restricting it from centrioles.

DOI: 10.7554/eLife.12950.001

Introduction
Primary cilia are antenna-like organelles that protrude from the surface of many differentiated cells

and serve to orchestrate key signaling events required for development (reviewed in Kobayashi and

Dynlacht, 2011). The cilium and centrosome comprise several hundred polypeptides, although the

functions of many of these proteins remain uncharacterized. Recent efforts, however, have begun to

shed considerable light on processes and constituents that play a key role in the biogenesis, struc-

ture, and function of these organelles.

Cilium assembly is initiated in cultured cells that have exited the cell cycle after mitogen depriva-

tion. The process commences with the docking of ciliary vesicles at the distal appendages of the

basal body, proceeds with the elongation of an axoneme concomitant with recruitment of Rab8-

associated vesicles, and culminates with the fusion of the nascent cilium with the plasma membrane

(Kobayashi and Dynlacht, 2011; Sorokin, 1962). Other proteins, including the BBSome and Intrafla-

gellar Transport (IFT) complexes, contribute to growth, assembly, and maintenance of the cilium

(Ishikawa and Marshall, 2011). An extensive array of centriolar and basal body proteins has also

been shown to play a critical role in ciliogenesis. Among these key regulators, Talpid3 is essential for

ciliogenesis, and mutations in the gene encoding this protein lead to a panoply of developmental

defects in model organisms and human ciliopathies, including Joubert Syndrome (Alby et al., 2015;

Bachmann-Gagescu et al., 2015; Bangs et al., 2011; Davey et al., 2006; 2007; Malicdan et al.,

2015; Roosing et al., 2015; Stephen et al., 2015). We have shown that Talpid3 associates with

Rab8, a component of ciliary vesicles, and silencing Talpid3 compromises the efficient recruitment of

ciliary vesicles to basal bodies (Kobayashi et al., 2014).
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Other proteins, including Mindbomb 1 (Mib1), act to antagonize ciliogenesis (Villumsen et al.,

2013). Mib1 was first reported as an E3 ligase associated with Notch signaling (Itoh et al., 2003),

although connections, if any, between a role for Mib1 in Notch signaling and ciliogenesis remain

unknown. More recently, Mib1 was shown to associate with centriolar satellites (Villumsen et al.,

2013), electron-dense, cytoplasmic granules defined by the presence of PCM1. Centriolar satellites

(CS) are thought to play a role in trafficking of cargoes to the centrosome and cilium and are

thought to promote ciliogenesis. Recently, an inhibitory role for centriolar satellite proteins has also

been proposed, although many questions remain regarding the assembly of these granules and their

function in ciliogenesis (reviewed in Tollenaere et al., 2015). For example, Mib1 was shown to asso-

ciate with AZI1/Cep131 (hereafter Cep131) and PCM1 at centriolar satellites (Villumsen et al.,

2013), and while Mib1 over-expression was shown to promote ubiquitylation of both proteins, no

impact on their stability was observed. Thus, although Mib1 over-expression inhibits ciliogenesis, the

mechanistic connections, if any, between Cep131 and PCM1 ubiquitylation and the inhibition of cilio-

genesis were unclear. In other studies, centriolar satellites were shown to play a second, restrictive

role in ciliogenesis by regulating the timely redistribution of the BBSome subunit, BBS4

(Stowe et al., 2012). Thus, centriolar satellites could play opposing roles by promoting or antago-

nizing initiation of the ciliogenesis program.

Here, we find that PCM1 plays a prominent role in ciliogenesis by sequestering proteins in the

centriolar satellite compartment. Importantly, PCM1 restricts Mib1 to satellites, preventing its trans-

location to centrioles, which would otherwise promote Talpid3 destabilization, a failure to recruit

Rab8a, and inhibition of cilium assembly. Moreover, using PCM1 knock-out cells, we show that the

ability of this protein to promote ciliogenesis by partitioning satellite proteins is not universal, allow-

ing us to identify distinct roles in cilium assembly. Our studies provide novel insights into mechanistic

roles for PCM1 in ciliogenesis and explain how centriolar satellites can play a positive role in cilio-

genesis by antagonizing inhibitors of this process.

Results

PCM1 knock-out cells display a constellation of defects and cannot
ciliate
In an effort to study the role of centriolar satellites in the assembly of primary cilia, we used CRISPR/

Cas9-mediated gene-editing in retinal pigment epithelial cells (RPE1) to ablate PCM1, a central CS

component. We isolated a clone with frame-shift mutations in exon 2 of PCM1, and the cell line was

devoid of PCM1 protein (Figure 1C,D, and Figure 1—figure supplement 1). We examined this cell

line by immunofluorescence and transmission electron microscopy (TEM) and found that in contrast

with previous studies, in which ciliation was reduced by 20–50% after knock-down, gene ablation

resulted in a complete failure to ciliate when cells were made quiescent through serum deprivation

(Figure 1A, Figure 1—figure supplement 1, and data not shown)(Lopes et al., 2011; Stowe et al.,

2012). To rule out off-target effects, we showed that expression of Myc-tagged mouse or EYFP-

tagged human PCM1 in these cells largely rescued the ciliogenesis defect (Figure 1A and C and Fig-

ure 2—figure supplement 2). In subsequent experiments, we primarily used mouse PCM1, since its

expression was more stable and provided near-equivalent levels across our deletions series

(Figure 2B).

Next, we examined a cohort of proteins known to associate with centrioles, centriolar satellites,

and primary cilia in PCM1 null cells by western blotting and immunofluorescence. We found that

PCM1 knock-out cells completely lacked centriolar satellites, which were visualized through immuno-

fluorescent detection with a panel of antibodies against known satellite proteins (Cep131, Cep290,

Cep90, and Mib1), and this defect could be rescued by expression of Myc-PCM1 (Figure 1—figure

supplement 1 and Figure 3). Interestingly, the disappearance of each of these proteins at satellites

was accompanied by their appearance at centrioles (Figure 1—figure supplement 1). Consistent

with these observations, the satellite proteins Cep72, Cep90, and Cep290 were also retained at cen-

trosomes upon PCM1 knock-down (Kim et al., 2012; Lopes et al., 2011; Stowe et al., 2012). More-

over, we observed an overall reduction in abundance of several satellite proteins, including Cep131,

BBS4, and Cep90 (Figure 1D). On the other hand, Mib1 levels were elevated upon loss of PCM1,

and other proteins that populate the satellite compartment, centrioles, or ciliary vesicles, such as
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Cep290, Ofd1, Rab8, and Rab11, were unaffected, suggesting that the complete loss of PCM1 has

specific effects on distinct centrosomal and peri-centrosomal components. We ruled out the possibil-

ity that these alterations resulted from changes in transcript levels or stability, rather than protein

stability, by assessing steady state levels through quantitative reverse transcriptase-coupled PCR

(qRT-PCR)(data not shown).

Our studies thus establish that PCM1 is absolutely required for (1) assembly of centriolar satellites

and retention of proteins in this compartment and (2) maintenance of appropriate levels of proteins

required to regulate ciliogenesis. In the absence of PCM1, a specific group of proteins known to

localize to centrioles and centriolar satellites partitions exclusively to centrioles.

