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Abstract

Hospital-acquired infections pose both a major risk to patient wellbeing and an economic burden on global healthcare
systems, with the problem compounded by the emergence of multidrug resistant and biocide tolerant bacterial pathogens.
Many inanimate surfaces can act as a reservoir for infection, and adequate disinfection is difficult to achieve and requires
direct intervention. In this study we demonstrate the preparation and performance of materials with inherent
photodynamic, surface-active, persistent antimicrobial properties through the incorporation of photosensitizers into high
density poly(ethylene) (HDPE) using hot-melt extrusion, which require no external intervention except a source of visible
light. Our aim is to prevent bacterial adherence to these surfaces and eliminate them as reservoirs of nosocomial pathogens,
thus presenting a valuable advance in infection control. A two-layer system with one layer comprising photosensitizer-
incorporated HDPE, and one layer comprising HDPE alone is also described to demonstrate the versatility of our approach.
The photosensitizer-incorporated materials are capable of reducing the adherence of viable bacteria by up to 3.62 Log
colony forming units (CFU) per square centimeter of material surface for methicillin resistant Staphylococcus aureus (MRSA),
and by up to 1.51 Log CFU/cm2 for Escherichia coli. Potential applications for the technology are in antimicrobial coatings
for, or materials comprising objects, such as tubing, collection bags, handrails, finger-plates on hospital doors, or medical
equipment found in the healthcare setting.
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Introduction

Hospital-acquired (nosocomial) infections pose a global health-

care concern. It has been estimated that 1 in 10 patients will

acquire an infection after admission to a healthcare institution [1].

Such infection presents a serious risk to the morbidity and

mortality of the most vulnerable individuals, who are being cared

for in the very environment where recuperation and improvement

in health and wellbeing is intended. The financial burden to

healthcare systems is also alarming; a decade ago the annual

economic cost of nosocomial infection in the US was determined

to be in the region of $6.7 billion [1]. The costs of implementing

strategies to prevent nosocomial infection is likely much less than

the value of resources consumed in treatment of these infections

once they occur [2]. A major concern in the treatment of

nosocomial infection is the emergence of bacterial pathogens

displaying resistance to a broad range of antibacterial chemother-

apeutic drugs [3]. While the discovery of antibiotics has proved

one of the most important advances in healthcare in the 20th

century, their widespread use is a double-edged sword. There has

been a profound effect on the selective adaptation of bacteria, with

multi-drug resistant strains (MDR) emerging at an alarming rate,

and threatening the end of the ‘‘antibiotic era’’ [4,5]. Antibiotic

resistant bacteria pose a serious problem in hospitals; strains of

methicillin resistant Staphylococcus aureus (MRSA) appear well

adapted to the healthcare environment and have spread interna-

tionally (epidemic MRSA, EMRSA) [6]. With the discovery of the

next generation of new and efficacious antibiotics lagging behind

the emergence of MDR bacteria, the importance of hygiene and

disinfection practices in healthcare institutions requires particular

emphasis; such interventions may prevent cross-colonization of

patients due to contamination of inanimate objects, such as

handrails, bedding and medical equipment, or even the skin of

healthcare workers and patients, acting as a reservoir for

nosocomial infection [7]. In addition to MRSA, there is evidence

to suggest that other pathogens may be transmitted by means of

environmental reservoirs, including viral pathogens (influenza

virus, norovirus, hepatitis, coronavirus), and problematic Gram-
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negative pathogens (Escherichia coli, Clostridium difficile, Pseu-
domonas aeruginosa, vancomycin-resistant enterococci) [7]. The

present mainstay employed in controlling hospital infection is

cleansing using biocides (antiseptics and disinfectants), such as

quaternary ammonium compounds (QACs), halogen-releasing

agents, and phenolics. The activity of such biocide agents depends

on several factors, most notably concentration, period of contact,

pH, temperature, numbers and nature of microorganisms to be

inactivated [8]. There is also concern that intensive exposure of

nosocomial pathogens to biocides may allow for the selection of

biocide resistant/tolerant bacterial strains [8–12]. Unlike antibi-

otics that act at a specific cellular target or interfere with a defined

metabolic process, biocides act in a non-specific manner at a

variety of cellular targets, such as the bacterial outer membrane or

cell wall, the cytoplasmic membrane, proteins, genetic material,

and other cytosolic components [13]. Despite this, MRSA strains

that show resistance to antiseptics and disinfectants have been

isolated from clinical samples, with resistance due to the presence

of genes encoding for energy-dependent drug efflux mechanisms,

and these genes also confer cross-resistance to a diverse range of

antimicrobial drugs [10]. In addition to acquired genetic

resistance, bacteria in the biofilm mode of growth are inherently

tolerant to inactivation using biocides [14]. Bacterial biofilms are

defined as a sessile community of bacteria, characterized by cells

that are irreversibly attached to a substratum or interface, or to

each other, and are imbedded in a matrix of extracellular

polymeric substances (EPS) that they have produced, and exhibit

an altered phenotype with respect to growth rate and gene

transcription [15]. The biofilm provides an environment where

antimicrobial penetration is hindered, genetic exchange and

resistance transfer are facilitated, and a change in physiological

state, such as stationary phase dormant zones, are a significant

factor in the resistance to antibacterial challenge [16,17].

