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1. Summary
The ability of cullin 4A (CUL4A), a scaffold protein, to recruit a repertoire of

substrate adaptors allows it to assemble into distinct E3 ligase complexes to

mediate turnover of key regulatory proteins. In the past decade, a considerable

wealth of information has been generated regarding its biology, regulation,

assembly, molecular architecture and novel functions. Importantly, unravelling

of its association with multiple tumours and modulation by viral proteins estab-

lishes it as one of the key proteins that may play an important role in cellular

transformation. Considering the role of its substrate in regulating the cell cycle

and maintenance of genomic stability, understanding the detailed aspects of

these processes will have significant consequences for the treatment of cancer

and related diseases. This review is an effort to provide a broad overview of

this multifaceted ubiquitin ligase and addresses its critical role in regulation

of important biological processes. More importantly, its tremendous potential

to be exploited for therapeutic purposes has been discussed.
2. Introduction
Covalent attachment of ubiquitin to cellular proteins is one of the major post-

translational modifications (PTMs) that play a vital role in regulating cellular

physiology. This process, called ubiquitylation or ubiquitination, is mediated

by a cascade of enzymatic reactions involving E1, E2 and E3 enzymes (see appen-

dix A). The selectivity of ubiquitination resides in the specificity of E3 ligases for

their substrate. Based on the structure of the catalytic core, two main classes of E3s

identified are HECT (homologous to E6-AP C-terminus) and RING (really inter-

esting new gene). A superfamily of RING-based E3 ligases consists of an

evolutionarily conserved protein, called cullin, which acts as a scaffold and

recruits a RING-based protein at one end to form a catalytic core and cullin-

specific adaptor and/or substrate receptor at the other end. The whole complex,

called cullin–RING ubiquitin ligase (CRL), owing to its modularity is able to

switch its adaptor and/or substrate receptor, thereby targeting substrates

involved in diverse cellular processes.

The human genome encodes six members of the cullin family (CUL 1, 2, 3, 4A,

4B and 5) that are characterized by a cullin homology domain present towards the

C-terminal, and two atypical cullins (CUL7 and CUL9) that consist of additional

homology domains. Among the six cullins, the CUL4 subfamily comprises two

members, CUL4A and CUL4B, which share 83% sequence identity and functional

redundancy. CUL4A was discovered along with CRL1 E3 ligases, better known as

the SCF (S-phase kinase-associated protein 1 (SKP1)–cullin 1 (CUL1)–F-box

protein) complex that serves as the archetype for the CRL family [1]. The initial

observation of its overexpression in breast cancer accelerated the quest for finding

its normal function in the cell [2]. Subsequent active research spanning over a

decade has highlighted the role of CUL4A complexes in regulating substrates
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Figure 1. Timeline highlighting crucial discoveries that provided insights into CUL4A functions, regulation and association with various pathologies.
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involved in the cell cycle, signalling, tumour suppression, DNA

damage response and chromatin remodelling (figure 1). Even

though both CUL4A and CUL4B share extensive homology

and functional redundancy, it is CUL4A that has drawn much

attention owing to its association with oncogenesis.

This review intends to summarize recent insights into

functioning of the CUL4A complex and its regulation. We

also emphasize the findings demonstrating CUL4A’s associ-

ation with oncogenesis and its importance as a prognostic

marker and a predictor of drug response. We finally contend

that CUL4A can serve as an attractive target for therapeutic

intervention in various human diseases.
3. Cul4A phylogeny and organization
CRL complexes are of ancient origin. Extensive phylogenetic

analysis revealed the existence of three ancestral cullin genes,

named Cula, Culb and Culg, from which the modern cullin

genes evolved after the unikont/bikont split [22]. It was also

shown that Cul4a/4b evolved from the Culg gene [22]. Higher

eukaryotes such as Homo sapiens, Mus musculus, Xenopus tropi-
calis and Danio rerio have been found to contain CUL4A and

CUL4B, whereas no such duplication is observed in the case

of Caenorhabditis elegans, Drosophila melanogaster and Arabidopsis
thaliana, suggesting that this genetic redundancy might be

unique to higher eukaryotes. This hypothesis may also be par-

tially supported by the observation that human CUL4A shares

high sequence identity with Cul4A of other higher eukaryotes

(figure 2). In addition, all the known major functions of Cul4

have been found to be conserved from lower to higher eukar-

yotes. However, in higher eukaryotes Cul4A and Cul4B also

perform specialized functions despite their high sequence iden-

tity. For example, CUL4B, but not CUL4A, has been shown to

target oestrogen receptors and peroxiredoxin III [23,24].