PCM1 selectively interacts with proteins to promote centriolar satellite
organization and ciliogenesis
To elucidate the domains of PCM1 required to restore primary cilia, we performed rescue experi-

ments by expressing full-length mouse PCM1, or several truncations thereof, in PCM1 null cells.

Among this group of mutants, we found that only fragments spanning residues 1–1200 and 1–1500

PCM1 were able to rescue ciliogenesis in a manner comparable to the full-length protein

(Figure 2A). In addition, only these two fragments were capable of forming PCM1-positive foci in

the cytoplasm, and both exhibited a centriolar satellite-like localization similar to that observed with

full-length PCM1 (Figure 3 and data not shown). Consistent with these observations, both fragments

were able to interact with several satellite proteins, including Mib1, Cep290, Cep131, Cep72, and

OFD1 (Figure 2B and data not shown). Furthermore, PCM1 1–1200 rescued the normal localization

of Mib1 and Cep131 at centriolar satellite-like PCM1 foci and prevented aberrant localization to

Figure 1. PCM1 regulates the abundance of centriolar satellite proteins and is essential for ciliogenesis. CRISPR/Cas9 deletion of PCM1 inhibits

ciliogenesis. (A) and (B) Control and PCM1 KO RPE1 cells were infected with empty or Myc-mPCM1 lentivirus for 72 hr and then serum starved for 48 hr.

The cells were immuno-stained with GT335 and Ki-67 antibodies. (A) Ciliated cells and (B) Ki-67-negative cells were counted; n � 100 per sample in

three independent experiments. Error bars, SEM. *p<0.05 (C) Ectopic PCM1 can rescue the ciliogenesis defect of PCM1 KO RPE cells. Control and

PCM1 KO RPE1 cells were infected with empty or Myc-mPCM1 lentivirus for 72 hr, serum starved for 48 h, and immuno-stained with antibodies against

glutamylated tubulin (GT335, red), and PCM1 (green) and with DAPI (blue). Representative images are shown. Scale bar, 5 mm. (D) Altered levels of

centriolar satellite proteins in PCM1 KO RPE1 cells. Control and PCM1 KO RPE1 cells were infected with control or Myc-mPCM1 lentivirus for 72 hr and

subjected to western blot analysis with the indicated antibodies.

DOI: 10.7554/eLife.12950.002

The following figure supplement is available for figure 1:

Figure supplement 1. PCM1 gene-editing and the localization of Cep290, Cep131 and Cep90 in PCM1 KO cells.

DOI: 10.7554/eLife.12950.003
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centrioles seen in PCM1 KO cells infected with the control virus (Figure 3), confirming that this frag-

ment is sufficient to recruit centriolar satellite proteins and prevent their aberrant centriolar

localization.

To further understand how PCM1 promotes ciliogenesis, we mapped domains in PCM1 responsi-

ble for interaction with other centriolar satellite components involved in ciliogenesis (reviewed in

Tollenaere et al., 2015). Consistent with the notion that PCM1 serves as a platform to assemble

centriolar satellites, we found that PCM1 interacted with Cep90 and C2CD3 through domains that

overlapped with Cep131- and OFD1-binding regions but that were distinct from the CEP72- and

Mib1-interacting domain. In line with previous reports (Kamiya et al., 2008; Lopes et al., 2011),

PCM1 could associate with OFD1 through residues 600–1200 (Figure 2B,C). We also showed, for

the first time, that PCM1 interacts with Mib1, Cep72, Cep90, C2CD3, and Cep131 through distinct,

but sometimes overlapping, binding domains. Cep290 interacted with multiple PCM1 fragments,

preventing us from more precisely mapping interacting regions (data not shown). Most strikingly,

the PCM1 fragment spanning residues 1–1200, which could restore cilia and centriolar satellites,

interacted with Mib1, OFD1, Cep131 and Cep290, but not Cep90 or C2CD3. In contrast, the PCM1

fragment containing residues 601–2025, which failed to restore cilia or centriolar satellites,

Figure 2. PCM1 promotes centriolar satellite organization and ciliogenesis through an amino-terminal domain. (A) Mapping of PCM1 domains required

to rescue the ciliogenesis defect in PCM1 null cells. Control and PCM1 KO RPE1 cells were infected with virus containing the empty vector (EV) or the

indicated Myc-mPCM1 fragments. Cells were infected with lentivirus for 3 days and serum starved for 48 hr. The cells were immuno-stained with

antibodies against IFT88, detyrosinated tubulin, and the Myc epitope. Ciliated cells were counted within the Myc-positive population. n �100 were

counted per sample in two independent experiments. Error bars, SD. *p<0.05. (B, C) Identifying PCM1 domains required to interact with centriolar

satellite proteins. (B) HEK293T cells were transfected with plasmids corresponding to the empty vector (EV) or the indicated Myc-mPCM1 fragments for

48 h, and lysates subjected to immunoprecipitation with anti-Myc antibody. The inputs and the immunoprecipitates were analyzed by western blotting

with the indicated antibodies. Asterisks indicate non-specific cross-reactive bands. We surmise that the band detected by anti-Cep131 antibodies in cell

extracts expressing fragment 1–800 is cross-reactive, as this species consistently migrates at a position distinct from Cep131. (C) Schematic

representation of protein-protein interacting domains in PCM1 based on immunoprecipitation data in (B).

DOI: 10.7554/eLife.12950.004

The following figure supplements are available for figure 2:

Figure supplement 1. Centrosomal localization of Mib1 in PCM1 knock-down cells.

DOI: 10.7554/eLife.12950.005

Figure supplement 2. PCM1 promotes ciliogenesis through an amino-terminal domain.

DOI: 10.7554/eLife.12950.006
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interacted strongly with most of the proteins we analyzed, except for Mib1 and Cep72 (Figure 2B).

These results indicate a potentially important role for PCM1-Mib1 and PCM1-Cep72 interactions in

both ciliogenesis and satellite assembly, while suggesting that other PCM1 interactions are not suffi-

cient to restore these processes.

Next, we asked whether the interactions identified above are required for the centriolar satellite

localization of each of these factors. We re-introduced full length mouse PCM1, or several trunca-

tions, in PCM1 null cells and visualized centriolar satellite staining for Mib1, Cep90, and Cep131.

Consistent with our mapping data, the amino-terminal 1200 residues of PCM1 rescued the centriolar

satellite localization of Mib1 and Cep131, but not Cep90 (Figure 3 and Figure 3—figure supple-

ment 1). Further, the rescue of Cep131 centriolar satellite localization by the amino-terminal 1200

residue fragment of PCM1 (Figure 3C) could be explained by binding to PCM1, through a PCM1-

Mib1-Cep131 interaction (Villumsen et al., 2013), or a combination of interactions.

These results lead to several important conclusions. First, PCM1 promotes ciliogenesis, most

likely through interactions with a specific cohort of proteins, including Mib1, OFD1, Cep131, Cep72,

Cep290, and/or other proteins that we have not tested here, whereas interactions with other satel-

lite proteins, namely, Cep90 and C2CD3 do not appear to be required for ciliogenesis. Our results

also suggest that proper centriolar satellite localization of certain pro-ciliogenic proteins, such as

Cep90, is not universally required for ciliogenesis.