Numerous studies have demonstrated the difficulties in biofilm

eradication using biocides commonly employed for cleansing

purposes in the hospital setting [18–21]. There is therefore a

logical interest in the development of antibacterial surfaces, serving

to reduce microbial bioburden on these materials. By preventing

the interaction with and adherence of bacterial cells to a surface,

the initial stages of biofilm formation are disrupted, effectively

removing the foundation which the bacterial biofilm requires.

Antimicrobial polymeric coatings, fabrics, and paints are examples

of approaches that have attracted interest to date [22–24].

This current study investigates the use of photosensitizer

incorporation into polymers, with this approach intended to

impart an antimicrobial and/or anti-adherent property to the

material surface. Photosensitizers such as porphyrins and pheno-

thiazines have been used clinically in photodynamic therapy

(PDT) of malignancies [25–27], and have potential application in

photodynamic antimicrobial chemotherapy (PACT), with photo-

dynamic inactivation of MDR bacteria proving equally as effective

as antibiotic-susceptible strains [28–31]. The mechanism of action

of photodynamic therapy relies on the fact that photosensitizers

are capable of reacting in the presence of visible light to produce

cytotoxic effects. Phototoxic effects are initiated when, on

absorption of an appropriate wavelength of light, the photosen-

sitizer molecule is excited to the higher energy triplet state. This

energy can be dissipated in one of two ways, via electron-transfer

from the photosensitizer to a substrate, producing radical ions,

which can react with oxygen, forming cytotoxic molecules such as

superoxide, hydroxyl and lipid-derived radicals, or via direct

energy transfer to oxygen, to produce the higher energy state

singlet oxygen, which is highly reactive and can oxidize biological

molecules such as proteins, nucleic acids and lipids, resulting in

cytotoxicity [29,31,33].

Previously, we demonstrated how incorporation of photosensi-

tizers into hydrogels can generate singlet oxygen on a biomaterial

surface, with intended application in the design of infection-

resistant medical devices [34,35,37]. Here, we generalise this

concept, and demonstrate the facile production of a model two-

layer poly(ethylene) (PE) film system, with one layer comprising

sensitizer-incorporated PE, and the other a backing layer with the

mechanical properties desired for the end application. Such a

photodynamic, infection-resistant material may find broad appli-

cation as coatings or covers for various inanimate objects

commonly found in a hospital environment such as handrails,

high-tech medical equipment (in particular touch-screens of IT

devices), or materials for the manufacture of difficult-to-clean

polymer surfaces such as coiled telephone cables or keypads.

Incorporation of photosensitizer into PE by a hot-melt extrusion

process, mechanical performance of sensitizer-incorporated poly-

mer, leaching behaviour of sensitizer from the material, and

antimicrobial properties of the material against a methicillin

resistant strain of S. aureus and the Gram negative pathogen,

Escherichia coli, upon light illumination are detailed. The results

illustrate the viability of such materials as an effective general

means for creating antimicrobial surfaces with the potential to

control the spread of bacterial pathogens.

Materials and Methods

Materials
High-density poly(ethylene) (HDPE) was obtained from Q-

Chem Ltd, Doha, Qatar (Marlex HHM TR-144, BN. 11100464).

Low-denisty poly(ethylene) (LDPE) was obtained from Lydonell-

BAsel Industries, Rotterdam, The Netherlands. Photosensitizers,

cationic 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin tet-

ra(p-toluenesulfonate) .97% (TMPyP) was obtained from Tri-

PorTech GmbH, Lübeck, Germany. Neutral 5,10,15,20-Tetra-

phenyl-21H,23H-porphine 97% (TPP), Toluidine blue O

(Tolonium chloride) 97% (TBO), and Methylene blue $82%

(MB) were obtained from Sigma-Aldrich, Gillingham, UK, and

were used without further purification.