Additionally, Cul4B plays an important role in embryonic
development as Cul4BD3–5/D3–5 mice, having deletion of

exons 3–5, exhibit embryonic lethality. Furthermore, Cul4B het-

erozygotes show severe developmental delay, which may be

ascribed to disorganized placenta with damaged vasculariza-

tion in these mutants [25]. However, no such obvious

abnormalities are apparent in Cul4A null mice [16,26,27].

In humans, CUL4A is a single-copy gene consisting of

20 exons and is mapped at 13q34 chromosomal segment.

It encodes four transcript variants that finally translate into

three isoforms. Transcript-1 is the longest and dominant form

and encodes isoform-1 of 759 amino acid residues and is

the focus of the review. Transcripts 2- and -3 use an alternative

50-terminal exon, compared with variant-1, resulting in iso-

form-2 of 659 amino acid residues with a shorter N-terminus.

Transcript-4 also uses an alternative 50 terminal exon, but

along with an alternative in-frame splice junction, compared

with variant-1. The isoform-3 encoded by this variant is 667

amino acids long and consists of a shorter N-terminus and

an alternative internal segment compared with isoform-1.
4. Structural insights into CUL4A complex
CUL4A is an 87-kDa protein and exhibits elongated struc-

ture with an arc-shaped helical N-terminal domain that

binds to a substrate receptor or substrate binding adaptor

and a globular C-terminal domain that binds the small

RING finger protein ROC1 (ring of cullins) [4,12]. ROC1

associates with the conserved C-terminal domain of CUL4A

and helps in recruitment of E2 enzyme to the cullin complex.

Although this catalytic core remains the same in CRLs, each

cullin recruits its specific adaptor, e.g. F-box, BTB or SOC/

BC-box. However, CUL4A uses a 127-kDa cellular protein,

DNA damage binding protein 1 (DDB1), which can perform

dual functions of adaptor or substrate binding receptor [5].

Structurally, DDB1 consists of 21 WD40-like repeats that
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Figure 2. Phylogenetic analysis of CUL4A protein in eukaryotic species. The table compares sequence identity of Cul4A of various eukaryotes with human CUL4A.
Below the table, the phylogenetic tree represents the evolutionary relationship between these organisms. Relationship was inferred using PHYLIP (KITSCH) program
and the tree was visualized using PHYLODRAW. Depicted here is a schematic representation.
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fold into three b-propeller (BP) domains, namely BPA, BPB and

BPC, and a helical C-terminal domain. Detailed crystallogra-

phic analysis of the DDB1–CUL4A–ROC1 apparatus

revealed that DDB1 BPB interacts with CUL4A, while a BPA–

BPC double propeller forms a clam-shaped binding pocket

for substrate or substrate receptor that faces towards the

E2-attachment site of ROC1. BPB association with CUL4A

involves two separate interfaces. CUL4A uses the tip of its

N-terminal domain and helices 2 and 5, respectively, to interact

with those interfaces. Specifically, residues 82–85, 87, 88, 91,

92, 150–152, 154, 155, 158, 159 and 162 on DDB1 were found

to be crucial for the DDB1–CUL4A interaction, and disruption

of these residues leads to weaker complex formation [12,28].

The endogenous CUL4 substrate receptors having WD40

repeats, WDXR motifs or DDB boxes are referred to as DDB1

and Cul4A-associated factors (DCAFs) or DDB1-binding

WD40 (DWD) proteins or CDW-proteins (CUL4 and DDB1

associated WDR proteins) [12,29–31]. These substrate recep-

tors of CUL4A contain various protein–protein interaction

domains which selectively interact with motifs called ‘degrons’

present on the substrate. It is by switching these diverse sub-

strate receptors that CUL4A complex can recruit a repertoire

of substrates for ubiquitination. However, functions of most

of these DCAFs are yet to be explored.

DDB2 and Cockayne syndrome A (CSA) proteins are two

well-known bifunctional DDB1-interacting proteins that act
as substrate receptors for CUL4A and damage detection

proteins in the nucleotide excision repair (NER) process.