PCM1 anchors Mib1 at centriolar satellites
Next, we investigated the potential interplay between PCM1 and Mib1 because Mib1 levels were

elevated in PCM1 knock-out cells, in striking contrast with the behavior of other centriolar satellite

proteins that we examined (Figure 1D), and because the domain in PCM1 essential for ciliogenesis

can interact with Mib1 (Figure 2). First, we examined the localization of Mib1 in wild-type and PCM1

null cells. To help visualize centrosomes more accurately without the confounding effects of centrio-

lar satellites, within which they are interspersed, we also treated cells with nocodazole, which effec-

tively eliminates the latter, microtubule-dependent structures. Consistent with prior studies

(Villumsen et al., 2013), Mib1 did not co-localize with the centriolar marker, centrin, but primarily

localized to satellites in untreated control cells, and this observation was made more evident by

treatment of these cells with nocodazole (Figure 4A). Interestingly, we found that in PCM1 knock-

Figure 3. The amino-terminal domain of PCM1 recruits specific centriolar satellite proteins. Control and PCM1 KO RPE1 cells were infected with

lentivirus containing empty vector or the indicated Myc-mPCM1 fragments for 3days and stained with the antibodies against Myc, GT335, Cep90, Mib1,

and Cep131. Diffuse cytoplasmic staining of PCM1 was observed with the fragment spanning residues 601–2025. Scale bar, 5 mm.

DOI: 10.7554/eLife.12950.007

The following figure supplement is available for figure 3:

Figure supplement 1. The amino-terminal domain of PCM1 recruits specific centriolar satellite proteins.

DOI: 10.7554/eLife.12950.008
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out cells, the loss of satellites, observed in the presence or absence of nocodazole, was accompa-

nied by re-localization of Mib1 to centrioles (Figure 4A–D). Furthermore, we observed identical

results when PCM1 was ablated with an siRNA (Figure 2—figure supplement 1). These results sug-

gest that depletion of PCM1 triggers the destabilization of satellites and thereby promotes the re-

localization and accumulation of Mib1 protein at centrioles. Indeed, trafficking to centrioles might

stabilize Mib1 at this location (Figure 1D). PCM1 could therefore function to actively sequester Mib1

at satellites. To test this possibility, we rescued PCM1 null cells with Myc-PCM1 and examined cen-

triolar staining in nocodazole-treated cells. We found that re-expression of PCM1 restored both the

exclusion of Mib1 from centrosomes and native levels of this protein (Figures 1D and 4C,D). Re-

expression of the amino-terminal PCM1 1–1200 fragment also restored the exclusion of Mib1 from

centrosomes and reduced Mib1 protein levels (Figure 3B and Figure 3—figure supplement 1), con-

sistent with an ability of PCM1 to actively sequester Mib1. Moreover, ectopic expression of Mib1

resulted in its re-localization to centrioles (see Figure 7G,H), suggesting that the number of binding

sites for Mib1 (within centriolar satellites) may be saturable.

Taken together with our immuno-blot analysis, our studies suggest that PCM1 modulates Mib1

abundance and sequestration, and when PCM1 is limiting or lost and centriolar satellite integrity

compromised, Mib1 is able to accumulate at centrioles.

PCM1 regulates ciliogenesis through sequestration of Mib1
One study, published while our work was in progress, suggested that Mib1 suppresses ciliogenesis

in growing cells (Villumsen et al., 2013), and we have confirmed that cilium assembly is dramatically

enhanced upon its depletion in growing cells and abrogated in quiescent cells after its ectopic

expression (Figure 5—figure supplement 1). Moreover, consistent with this observation, expression

of a catalytically inactive, dominant-negative form of this E3 ligase (C985S) did not suppress cilium

assembly (Figure 5—figure supplement 1). These findings suggested that the failure of serum-

starved PCM1 null cells to ciliate could stem from the enhanced expression and accumulation of

Mib1 at centrioles (Figures 1D and 4A). To directly test this hypothesis, we ablated Mib1 from these

cells using two distinct Mib1 siRNAs (Figure 5A). Strikingly, we found that the removal of Mib1 par-

tially restored the ability of serum-starved PCM1 null cells to ciliate (Figure 5B and Figure 5—figure

supplement 1). Likewise, expression of catalytically inactive Mib1 in PCM1 KO cells partially rescued

cilium assembly (Figure 5C), confirming that Mib1 E3 ligase activity can suppress cilium assembly if

it is not tethered to the centriolar satellite compartment (Figure 4A–D).

Next, we asked whether the loss of Mib1 could revert ciliation defects in cell lines without PCM1

defects. To this end, we performed analogous experiments in TALPID3 null RPE1 cells, which we

generated using CRISPR/Cas9-mediated gene-editing (Figure 5—figure supplement 2). Like the

PCM1 knock-out, TALPID3 null cells were unable to ciliate, but unlike our findings with PCM1 null

cells, TALPID3 loss had no impact on Mib1 localization and was not rescued by Mib1 depletion (Fig-

ure 5—figure supplement 2 and Figure 5B). These results suggest that PCM1, and by extension,

centriolar satellites, play an important role in promoting primary ciliogenesis by sequestering and

functionally antagonizing the Mib1 E3 ligase.

The loss of PCM1 led to the near-disappearance of several centriolar satellite proteins, namely,

Cep131, Cep90, and BBS4 (Figures 1D and 5D). We speculated that if PCM1 anchoring plays a criti-

cal role in restricting the localization and levels of Mib1 and other centriolar satellite proteins, then

PCM1 ablation could mimic the effects of ectopically expressing Mib1, which likewise suppresses cil-

ium assembly. Consistent with this idea, ectopic expression of wild-type, but not catalytically inac-

tive, Mib1 prompted the disappearance of PCM1, Cep131, and, to a lesser extent, Talpid3, in RPE1

cells (Figure 5D). This result was not restricted to RPE1 cells, since we observed similar or even

more dramatic down-regulation of each of these proteins, particularly Talpid3, in U2OS cells (Fig-

ure 5—figure supplement 3). The impact of Mib1 was specific, since ectopic expression of Mib1 led

to diminished levels of certain centriolar satellite proteins (PCM1, Cep131, Cep290, Cep90), but not

others (Ofd1, BBS4) (Figure 5—figure supplement 3). Moreover, the abundance of centriolar/cen-

trosomal proteins (Sas6) or modified tubulins (acetylated tubulin) was not affected (Figure 5—figure

supplement 3). PCM1 null cells have dramatically reduced overall levels of Cep131, which also local-

izes to centrioles (Figure 1—figure supplement 1), and expression of wild-type, but not inactive,

Mib1 completely eliminated centrosomal Cep131 (Figures 5D and Figure 5—figure supplement 3).

Expression of Mib1 led to the near-complete dissolution of centriolar satellites typified by PCM1 and
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Cep290 enrichment, whereas inactive Mib1 dramatically led to their stabilization (Figure 5—figure

supplement 3). Consistent with this observation, depletion of Mib1 with two distinct siRNAs led to

dramatic up-regulation of centriolar satellites, concomitant with Cep131, Cep290, and PCM1 stabili-

zation (Figure 5—figure supplement 3). These results strongly suggest that Mib1 is able to selec-

tively regulate the stability of multiple centriolar satellite and centrosomal proteins.