Extrusion of poly(ethylene) and sensitizer-incorporated
poly(ethylene) materials
Extrusion was performed using a Dr Collin ZK 25 co-rotating

twin screw extruder, with paired general purpose screws contain-

ing mixing section (25 mm dia; L/D ratio 36), and equipped with

Dr Collin 250 mm slot die (coat hanger formation). Extrusion was

controlled via a Dr Collin ECS-30 system and sheets were

collected using a Dr Collin CR 136–350 chill-roll unit with three

roll stack. Extruded materials were prepared in 1 kg batches

containing pure PE or mixtures of either TMPyP, TPP, TBO, or

MB and HDPE at sensitizer concentrations of 0.05% (0.50 g) and

0.40% (4.00 g) (w/w). The required weights of HDPE and

sensitizer were mixed together until a consistent and even coating

of HDPE with sensitizer was achieved. The extruder was pre-

heated to 230uC along the screw and at the die. Pure HDPE was

extruded initially in order to ensure the correct conditions had

been obtained. Melt temperature was set at 222uC, screw speed at

60 rpm and pressure at the die was measured to be 114 bar. The

chill roll was maintained at 110uC and roller speed was 1.2 metres

per minute. Once a film of consistent quality and thickness was

obtained, the hopper was emptied of remaining PE and was filled

with the required sensitizer-containing PE mixture. Initial

extrudate was discarded due to uneven mixing, resulting from
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the extrusion of the remainder of the pure PE resident in the

screw, with collection beginning once pigmentation was uniform.

Similarly, extrudate at the end of the batch was discarded as

reduction in the available mass of the mixture resulted in reduced

pressure, affecting the homogeneity of the film. The residence time

of the sensitizer-PE mixture within the extruder was approxi-

mately 5 minutes.

Production of twin layer sheets by platen press
Platen pressing was achieved using a Dr Collin P 200 P platen

press, capable of maintaining a maximum temperature of 300uC
and maximum pressure of 250 bar, with an effective operating

area of 1966196 mm2. Sections of extruded sheets, one pure

HDPE and a second sensitizer-incorporated HDPE, were cut to

approximately 1906190 mm2 and placed one on top of the other

inside a PTFE envelope. The envelope was placed on a tray and

set in the platen press, pre-heated to 150uC, after which a five

stage automated program was initiated, with temperature and

pressure not exceeding 150uC and 70 bar respectively.

Characterization of sensitizer-incorporated PE by UV-
visible spectroscopy and confocal laser scanning
microscopy
Confocal laser scanning microscopy was performed using a

Leica DM RE upright microscope in conjunction with a Leica

TCS SP2 system, and images were analyzed using Leica LAS AF

imaging software. All images captured were 204862048 pixels,

with a line average of 16 and were the average of 16 individual

scans. The microscope pinhole was set at a 5.89 airy (600 mm)

diameter. Reflectance images were recorded by setting the

excitation beam wavelength to 488 nm and detecting emission

in the range 480–500 nm. Fluorescence images required setting a

suitable excitation wavelength and emission detection dependent

on the photosensitizer under examination. For TPP, wavelengths

used were 514 nm (excitation) and 600 nm –800 nm (emission),

and for TMPyP wavelengths used were 514 nm (excitation) and

600 nm –720 nm (emission), while the emission wavelengths of

MB and TBO lay outside the detection range of our instrumen-

tation. Optical microscopy was therefore used to examine the

distribution and homogeneity of MB and TBO within the

polymer.

As a possible end application of these materials is antimicrobial

covers for touch-screen devices, it is important to determine the

transparency and optical clarity of the photosensitizer-incorporat-

ed films. UV-visible spectroscopy was performed using a Perkin

Elmer Lambda 650 UV-visible spectrophotometer, to determine

the optical transmittance of the materials in the visible region

between 390–750 nm. This was achieved by attaching samples to

the wall of a quartz cuvette, scanning this region of the

electromagnetic spectrum, and determining mean transmission

across this range of wavelengths. This analysis is used to determine

the percentage of visible light that is transmitted through the

photosensitizer-incorporated materials.

Figure 1. CLSM reflctance image of (A) HDPE control, (B) 0.40% TPP-HDPE, (C) 0.40% TMPyP-HDPE surfaces, (D) HDPE control, (E)
0.40% MB-HDPE, (F) 0.04% TBO-HDPE. All images represent an area measuring 3.75 mm x 3.75 mm.
doi:10.1371/journal.pone.0108500.g001
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Characterization of mechanical performance of
sensitizer-incorporated materials
Mechanical analysis of films was performed on dumb-bell

shaped samples (length 30 mm, thickness of narrow portion 2 mm)

cut using a Ray-Ran hand-operated cutting press, and was tested

using a Stable Micro Systems TA.XT plus texture analyzer, fitted

with a 40 kg load cell. The dimensions of the narrow portion of

the dumb-bell (width and thickness) were measured using a digital

micrometer, and the samples were secured between the mobile

upper and static lower clamps of the texture analyzer. The

distance separating the upper and lower clamps was used to

measure the gauge length of the sample. In order to test the

sample, the upper clamp was raised at a speed of 50 mm.min21,

until sample fracture occurred. From the resultant stress–strain

relationship, the mechanical properties of the samples (yield point,

ultimate tensile strength (UTS), Young’s modulus and percentage

elongation) were calculated. A minimum of five replicates of each

sample were performed and the effect of incorporation of varying

concentrations of both photosensitizers on the mechanical

properties of PE was assessed for statistical significance using a

one-way ANOVA, with post-hoc comparisons made using Tukey’s

HSD test. Significance was denoted by a value of p,0.05.