Mib1 promotes the poly-ubiquitylation of Talpid3, Cep131, and PCM1
We sought to understand the mechanisms by which Mib1 could regulate the levels of centriolar sat-

ellite proteins, as well as centriolar proteins such as Talpid3, since it is required for ciliogenesis. In

our previous proteomic screen for Talpid3-interacting proteins (Kobayashi et al., 2014), we identi-

fied Mib1 as a robust interactor. We confirmed this interaction by expressing either Mib1 or Talpid3

in cells and performing reciprocal immunoprecipitations (Figure 6A). We did not observe an

Figure 4. Mib1 re-locates to centrosomes in PCM1 null cells. (A) Control and PCM1 KO RPE1 cell were incubated with DMSO or nocodazole (NZ; 1mg/

ml) for 8 hr and then immuno-stained with Mib1 (green) and centrin (red) antibodies (A) and (B). Representative images of centrosomes are shown (A).

Scale bar, 1 mm. (B) Quantitation of nocodazole-treated cells in panel A. Cells with centrosomal Mib1 signal were counted in the NZ-treated group. n �

100 per sample in two independent experiments. Error bars, SD. *p<0.05. (C) Ectopic PCM1 expression in PCM1 KO RPE cells prevents centrosomal

localization of Mib1. Control and PCM1 KO RPE1 cells were infected with empty or Myc-mPCM1 lentiviruses for 72 hr and incubated with NZ (1 mg/ml)

for 8 hr (C) and (D). (C) Cells with centrosomal Mib1 signal were analyzed by immuno-staining with Mib1 (green) and centrin (red) antibodies.

Representative images of centrosome are shown. Scale bar, 1 mm. (D) Quantitation of data in panel C. N � 100 per sample in two independent

experiments. Error bars, SD. *p<0.05.

DOI: 10.7554/eLife.12950.009
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interaction between endogenous Mib1 and Talpid3, since these proteins normally reside in discrete

compartments; instead, we found that ectopic Mib1 could bypass this restriction. We generated a

series of Talpid3 truncation mutants and showed that an amino-terminal fragment spanning residues

1–1000 interacted most strongly with Mib1, although individual fragments spanning either half of

this fragment also interacted with Mib1, albeit much more weakly (Figure 6B). Next, we assessed

Figure 5. Mib1 is downstream of PCM1. (A) Validation of siRNA knockdown of Mib1. Control (sgCTL), PCM1, and TALPID3 KO RPE1 cells were

transfected with the indicated siRNAs corresponding to non-specific control (siGL2) or Mib1 (siMIB1-1 or siMIB1-2), and lysates were subjected to

western blot analysis with the indicated antibodies. (B) Mib1 depletion partially rescues the ciliogenesis defect in PCM1 KO cells. Cell lines in panel A

were transfected with siRNAs corresponding to non-specific control (siGL2) or Mib1 (siMIB1-1 or siMIB1-2) for 48 hr and serum starved for 48 hr. Ciliated

cells (n � 100 per sample in three independent experiments) were analyzed by immuno-staining with GT335. Error bars, SEM. *p<0.05. (C) E3 ligase

activity of Mib1 underlies ciliogenesis defect in PCM1 KO cells. Control and PCM1 KO RPE1 cells were infected with empty (EV), Flag-Mib1-WT or Flag-

Mib1-C985S lentiviruses for 72 hr and serum starved for 48 hr. Ciliated cells were analyzed by immuno-staining with GT335; n�100 per sample were

analyzed in two independent experiments. Error bars, SD. *p<0.05. (D) Control, PCM1, and Talpid3 KO RPE1 cells were transfected with siGL2, siMIB1-

2, or siMIB1-3 for 48 hr and subjected to western blot analysis with the indicated antibodies.

DOI: 10.7554/eLife.12950.010

The following figure supplements are available for figure 5:

Figure supplement 1. Mib1 suppress ciliogenesis.

DOI: 10.7554/eLife.12950.011

Figure supplement 2. Generation of TALPID3 knock-out cell lines.

DOI: 10.7554/eLife.12950.012

Figure supplement 3. Mib1 regulates the stability of multiple centriolar satellite proteins.

DOI: 10.7554/eLife.12950.013
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whether ectopic Mib1 expression could promote ubiquitylation of Talpid3 in vivo. We co-expressed

Talpid3, with either wild-type or catalytically inactive Mib1 and His-tagged ubiquitin, then affinity

purified all ubiquitylated proteins through metal chelation chromatography. We found that Mib1

was highly ubiquitylated, most likely through auto-ubiquitylation, since the catalytically inactive

mutant did not exhibit a similar high molecular weight ladder, in line with previous observations

(Figure 6C; Villumsen et al., 2013). More importantly, expression of active Mib1 led to poly-ubiqui-

tylation of Talpid3, suggesting that the ubiquitin ligase activity of Mib1 is required to target this sub-

strate for degradation (Figures 5D and Figure 5—figure supplement 3).

We tested whether ectopic expression of Mib1 exclusively results in the poly-ubiquitylation of the

centriolar protein, Talpid3, or whether it also impacts the ubiquitylation of interacting centriolar sat-

ellite proteins, such as Cep131 and PCM1 (Villumsen et al., 2013). In contrast with previous studies

showing that Mib1 expression resulted in mono-ubiquitylation of Cep131 and PCM1, we found that

both proteins were highly poly-ubiquitylated in the presence of active, but not inactive, Mib1 (Fig-

ure 6—figure supplement 1). These findings suggest that Mib1-mediated poly-ubiquitylation of

these targets can promote their destabilization.

PCM1 sequestration of Mib1 regulates Talpid3 abundance and
ciliogenesis
Thus far, we have shown that PCM1 is able to tether Mib1 to centriolar satellites, and the loss of

either PCM1 or elevated expression of Mib1 can destabilize targets at satellites (Cep131, PCM1)

and centrioles (Talpid3). We reasoned that the aberrant localization of Mib1 brought about by

removal of PCM1, its centriolar satellite tether, could perturb the abundance of Talpid3, if indeed

the latter protein were a substrate of this E3 ligase. Accordingly, we found that ablation of the

PCM1 gene led to a strong reduction in Talpid3 levels at centrioles (Figure 7A,B). Next, we tested

Figure 6. Mib1 promotes poly-ubiquitylation of Talpid 3. (A) Mib1 interacts with Talpid3. GFP-Mib1 was expressed in HEK293T cells, lysates were

subjected to immunoprecipitation with control IgG, anti-GFP, or Talpid3 antibodies, and western blot analysis was performed with the indicated

antibodies. (B) Mapping of Talpid3 domains that interact with Mib1. HEK293T cells were transfected with control (-) or expression vectors encoding

indicated Flag-tagged Talpid3 fragments for 48 h, and lysates were immunoprecipitated with anti-Flag antibodies. The input and immunoprecipitates

were analyzed by western blotting with the indicated antibodies. (C) Ubiquitylation of Talpid3 depends on the integrity of the Mib1 Ring domain. 293T

cells were transfected with plasmids expressing His-ubquitin, Flag-Mib1-WT, Flag-Mib1-C985S and/or Flag-Talpid3 (466-1533aa) for 2 days, and then

purified using Ni-NTA resin to detect in vivo ubiquitylation. The inputs and the Ni-NTA Resin pull-down samples were analyzed by western blotting with

the indicated antibodies.