Characterization of leaching behaviour
Photosensitizer-incorporated samples (30620 mm) were cut

and pressed firmly 1000 times with one clean, washed finger.

Adherent photosensitizer was washed from the finger by

immersing in 10 mL deionised water for 30 seconds. Solutions

were analyzed using a Perkin Elmer Lambda 650 UV-visible

spectrophotometer; the concentration of photosensitizer in solu-

tion was determined via the calculated molar extinction coeffi-

cient, (e) at lmax, of solutions of known concentrations. Calculated

e values are as follows: TBO 39,750 mol21 dm23 cm21 (lmax

610 nm); TPP 406,750 mol21 dm23 cm21 (lmax 420 nm); MB

74,028 mol21 dm23 cm21 (lmax 664 nm); TMPyP

193,000 mol21 dm23 cm21 (lmax 446 nm). Using the same

sample, the materials were pressed a further 1000 times, repeating

the procedure as before, and continuing to touch samples in

increments of 1000, up to 10,000 times. Analyses were carried out

in triplicate.

Photosensitizer-incorporated samples (75650 mm) were cut

and wiped 50 times with a medical wipe moistened in a 1% (w/

v) solution of non-ionic surfactant, Tween 20, as a model for

typical hospital surface cleaning products. Leaching of the highly-

colored photosensitizer by this surface cleansing procedure was

assessed by examination of the degree of staining of the medical

wipe. Using the same sample, the materials were wiped a further

50 times, repeating the procedure as before, and continuing to

clean samples in increments of 50, up to 500 times. Analyses were

repeated in triplicate.

Figure 2. CLSM fluorescence micrographs of (A) TPP-HDPE at (i) 0.40%, (ii) 0.05%, (iii) 0% TPP (control) and of (B) TMPyP-HDPE at
(i) 0.40%, (ii) 0.05%, (iii) 0% TMPyP (control). All images represent an area measuring 1.5 mm x 1.5 mm.
doi:10.1371/journal.pone.0108500.g002
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Characterization of antimicrobial behaviour
Bacterial adherence to materials was tested using methicillin-

resistant Staphylococcus aureus (MRSA) ATCC 33591; bacteria

were grown aerobically at 37uC in Müller–Hinton Broth (MHB)

for 18 hours. During log phase of growth, the broth culture was

centrifuged at 3000 rpm for 12 minutes, the cell pellet re-

suspended in phosphate buffered saline (PBS). The suspension was

diluted, such that the optical density was 0.3 at 540 nm (approx.

2.06108 cfu/mL). The suspension was serially diluted in PBS, to

form the final inoculum (approx. 4.06105 cfu/mL). Sensitizer-

loaded samples and controls (blank HDPE without sensitizer) were

cut to 15610 mm. Drops of bacterial inoculum (60 mL – approx.

1.66104 cfu/cm2) were placed into a sterile petri dish, after which

each drop was covered with a single sensitizer-loaded or control

sample. Petri dishes containing inoculated samples were inverted,

in order to facilitate light irradiation of the polymer surface in

contact with the bacteria, and placed under two 230W halogen

bulbs situated 24 cm from dishes, providing 1340 mW light across

the sample surface, for 2 hours. Samples are held in place against

the base of the inverted petri dish by adhesive capillary force.

Post-illumination, samples were removed from petri dishes and

placed in 10 mL PBS, inverting constantly for 30 seconds, to

remove non-adherent bacteria; samples were then transferred to

individual bijoux bottles containing 2 mL Quarter Strength

Ringers Solution (QSRS). Samples were sonicated for 10 minutes

in order to remove and suspend adherent bacteria, using a

Branson 3510 ultrasonic cleaner providing a fixed puissance of

42 KHz. The number of surviving microorganisms were deter-

mined by spread plating on Müller–Hinton Agar (MHA) plates.

Plates were allowed to dry, inverted and incubated at 37uC, 50%
RH for 18–24 hours. Testing was performed using five replicates

of each sensitizer-loaded material (at both high and low

concentrations), along with corresponding polyethylene control.

Lead materials identified as effective against MRSA were then

carried forward for further testing with Gram-negative Escherichia

coli NCTC 8196. These lead materials (MB 0.4%, TBO 0.4%,

and TMPyP 0.4%) were tested against E. coli as per methodology

described above. Statistical significance was determined against

dark HDPE control and was carried out using a two-tailed

student’s t-test, p,0.05.

Results

Distribution of sensitizer in materials and optical
transmittance of sensitizer incorporated films
HDPE sheets containing varying concentrations of sensitizers

were subject to examination by confocal laser microscopy.

Samples were first viewed in reflectance mode, in order to provide

images of the material surfaces. No distinct visual alterations to the

polymer surface were seen upon addition of TPP to the HDPE

mixture, however, inspection of TMPyP incorporated HDPE

appears to show some aggregates at the material surface; there also

appears to be some modification to the polymer surface upon

addition of the higher concentrations of MB and TBO, likely due

to the presence of aggregates at the material surface, compared

with the relatively smooth surface of the pure HDPE, as illustrated

in Figure 1.

The use of fluorescence imaging allowed visualization of the

sensitizer throughout the materials. At both 0.40% and 0.05%

TPP loading, an even fluorescence signal was observed on the

surfaces of the samples, indication that the photosensitizer has

been well mixed with the polymer and has produced a largely

homogenous surface, as displayed in Figure 2. However, fluores-

cence imaging of the surface of TMPyP incorporated HDPE

revealed incomplete mixing of the photosensitizer with the

material, at both the 0.05% and 0.40% concentrations (Figure 2).

As fluorescence imaging of materials containing TBO and MB

was not possible, optical microscope images were collected and

revealed a relatively even colouring with minimal alteration in the

surface compared to HDPE; however, the images show small

Figure 3. Optical microscope images of (A) PE, (B) 0.05% MB-PE, (C) 0.40% MB-PE, (D) 0.05% TBO-PE, and (E) 0.40% TBO-PE. All
images represent an area measuring 1.0 mm x 1.0 mm.
doi:10.1371/journal.pone.0108500.g003
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darkened spots indicating non-homogeneity and incomplete

mixing of the sensitizers (Figure 3).

UV-visible spectroscopic analysis of photosensitizer-loaded

samples was performed to determine the transmittance of light

through the sample, in order to give a measure of optical clarity

and transparency. The mean transmittance of pure polyethylene

film, across the visible range (390 nm–750 nm), was 68%.

Compared with this, the transmittance of low concentration

porphyrin-incorporated materials (0.05% TPP and TMPyP) was

approximately 49%, in both cases. Samples containing 0.4%

TMPyP exhibited transmittance of 37%, while 0.4% TPP reduced

transmittance to 33%. For phenothiazine incorporated films, the

transmittance of low concentration materials (0.05% TBO and

MB) was approximately 46% and 44%, respectively. Samples

containing 0.40% MB exhibited transmittance of 28%, while

0.40% TBO reduced transmittance to 14%.

Mechanical performance
Mechanical testing of prepared HDPE samples, containing

either TPP, TMPyP, MB or TBO at concentrations of 0.05 or

0.40% (w/w), was performed and the results compared to the

mechanical properties of pure HDPE. Using the data collected,

four measures of the mechanical performance of the materials

were calculated – yield strength, ultimate tensile strength (UTS),

Young’s Modulus, and percentage elongation, which are shown in

Figure 4 (porphyrin-based sensitizers, TPP and TMPyP) and

Figure 5 (phenothiazine-based sensitizers, TBO and MB).

These results indicate that incorporation of TPP at either

concentration causes no significant effect on the yield strength of

PE (20.360.90 MPa vs. 19.660.36 (0.05%) and 20.360.92

(0.40%)). Incorporation of TMPyP at concentrations of 0.05%

causes a statistically significant reduction in the yield strength of

the material (19.060.41 MPa); while HDPE with a TMPyP-

loading of 0.40% produces no significant difference in yield

strength from that of PE (20.360.35 MPa). TBO at either

concentration causes a significant reduction on the yield strength

Figure 4. Effect of incorporation of TPP or TMPyP on extruded HDPE sheets (at 0.05 or 0.40% w/w) on: (A) yield strength, (B)
ultimate tensile strength, (C) Young’s Modulus and (D) percentage elongation at break. * indicates level of significance from HDPE
control, graph displays means+standard deviation.
doi:10.1371/journal.pone.0108500.g004
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of PE (31.161.47 MPa vs. 27.962.27 (0.05%) and 27.861.94

(0.40%)). Similarly, incorporation of MB at concentrations of

0.05% and 0.40% also causes a significant reduction in the yield

strength of the material (26.861.5 and 27.362.18, respectively).