DOI: 10.7554/eLife.12950.014

The following figure supplement is available for figure 6:

Figure supplement 1. Mib1 ubiquitylates Cep131 and PCM1.

DOI: 10.7554/eLife.12950.015
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whether Mib1 sequestration by PCM1 is indeed a key limiting factor in the regulation of Talpid3 lev-

els by depleting Mib1 in PCM1 knock-out or control cells. Remarkably, silencing Mib1 with either of

two siRNAs fully restored wild-type Talpid3 levels (Figure 7C,D). Conversely, expression of active,

but not inactive, Mib1 likewise drastically reduced the levels of centriolar Talpid3 (Figure 7E,F).

These studies established for the first time that Mib1, once released from PCM1, can relocate to

centrioles and result in the ubiquitylation of Talpid3, promoting its down-regulation.

Figure 7. PCM1 regulates Talpid3 abundance by sequestering Mib1. (A) and (B) Ectopic PCM1 expression in PCM1 KO cells stabilizes Talpid3 at

centrioles. Control and PCM1 KO cells were infected with empty or Myc-mPCM1 lentivirus for 3 days. (A) Centrosomal Talpid3 intensity was measured

in G1 phase cells by immuno-staining with anti-Talpid3 (green) and centrin (red) antibodies. N � 20 per sample in two independent experiments. Error

bars, SD. *p<0.05. (B) Representative images are shown. Scale bar, 1 mm. (C) and (D) Depletion of Mib1 in PCM1 null cells stabilizes Talpid3 at

centrioles. Control and PCM1 KO RPE1 cells were transfected with siGL2, siMIB1-2 or siMIB1-3 for 2 days. (C) Centrosomal Talpid3 intensity in G1 phase

cells was measured by immuno-staining with anti-Talpid3 (green) and centrin (red) antibodies. N � 20 per sample in two independent experiments.

Error bars, SD. *p<0.05. (D) The representative images are shown. Scale bar, 1 mm. (E) and (F) Destabilization of Talpid3 at the centrosome by Mib1 is

dependent on a functional RING domain. RPE1 cells were infected with empty, Flag-Mib1-WT or Flag-Mib1-C985S lentiviruses for 72 hr. (E)

Centrosomal Talpid3 intensity in G1 phase cells was measured by immunostaining with Talpid3 (green) and centrin (red) antibodies. N � 20 per sample

in two independent experiments. Error bars, SD. *p<0.05. (F) The representative images are shown. Scale bar, 1 mm. (G) and (H) Centrosomal

localization of Mib1 in cells ectopically expressing Mib1. (G) Cells were analyzed by immuno-staining with Mib1 (green) and centrin (red) antibodies.

Cells with centrosomal Mib1 were counted. N � 100 per sample in two independent experiments. Error bars, SD. *p<0.05. (H) Representative images

are shown. Scale bar, 1 mm.

DOI: 10.7554/eLife.12950.016
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These experiments, however, did not address whether Mib1 was acting on cytoplasmic pools of

Talpid3 or whether it could act locally within the centrosome if it were constitutively transported to

that compartment in the presence of wild-type PCM1. To address this question, we fused Mib1 to

the PACT domain, which results in transport of linked proteins to the centrosome (Gillingham and

Munro, 2000). As expected, in the presence of PCM1, the PACT-Mib1 protein localized to centro-

somes, whereupon this fusion protein, but not the catalytically inactive mutant, provoked a notable

reduction in Talpid3 protein levels (Figure 8A,B). In addition, expression of PACT-Mib1, but not the

inactive mutant, led to a dramatic reduction in ciliation (Figure 8C). Thus, within the limits of our

assay, we conclude that Mib1 can act locally at centrioles to de-stabilize Talpid3 (and likely other

substrates) and abolish ciliogenesis.

In an effort to establish the epistatic relationships between PCM1, Mib1, and Talpid3 in the cilium

assembly pathway, we showed that removal of Mib1 was able to partially restore ciliogenesis after

loss of PCM1, whereas, Mib1 depletion could not reverse the loss of primary cilia in TALPID3 ablated

cells (Figure 5B). These results suggest that Talpid3 acts as an effector of cilium assembly down-

stream of PCM1 and Mib1.

PCM1 loss or ectopic Mib1 abrogates early ciliogenic events
We sought a mechanistic explanation for why PCM1 null cells are unable to assemble cilia. Assembly

of this organelle is initiated when mother centrioles mature to form basal bodies and dock ciliary

vesicles with the assistance of their distal appendages (Kim and Dynlacht, 2013; Kobayashi and

Dynlacht, 2011; Sorokin, 1962). One of the earliest events, detectable within 90 min post-serum

deprivation, is the accumulation of Golgi- and endosome-derived Rab8 vesicles at mother centrioles

and emergence of a Rab8-positive axoneme. It is known that Rab8 interacts with the distal append-

age protein, Cep164 (Schmidt et al., 2012). Moreover, Rab8 also associates with the distal centrio-

lar protein, Talpid3, and depletion of Talpid3 abolishes Rab8 localization to basal bodies

(Kobayashi et al., 2014). We found that Cep164-positive basal bodies were decorated with Rab8 in

serum-starved, control cells, as expected (Figure 9A,B). In striking contrast, PCM1 null cells failed to

recruit Rab8 to basal bodies. We showed that this defect stemmed from loss of PCM1, since it was

rescued by expression of this protein. Importantly, the failure to recruit Rab8 could not be explained

by the reduced overall abundance of Rab8 or its upstream regulator, Rab11 (Figure 1D). Further-

more, the defect in Rab8 localization was not due to aberrant recruitment of Cep164 (Figure 9A),

since Cep164 localization was not affected by PCM1 ablation.

Next, we investigated whether diminished Rab8 localization could be brought about through the

aberrant re-localization of Mib1 to centrioles in PCM1 null cells. Remarkably, we showed that expres-

sion of the dominant-negative Mib1 could completely restore the recruitment of Rab8, whereas the

wild-type protein could not (Figure 9C,D). These studies strongly suggest that the arrest of ciliogen-

esis accompanying PCM1 ablation is due to a failure to accrete Rab8–associated vesicles at the basal

body and is a direct result of the mis-localization of Mib1. Further, given that (1) Cep164 localization

is unaffected and (2) centriolar Talpid3 levels are sharply reduced in PCM1 null cells (Figure 7A–D),

we propose that the striking ciliary defects in these cells stem, at least in part, from enhanced Mib1

localization to centrioles, triggering depletion of Talpid3 and a concomitant loss of Rab8a

recruitment.

Discussion

Use of PCM1 null cells to dissect a required role for specific proteins in
ciliogenesis
Centriolar satellites are comprised of numerous pro- and anti-ciliogenic proteins, and many of these

proteins also localize to centrioles, independently of centriolar satellites (reviewed in

Tollenaere et al., 2015). This complexity makes it challenging to investigate whether the defects in

ciliogenesis resulting from depletion of these proteins can be attributed to centriolar satellite dys-

function, abnormal centriole function, or both. This observation limits our ability to circumscribe the

set of centriolar satellite proteins required for ciliogenesis. To this end, we focused on PCM1, as it is

an essential organizer of centriolar satellites. By generating PCM1 knock-out cells and performing

structure-function analyses, we found that the pro-ciliogenic function of PCM1 is likely to depend on
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its interactions with a limited group of satellite proteins, a subset of which have been analyzed here.