Evidence suggests that TPP may have a strengthening effect on

HDPE, successively increasing UTS as concentration is increased

from 0.05% to 0.40% (34.862.7 MPa vs. 38.562.1 (0.05%) and

39.263.7 (0.40%)). Conversely, results suggest the TMPyP

reduces UTS of HDPE, with increasing concentration (33.461.7

(0.05%) and 31.962.6 (0.40%)). However, statistical analysis finds

no significant difference between photosensitizer-incorporated

HDPE and standard HDPE sheets; similar analysis indicates

TPP-loaded PE sheets (both concentrations) exhibit significantly

greater UTS than the TMPyP counterparts. TBO and MB both

affect ultimate tensile strength. Incorporation of MB at either

concentration resulted in significant reduction in ultimate tensile

strength (56.963.22 MPa vs. 47.263.21 (0.05%) and 49.564.00

(0.40%)). In a similar manner, the presence of a 0.05% loading of

TBO results in a significant reduction in ultimate tensile strength;

while, although not significant, 0.40% TBO also reduced tensile

strength (48.663.73 (0.05%) and 51.063.9 (0.40%)).

Addition of TPP produces no significant change in the Young’s

modulus from that of PE (665645 MPa (PE) vs. 619610 (0.05%)

and 637642 (0.40%)); however inclusion of 0.05% TMPyP in PE

sheets results in significant reduction in Young’s modulus

(576613 MPa), indicating increased elasticity and reduced stiff-

ness of these samples. Higher concentrations of TMPyP (0.40%)

produce no significant change compared with PE (611621 MPa).

Addition of 0.05% TBO produces significant alteration of the

Young’s modulus of PE (808634 MPa vs. 641660); addition of

0.40% TBO also results in significant reduction (695653 MPa),

however the reduction observed is not as great and suggests that

on increasing TBO loading further, materials may return to

similar levels to that of PE. Inclusion of MB in PE sheets results in

a similar pattern to that of TBO, however reductions in Young’s

moduli (731675 MPa (0.05%) and 772695 (0.40%)) are not

considered statistically significant. It should be noted that standard

deviation of Young’s moduli of photosensitizer-incorporated PE

Figure 5. Effect of incorporation of TBO or MB on extruded HDPE sheets (at 0.05 or 0.40% w/w) on (A) yield strength, (B) ultimate
tensile strength, (C) Young’s Modulus and (D) percentage elongation at break. * indicates level of significance from HDPE control, graph
displays means+standard deviation.
doi:10.1371/journal.pone.0108500.g005
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samples are greater than that observed for PE suggesting that

inclusion of photosensitizers has resulted in greater variability with

regard to this mechanical property.

Use of TPP, initially, produces moderate, but statistically

insignificant, increase in elongation from that of PE (7516120%

vs. 885651 (0.05%)); however increasing concentration to 0.40%

significantly increases elongation (901672%). Similarly, 0.05%

TMPyP results in no significant changes in elongation (816646%);

however at concentrations of 0.40%, TMPyP significantly reduces

the percentage elongation of the sample (548646%). Use of TBO

produces significant increases in elongation, with increasing

concentration, from that of PE (563648% vs. 756642 (0.05%)

and 840647% (0.40%)). Similarly, MB inclusion also results in

significant increases in elongation (684668% (0.05%) and

728694% (0.40%)).

Leaching behaviour
Touch testing was performed on samples containing TPP,

TMPyP, TBO, and MB, all at a concentration of 0.4%. It was

observed that after 10,000 touches of the TMPyP, MB and TBO

samples, no photosensitizer had leached from the material. A small

amount of leaching was observed from TPP-loaded HDPE,

equating to 0.0045% of the total TPP in the sample tested.

Leaching of photosensitizer from the material during surface

cleansing was assessed by wiping the material surface with a

medical wipe moistened in 1% (w/v) Tween 20. Slight staining of

the medical wipe was evident in the case of TMPyP, TPP and MB,

although the amount could not be quantified due to the difficulty

in extracting the photosensitizer from the wipe into solution for

UV-visible spectroscopic analysis. For TBO surface cleansing did

not result in the staining of the medical wipe, indicating that for

this photosensitizer, leaching was negligible or failed to occur.

The experimental design used in these leaching tests reflects the

environment the materials would experience in their intended end

application. These results indicate that negligible leaching would

occur during normal skin contact or wipe cleaning with detergent.

Characterization of antimicrobial behaviour
Antimicrobial adherence was performed by inoculating samples

with MRSA and E.coli and determining the number of viable

bacteria after two hours, in either light or dark conditions. Only

lead materials that demonstrated good antibacterial activity

Figure 6. Reduction in adherence of viable MRSA on the surfaces of materials loaded with (A) TMPyP, (B) TPP, (C) TBO and (D) MB.
Log CFU/cm2 adhered bacteria were enumerated on control materials (HDPE without photosensitizer), and test samples in both
dark and light-irradiated conditions. * indicates level of significance from HDPE dark control, graph displays means+standard deviation.
doi:10.1371/journal.pone.0108500.g006
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against Gram-positive MRSA were taken forward to testing

against Gram-negative E.coli. Gram-negative bacteria are widely

considered to be more tolerant to photoinactivation than their

Gram-positive counterparts [29,36]. Reduction in bacterial

adherence on light irradiation, when compared to identical

material samples inoculated in the dark, and additional controls

of non-photosensitizer incorporated materials in both light and

dark conditions, are shown in Figures 6 and 7.

Figure 6 illustrates the results obtained against MRSA. It is

clear that the greatest log-cycle reduction in colony-forming units

(CFU) per square centimetre material are observed for those

samples containing the higher (0.4%) concentration of photosen-

sitizer. HDPE containing TPP 0.4% displayed the least anti-

microbial activity, with a 0.40 log-cycle reduction in MRSA

adherence when compared to dark HDPE control. MB 0.4%,

TBO 0.4% and TMPyP 0.4% showed a 1.39, 2.30, and 3.62 log-

cycle reduction against MRSA adherence respectively.

As shown in Figure 7, E.coli were inherently less adherent than

MRSA on all materials, including the HDPE controls without

photosensitizer. HDPE containing 0.4% TMPyP displayed excel-

lent anti-bacterial and anti-adherent characteristics, with no viable

organisms detected after light irradiation, equating to a 1.51 log-

cycle reduction in adhered E.coli, when compared to HDPE dark

control. MB 0.4% and TBO 0.4% did not perform as favourably,

resulting in a 0.75, and a 0.47 log-cycle reduction in adherence,

respectively.

Discussion

Several photosensitizing compounds, namely TMPyP, TPP

(phorphyrin-based), TBO and MB (phenothiazine dyes), were

successfully incorporated into high density poly(ethylene) (HDPE)

films by a hot-melt extrusion process, and incorporated into a

twin-layer polymer sheet by platen press. Our aim is to develop

photodynamic antimicrobial surfaces that may be used in a

healthcare environment to prevent the spread of nosocomial

infection. The antimicrobial surface is the result of the generation

of reactive oxygen species (ROS) due to illumination of

photosensitizer molecules present in the polymer film, as

demonstrated by our earlier work on related materials [28].

These ROS react indiscriminately with components of the

bacterial cell, such as nucleic acids, proteins and lipids, eventually

causing cell death [29,31–33].

The hot-melt extrusion process was successful in incorporating

photosensitizer into HDPE films, although the homogeneity of

photosensitizer distribution within the film appears to vary

depending on the photosensitizer used. CLSM fluorescence

microscopy revealed favourable homogenous distribution of TPP

within the extruded polymer, and this is likely due to the neutral

hydrophobic properties of TPP allowing for complete miscibility

with the poly(ethylene). The other sensitizers used, TMPyP, TBO

and MB, all show some evidence of photosensitizer aggregation

and incomplete mixing, with the phenothiazines TBO and MB to

a lesser extent than TMPyP. It is desirable to maintain a smooth

material surface, as an increase is surface roughness or irregularity

may promote adhesion of bacteria. Figure 1 shows that at the

higher photosensitizer concentrations employed (0.40%), a

smooth, regular surface was maintained in films incorporating

the porphyrin-based TPP and TMPyP while TBO and MB did

display evidence of surface modification, however the effects of this

on the ability of bacteria to adhere to the material surface will only

be evident through microbiological testing.

Characterization of mechanical properties of the prepared films

by determination of yield point, ultimate tensile strength, Young’s

modulus and percentage elongation measurements reveal that

incorporation of TPP and TMPyP have a minimal effect on the

mechanical characteristics of the HDPE films, while incorporation

of TBO or MB have a slight negative effect, suggesting that these

sensitizers may adversely effect the quality of the material.

However, if TBO or MB were incorporated into the twin layer

system as the minor layer, the overall effect is likely negligible.

UV-visible spectroscopy demonstrated that incorporation of

photosensitizer into the HDPE films has a negative effect on the

optical clarity of the materials given that mean transmission over

the visible range (390 nm –750 nm) is reduced in comparison to

control HDPE, especially at the higher concentration of photo-

sensitizer used. The implications of this observation depend on the

intended purpose of the material. For example, a cover for a

touch-screen computer would require the material to have good

optical transmittance. It should be noted, however, that in this

study the thickness of the photosensitizer-incorporated material is

approximately 200 mm and with a different manufacturing

process, such as blown-film extrusion, this may be reduced to

25 mm, and hence it is expected that optical transmittance of the

photosensitizer incorporated films would improve dramatically.