Thus, we showed that PCM1-dependent centriolar satellite tethering of Mib1, but not Cep90, is

required for ciliogenesis. Use of these tools will accelerate our understanding of the contributions of

individual satellite proteins to ciliogenesis through their function at one location or the other. Ongo-

ing proteomic searches for satellite proteins that preferentially interact with the pro-ciliogenic N-ter-

minal domain of PCM1 versus other PCM1 fragments should be most informative.

Cells with defects in cilium assembly frequently exhibit abnormal distributions or morphology of

centriolar satellites (Kim et al., 2008; Klinger et al., 2014; Kobayashi et al., 2014; Sedjaı̈ et al.,

2010; Stowe et al., 2012). However, it is not clear whether the distribution and morphology of sat-

ellites have a direct impact on ciliogenesis. Specifically, it has been shown that over-expression of

BBS4 and Cep72 disrupts centriolar satellite distribution and results in the formation of aggregates

that sequester PCM1, which seems to negatively impact ciliogenesis (Kim et al., 2004; Stowe et al.,

2012). We observed similar PCM1-associated foci when we re-introduced PCM1 fragments spanning

1–1200 or 1–1500 into null cells. We found that these foci co-stained with Mib1 and Cep131. Fur-

thermore, these cells ciliated with a frequency comparable to wild-type cells. Our data therefore

suggest that the formation of PCM1 foci, particularly those that co-recruit Mib1 and Cep131, does

not, per se, inhibit ciliogenesis.

Figure 8. Centrosomal targeting of Mib1 destabilizes Talpid3 and inhibits ciliogenesis. (A) (Left) RPE1 cells were infected with empty (-), myc-PACT-

Mib1-WT, or myc-PACT-Mib1-C985S lentiviruses for 72 hr and western blotting performed to detect the fusion protein. (Middle) Visualization of

centrosomal localization of Mib1 in cells infected as in (A). Myc-PACT-Mib1 was detected by immuno-staining with anti-myc (green) and g-tubulin (red)

antibodies. (Right) Cells with centrosomal Mib1 were counted. N � 100 per sample in two independent experiments. Error bars, SD. *p<0.05. (B)

Destabilization of Talpid3 at the centrosome by centrosomal targeting of Mib1. Centrosomal Talpid3 intensity in G1 phase cells was measured by

immuno-staining cells exclusively exhibiting centrosomal myc-PACT-Mib1 with anti-Talpid3 (green) and myc (red) antibodies. N � 40 per sample in two

independent experiments. Error bars, SD. *p<0.05. (C) Ciliated cells exhibiting centrosomal myc-PACT-Mib1 (as in panel B) were analyzed by immuno-

staining with myc (green) and Arl13b (red) antibodies; n�100 per sample were analyzed in two independent experiments. Error bars, SD. *p<0.05.

DOI: 10.7554/eLife.12950.017
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A novel model linking PCM1 and its satellite function to an E3 ligase,
Talpid3 destruction, and Rab8 recruitment
In this study, we have identified novel roles for the centriolar satellite protein, PCM1, in regulating

the localization of an E3 ligase, Mib1, which controls the abundance of key centriolar satellite and

centriolar targets. We have elucidated a biochemical pathway linking PCM1 to Mib1, which is able

to regulate the abundance of Talpid3—and, most likely several other proteins at centrioles and cen-

triolar satellites–through ubiquitylation, and Rab8 recruitment, which is required for the early stage

of ciliogenesis. Although such a linear pathway is the most straightforward model for our observa-

tions, other possible explanations cannot be ruled out at this time. For example, it is possible that

Mib1 and Talpid3 function through independent pathways and that Talpid3 is required for cilium

assembly irrespective of PCM1 status and Mib1 activity. It will therefore be important to expand our

view of the Mib1 regulatory network and to identify additional Mib1 targets. Nevertheless, our data

vastly extend a model wherein centriolar satellites sequester proteins, such as BBS4, temporally

modulating the assembly of the BBSome and the onset of cilium assembly (Stowe et al., 2012).

BBSome components, including BBS4, have been implicated in cilium assembly, although other stud-

ies have not observed such a role for BBS4 (Yen et al., 2006; Mykytyn et al., 2004;

Hernandez et al., 2013). Using these PCM1 null cells, it should now be possible to investigate addi-

tional roles for PCM1 in sequestering key components at satellites. It is notable that inactivation of a

single protein, Mib1, is able to restore Rab8 recruitment in PCM1 null cells, as this finding suggests

that fine-tuning of Mib1 abundance—and therefore localization–may play a key, rate-limiting step in

controlling ciliogenesis.

It is likely that Mib1 will target for destruction other proteins critical for ciliogenesis, in addition to

Talpid3. For example, knock-out mice deleted for both isoforms of Rab8 (Rab8a/Rab8b) are viable,

and it is possible that another Rab (Rab10) compensates for the loss of this gene (Sato et al., 2014),

although the ability of Rab10 to functionally substitute for Rab8 remains to be shown. It is also

Figure 9. Mib1 expression or ablation of PCM1 blocks ciliogenesis at an early stage prior to Rab8 recruitment. (A) PCM1 null cells are defective in

recruitment of Rab8 to the mother centriole. (B) Quantitation of Rab8 in PCM1 null cells. (A) and (B) Control and PCM1 KO RPE1 cells were infected

with vector control (EV) or Myc-mPCM1 lentiviruses for 72 hr and serum starved for 6 h, and cells were immuno-stained with Rab8 (green) and Cep164

(red) Representative images are shown. Scale bar, 1 mm. (B) Cells with centrosomal Rab8 signal were counted (n�100 per sample in two independent

experiments). Error bars, SD. *p<0.05. (C) Mib1 E3 ligase activity antagonizes Rab8 recruitment to mother centriole. (D) Quantification of Rab8

recruitment to mother centriole in cells induced to ciliate in the presence of exogenous wild-type or catalytically inactive Mib1. (C) and (D) RPE1 cells

were infected with control (Flag only), Flag-Mib1-WT or Flag-Mib1-C985S lentiviruses for 72 hr and serum starved for 6 hr. Cells were immuno-stained

with antibodies against Rab8 (red) and Cep164+GT335 (green). N � 100 per sample in two independent experiments. Error bars, SD. *p<0.05.

DOI: 10.7554/eLife.12950.018
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possible that Mib1 could target other components involved in ciliary vesicle assembly. It is also not

known whether the related Mib2 gene can play a role in ciliogenesis. These studies will be acceler-

ated by the use of Mib1 and Mib2 knock-out mice, which have been created. These animals display

strong Notch phenotypes, similar to zebrafish Mib1 mutants (Itoh et al., 2003; Kang et al., 2013;

Koo et al., 2007). Thus far, ciliary phenotypes have not been observed or examined in these mice,

to our knowledge. It would be interesting to examine cilium assembly in these knock-out mice and

cells derived from them.