Figure 7. Reduction in adherence of viable E. coli on the surfaces of materials loaded with (A) TMPyP, (B) TPP, (C) TBO and (D) MB.
Log CFU/cm2 adhered bacteria were enumerated on control materials (HDPE without photosensitizer), and test samples in both
dark and light-irradiated conditions. * indicates level of significance from HDPE dark control, graph displays means+standard deviation.
doi:10.1371/journal.pone.0108500.g007
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The study of leaching behaviour from materials via touch-

testing shows that TMPyP, TBO and MB are not removed from

the material surface by this mechanism, while minimal amounts of

TPP are lost after 10,000 touches. This favourable leaching

behaviour is important should these materials be used as covers for

equipment such as touch-screen covers, keypads or handrails.

Antimicrobial testing showed that the most effective photosen-

sitizer for incorporating into antimicrobial HDPE films was

TMPyP at the high concentration of 0.40%. This material

displayed a 3.61 log-cycle reduction in viable MRSA, and 1.51

log-cycle reduction in E. coli after two hours light irradiation at

1340 mW/cm2 per sample, using halogen bulbs as a light source.

The ability of the TMPyP-incorporated HDPE in achieving a

greater than one log-cycle reduction of a Gram-negative

bacterium is encouraging, since the Gram-negative outer mem-

brane functions as a barrier, protecting the cell and rendering it

more resilient to photodynamic inactivation. It is the polycationic

nature of the TMPyP molecule that imparts an advantage over the

neutral TPP photosensitizer, as the cation is necessary for

interaction and disruption of the outer membrane, so making

inactivation with ROS possible [36].

The white light generated by the halogen bulb light source is

inexpensive and representative of lighting conditions found in

typical artificially-illuminated indoor environments, meaning that

photosensitizer incorporated materials would not require any

special conditions under which to produce their antimicrobial

effect, as long as the environment in which they are used is

adequately illuminated. Alternatively, for specific decontamination

purposes, such as during deep-cleaning of hospital operating

theatres, specialized lighting could be installed to emit at higher

intensity, and at a wavelength specific for the excitation of the

photosensitizer employed, for efficient generation of ROS and the

resulting bactericidal effects.

This study, aimed at controlling the microbial bioburden and

infectious reservoir on inanimate, everyday objects, builds upon

our previous work in the development of photo-activated,

antimicrobial polymers for the prevention of medical device

associated infection [34,35,37], thereby expanding scope of photo-

active materials for potential infection control applications in a

healthcare setting. Other published studies have documented the

incorporation of photosensitizing compounds into various mate-

rials with the aim of generating anti-microbial or anti-infective

surfaces. For example, Krouit et. al. (2008) incorporated a cationic

porphyrin into a cellulose-based material [38]. However, the

microbiological assays used in their work make it difficult to

conclude if the reduction in viable bacteria was due to contact of

sessile bacteria with the material surface, or release and diffusion of

porphyrin into the nutrient agar used, in a similar fashion to

antibiotic testing ‘zone of inhibition’ assays. Conversely the

methodology used in our present study is specific against assessing

the photo-inactivation of sessile, surface immobilised, adherent

bacteria.

Our photosensitizer incorporated HDPE films display similar

antibacterial efficacy as a photoactive cotton fabric, developed by

Ringot et. al. (2011). This group also demonstrated the inherent

difficulty of photo-inactivation of Gram-negative species in

comparison to Gram-positive. The cotton-based fabrics docu-

mented in their study showed up to 5 log-cycle reductions in viable

S. aureus, but only an approximate 1 log-cycle reduction in E.coli
[39]. These figures are comparable to those we have obtained in

our present work.

While we have focused on the antibacterial activity of our

developed materials, future work shall investigate their ability to

resist colonization with other pathogens, such as yeasts. Alvarez et.
al. (2012) have reported successful inactivation of Candida
albicans using polysilsesquioxane films doped with porphyrin [40].

Conclusions

This study demonstrates a general method to manufacture light-

activated antimicrobial surfaces through the incorporation of

photosensitizers into polymer films, specifically exemplified using

high density poly(ethylene) showing high levels of antimicrobial

behaviour, even to resistant strains such as MRSA and Gram-

negative organisms in the presence of visible light. The use of such

materials in the healthcare setting as coatings or coverings of

inanimate objects such as keypads, touchscreens or handrails, may

remove these surfaces as reservoirs of nosocomial pathogens. This

may assist in the prevention of hospital-acquired infections, which

are currently detrimental to the morbidity and mortality of

vulnerable patients, and also have a significant financial impact on

the resources of modern healthcare systems and institutions.
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