Our work confirms novel findings implicating Mib1 in the regulation of ciliogenesis

(Villumsen et al., 2013). In this study, Mib1 was shown to interact with PCM1 and Cep131, and,

interestingly, induction of cellular stress resulting from UV or heat shock led to the p38 MAPK-

dependent inactivation of Mib1, reduced ubiquitylation of Cep131, PCM1, and Cep290, and

enhanced ciliogenesis. While our respective studies are in agreement that Mib1 regulates ciliogene-

sis, our results differ in several significant ways. First, we have observed that each of the centriolar

satellite Mib1 substrates (Cep131 and PCM1) are highly poly-ubiquitylated by ectopic Mib1, rather

than being mono-ubiquitylated, and this leads to the de-stabilization of both proteins, in contrast

with previous work (Villumsen et al., 2013). In addition to these centriolar satellite proteins, we

show that Talpid3, a centriolar protein required for ciliogenesis, is also poly-ubiquitylated under

these conditions. Further, we found that removal of Mib1 led to the stabilization of both Cep131

and PCM1, enhancing the stability of centriolar satellites. We have replicated these findings in two

cell lines. At present, we cannot explain the apparent discrepancy between our findings and the pre-

vious study and ascribe them to experimental differences (Villumsen et al., 2013). We note that a

recent study indicated that Mib1 could regulate the stability of another centrosomal protein, Plk4,

through lysine 11-, 29-, and 48 ubiquitin linkages (Čajánek et al., 2015). Therefore, it should be

most interesting to identify additional components regulated by Mib1 and, potentially, to link these

findings to the original role of Mib1 in Notch signaling.

It is possible that the loss of satellite integrity could play important roles in human pathological

conditions. For example, we note that ~ 15% of prostate tumors exhibit deletions in the PCM1 gene

(cBioPortal). Given that the loss of cilia is an early event in the transformation of this tissue

(Hassounah et al., 2013), our studies suggest that further investigation of a role for PCM1 in pros-

tate tumorigenesis is warranted. One prediction of our model is that Mib1 may be aberrantly up-reg-

ulated or mis-localized in these tumors as a result of PCM1 mutations, which, we have shown, could

abolish cilium assembly. In this setting, and perhaps others, loss of PCM1 and satellite tethering

could play a signature role in the transformative process.

Materials and methods

Cell culture
Human telomerase-immortalized retinal pigment epithelial cells (hTERT RPE-1, ATCC CRL-4000, pas-

sage 3–6) were obtained from ATCC and were confirmed to be free of mycoplasma. Cells were

grown in DMEM containing 10% FBS and antibiotics (penicillin and streptomycin). To induce cilia for-

mation, RPE1 cells were placed in DMEM without FBS for 24 or 48 hr.

Transfection
siRNAs were transfected into RPE1 cells using RNAiMAX (Invitrogen, Carlsbad, CA ) according to

the manufacturers’ manual. Plasmids were transfected into 293T cells by polyethylenimine.

siRNA sequences
siRNAs used in this research were siMIB1-1 (50-GACUGAUGGAAUGUUUGAGACUUUA-30)

(Berndt et al., 2011), siMIB1-2 (50-GCATATGTCCTCTGGGATAUU-30), siCTL (5’-UUCUCCGAACG

UGUCACGUUU-3’), siGL2(5’-CGUACGCGGAAUACUUCGAUU-3’) and siPCM1 (5’-GGCUUUAAC

UAAUUAUGGAdTdT-3’) (Villumsen et al., 2013).

DNA constructs
Mouse/human PCM1 (Kim et al., 2012) and truncation mutants were sub-cloned into pLVX-IRES-

Puro (Clonetech, Mountain View, CA) with a Myc-tag, Human Cep131 and human Mib1 were kindly
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provided by Kunsoo Rhee (Seoul National University, Seoul, South Korea) and Randall T. Moon (Uni-

versity of Washington School of Medicine, Seattle, USA), respectively. Mib1 and PACT-Mib1 were

sub-cloned into PLVX-IRES-Puro with Flag or myc tag. Mib1 (C985S) was generated by site-direct

mutagenesis using PCR. Talpid3 (Itoh et al., 2003), and Mib1 deletions were sub-cloned into

(pCMV5-Flag).

Antibodies
Antibodies used included: Mib1 (M5948; Sigma-Aldrich, St. Louis, MO), PCM1 (H262; Santa

Cruz, Santa Cruz, CA), Cep131 (A301-415A; Bethyl Laboratories, Montgomery, TX), Cep90 (Kim and

Rhee, 2011), Ki-67 (ab15580; Abcam, Cambridge, MA), GT335 (AG-20B-0020-C100;

Adipogen, Switzerland), BBS4 (Kim et al., 2012), Rab11 (71–5300; Life Technologies, Carlsbad, CA),

Rab8 (a gift from J. Peranen, University of Helsinki, Helsinki, Finland and 610844; BD Biosciences,

San Jose, CA), a-tubulin (T5168; Sigma-Aldrich), Cep290 (A301-659A; Bethyl Laboratories), Ofd1 (a

gift from J. Reiter, University of California, San Francisco, USA; Singla et al., 2010), Talpid3

(Kobayashi et al., 2014), Myc (sc-40; Santa Cruz), Flag (F3165; Sigma-Aldrich), centrin (04–1624;

Millipore, Billerica, MA), GFP (G1544; Santa Cruz), Cep164 (a gift from Eva Lee, University of Califor-

nia, USA), IFT88 (13967-1-AP; Proteintech, Chicago, IL).

Immunofluorescence, microscopy, and statistical analyses
RPE1 cells were grown on a coverslip and fixed with cold methanol for 10 min or 4% PFA form

15 min. The cells were incubated with 3% BSA-0.3% PBST (Triton X-100) for 20 min. Primary and sec-

ondary antibodies in the blocking solution were placed on the cells for 2 hrs at RT Antibodies were

diluted in 0.1% PBS with Triton X-100 with 3% BSA. The cells were mounted onto a slide glass with

mounting solution (P36934; Life Technologies) and imaged using a microscope (63� or 100�, NA

1.4; Axiovert 200M, Carl Zeiss, Germany) equipped with a cooled CCD (Retiga 2000R;

QImaging, Surrey, Canada) and MetaMorph . The images were obtained as z projections (0.3 mm

interval) and analyzed by ImageJ (NIH, http:// rsbweb.nih.gov/ij/) and SigmaPlot (Systat Software,

San Jose, CA). The region of interest was defined by drawing a circle including the centrosome.

Background values were measured from the same-sized circle as a circle including the centrosome in

an adjacent region. Talpid3 staining was analyzed in G1 phase cells (serum starved for 24 or 48 hr)

to achieve uniformity and to avoid oscillations in abundance during the cell cycle.

In vivo ubiquitination assay
293 cells were co-transfected with a plasmid encoding His-Ub (gift from R. Baer), Flag-Mib1 (WT or

C985S), and a plasmid encoding substrates (Flag-Talpid3, Myc-mPCM1 or GFP-Cep131) for 48 hrs.

The cells were lysed in Buffer A (100 mM NaH2PO4, 10 mM Tris-HCl, 6 M guanidine-HCl, 10 mM

imidazole pH 8.0) and sonicated. The cell lysates were incubated with nickel-NTA resin (Qiagen) for

3 hr at RT. The beads were washed with buffer A twice, bufferA/TI (1:1 ratio) (TI buffer, 25 mM Tris-

Cl pH 6.8 and 20 mM imidazole), and TI buffer. And then the beads were incubated with SDS load-

ing buffer containing 200 mM imidazole and boiled for 10 min.

Lentivirus production and infection
For lentivirus production, 293T cells were transfected with lentiviral envelope, packaging and expres-

sion vectors for 2 days. And then the media were harvested and filtered. For infection, RPE1 cells

were incubated with the media containing lentivirus and polybrene (8 or 12 mg/ml) for 24 hr.

Immunoprecipitation
293T cells were lysed by ELB buffer (50 mM Hepes pH7, 150 mM NaCl, 5mM EDTA pH 8, 0.1% NP-

40, 1 mM DTT, 0.5 mM AEBSF, 2 mg/ml leupeptin, 2 mg/ml aprotinin, 10 mM NaF, 50 mM b-glycero-

phosphate, and 10% glycerol) on ice for 10 min and the lysates were centrifuged at 14,000 rpm and

4˚C. The supernatant was incubated with Myc antibody - Protein G Sepharose (GE Healthcare) or

Flag beads (Sigma-Aldrich). For immunoprecipitation, 2 mg of the resulting supernatant after centri-

fugation was incubated 4˚C. The beads was washed with ELB buffer four times, boiled with SDS

loading buffer, and analyzed by immuno-blotting.

Wang et al. eLife 2016;5:e12950. DOI: 10.7554/eLife.12950 15 of 18

Research Article Cell biology

http://%20rsbweb.nih.gov/ij/
http://dx.doi.org/10.7554/eLife.12950


Establishment of knock-out cell lines using CRISPR/Cas9
RPE1 cells were infected with lentivirus expressing Flag-Cas9 and sgRNA and grown for 10 days,

after which the cells were separated as single cells into 96 well plates. After 2 weeks, the colonies

were analyzed for genomic editing. sgRNAs used included: sgPCM1 (5’-ATGATCAGGATTTAC-

CAAAC-3’) and sgCTL (5’-GAGACGTCTAGCACGTCTCT-3’). For Talpid3 targeting, the following

sgRNA was used: 5’-GATGATGTTCTTCATGACCT-3’.

Statistics and reproducibility
The statistical significance of the difference between two means was determined using a two-tailed

Student’s t-test. All data are presented as mean ± SEM or SD as specified in the figure legends. Dif-

ferences were considered significant when p<0.05. Results reported are from three or two indepen-

dent biological replicates as noted in legends with reproducible findings each time. Exact means,

SEM, SD, N, P values can be found in the Supplementary file 1.
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Čajánek L, Glatter T, Nigg EA. 2015. The E3 ubiquitin ligase mib1 regulates plk4 and centriole biogenesis.
Journal of Cell Science 128:1674–1682. doi: 10.1242/jcs.166496

Davey MG, James J, Paton IR, Burt DW, Tickle C. 2007. Analysis of talpid3 and wild-type chicken embryos
reveals roles for hedgehog signalling in development of the limb bud vasculature. Developmental Biology 301:
155–165. doi: 10.1016/j.ydbio.2006.08.017

Davey MG, Paton IR, Yin Y, Schmidt M, Bangs FK, Morrice DR, Smith TG, Buxton P, Stamataki D, Tanaka M,
Münsterberg AE, Briscoe J, Tickle C, Burt DW. 2006. The chicken talpid3 gene encodes a novel protein
essential for hedgehog signaling. Genes & Development 20:1365–1377. doi: 10.1101/gad.369106

Gillingham AK, Munro S. 2000. The PACT domain, a conserved centrosomal targeting motif in the coiled-coil
proteins AKAP450 and pericentrin. EMBO Reports 1:524–529. doi: 10.1093/embo-reports/kvd105

Hassounah NB, Nagle R, Saboda K, Roe DJ, Dalkin BL, McDermott KM. 2013. Primary cilia are lost in preinvasive
and invasive prostate cancer. PloS One 8:e68521. doi: 10.1371/journal.pone.0068521

Hernandez-Hernandez V, Pravincumar P, Diaz-Font A, May-Simera H, Jenkins D, Knight M, Beales PL. 2013.
Bardet-biedl syndrome proteins control the cilia length through regulation of actin polymerization. Human
Molecular Genetics 22:3858–3868. pp.. doi: 10.1093/hmg/ddt241

Ishikawa H, Marshall WF. 2011. Ciliogenesis: Building the cell’s antenna. Nature Reviews. Molecular Cell Biology
12:222–234. doi: 10.1038/nrm3085

Itoh M, Kim CH, Palardy G, Oda T, Jiang YJ, Maust D, Yeo SY, Lorick K, Wright GJ, Ariza-McNaughton L,
Weissman AM, Lewis J, Chandrasekharappa SC, Chitnis AB. 2003. Mind bomb is a ubiquitin ligase that is
essential for efficient activation of notch signaling by delta. Developmental Cell 4:67–82. doi: 10.1016/S1534-
5807(02)00409-4

Kamiya A, Tan PL, Kubo K, Engelhard C, Ishizuka K, Kubo A, Tsukita S, Pulver AE, Nakajima K, Cascella NG,
Katsanis N, Sawa A. 2008. Recruitment of PCM1 to the centrosome by the cooperative action of DISC1 and
BBS4: A candidate for psychiatric illnesses. Archives of General Psychiatry 65:996–1006. doi: 10.1001/archpsyc.
65.9.996

Kang K, Lee D, Hong S, Park SG, Song MR. 2013. The E3 ligase mind bomb-1 (mib1) modulates delta-notch
signaling to control neurogenesis and gliogenesis in the developing spinal cord. The Journal of Biological
Chemistry 288:2580–2672. doi: 10.1074/jbc.M112.398263

Kim J, Krishnaswami SR, Gleeson JG. 2008. CEP290 interacts with the centriolar satellite component PCM-1 and
is required for rab8 localization to the primary cilium. Human Molecular Genetics 17:3796–3805. doi: 10.1093/
hmg/ddn277

Kim JC, Badano JL, Sibold S, Esmail MA, Hill J, Hoskins BE, Leitch CC, Venner K, Ansley SJ, Ross AJ, Leroux MR,
Katsanis N, Beales PL. 2004. The bardet-biedl protein BBS4 targets cargo to the pericentriolar region and is
required for microtubule anchoring and cell cycle progression. Nature Genetics 36:462–470. doi: 10.1038/
ng1352

Kim K, Lee K, Rhee K. 2012. CEP90 is required for the assembly and centrosomal accumulation of centriolar
satellites, which is essential for primary cilia formation. PloS One 7:e48196. doi: 10.1371/journal.pone.0048196

Kim K, Rhee K. 2011. The pericentriolar satellite protein CEP90 is crucial for integrity of the mitotic spindle pole.
Journal of Cell Science 124:338–347. doi: 10.1242/jcs.078329

Kim S, Dynlacht BD. 2013. Assembling a primary cilium. Current Opinion in Cell Biology 25:506–511. doi: 10.
1016/j.ceb.2013.04.011
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