Being substrate receptors, DDB2 and CSA are likely to also

play a role in the regulation of CUL4A function. Additionally,

their complexes with DDB1 exhibit high similarity even though

they share limited sequence identity. DDB2 tethers with DDB1

by inserting its N-terminal helix–loop–helix (HLH) motif

between the DDB1 BPA–BPC double propeller and binds to

DNA using its BP domain [32]. Similarly, CSA also uses the

HLH motif to bind to DDB1 BPA–BPC double propeller and

may use sides of BPs opposite to DDB1 to recognize

substrates for ubiquitination [33].

Elucidation of CUL4A complex structure with DDB2 and

CSA are just the initial strides in our understanding of struc-

tural logic behind some of its functions, knowledge of which

is still incomplete. Thus, thorough analysis of CUL4A struc-

tural complexes may help in providing novel insights

regarding its mechanism of action and its regulation.
5. CUL4A plays important role in
maintaining cellular physiology

CUL4A complex has been known to target a multitude of

regulatory proteins, thereby exerting its effect on important

cellular processes. In general, it is involved in cell cycle
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regulation and maintenance of genomic stability. However, it

may perform specialized functions in particular tissues,

which is evident from its role in haematopoiesis and sperma-

togenesis. High expression of Cul4A has been found in testis

and spleen, and also in heart and skeletal muscles, wherein

Cul4B expression has been found to be considerably low,

which further substantiates the fact that CUL4A might not

have complete functional redundancy with CUL4B [34].

5.1. Regulation of cell cycle
The key cellular events of the mammalian cell cycle are pre-

cisely regulated by undulating activity of cyclins and their

regulators. The oscillating activity of the cell cycle proteins is

majorly regulated by the ubiquitin–proteasome system

(UPS). CUL4A facilitates smooth S-phase progression by pro-

teolysis of cyclin-dependent kinase (CDK) inhibitors (CDIs)

and inhibiting re-replication of genomic DNA (discussed

below). Among CDIs, p21CIP1/WAF1, p27KIP1 and p16INK4a are

regulated by CRL4 complex. CUL4A gene is cell cycle

regulated, as genome-wide analysis of human fibroblast tran-

scripts reveals its mRNA to be high at the G1/S boundary

[35]. In addition, nuclear CUL4A levels show slight increase

during G1 to S transition in synchronized HeLa cells [6]. Del-

etion of Cul4A in mouse embryonic fibroblasts (MEFs) leads

to mild decrease in proliferation along with delay in S-phase

entry, deficiency in M-phase progression, aberrant number of

centrosomes, multipolar spindles and micronuclei formation,

thereby corroborating its role in regulation of the cell cycle

and genomic stability [36].

CRL4CDT2 mediates proteolysis of p21CIP1/WAF1, associated

with chromatin bound proliferating cell nuclear antigen

(PCNA) during S phase along with SCF complex which

also degrades it at the G1/S boundary [37,38]. In unperturbed

cycling cells, p21CIP1/WAF1 accumulates during G1 phase where

it may promote cyclin-D/CDK4/6-dependent events and attenu-

ates the activity of cyclin-E/CDK2 and cyclin-A/CDK2. In

Cul4AD17–19/D17–19 knockout mice, increased stabilization of

p21CIP1/WAF1 was observed, which enforced UV-responsive

G1/S checkpoint, thereby helping the NER machinery to

recognize moderate helix-distorting adducts [16].

CUL4A–DDB1 complex has also been reported to be

involved in proteolysis of p27KIP1. Studies show that CUL4A–

DDB1 complex can interact with either SKP2 or DDB2-Artemis

to recruit p27KIP1 for ubiquitination and subsequent degra-

dation [39–41]. However, in vitro ubiquitination of p27KIP1 still

needs to be reported [39,40]. p27KIP1 has also been shown to

be independently degraded by SCFSKP2 and KPC1/2 [42,43].

p27KIP1 inhibits the activity of cyclin-E/CDK2 during G0 and

early G1 and plays a role in cell cycle exit. Interestingly, CUL4

complex in Drosophila has been shown to target cyclin

E. However, in cell lines, only CUL4B was found to interact

with endogenous cyclin E even though both CUL4A and

CUL4B were able to polyubiquitinate cyclin E in vitro [44].

A recent study showing interaction of CUL4A with

p16INK4a promoter establishes another link with the cell

cycle, because CDK inhibitor p16INK4a is known for its func-

tions in tumour suppression and cell ageing processes [45]. It

was observed that CUL4A–DDB1 complex plays a crucial

role in activation of p16INK4a during oncogenic checkpoint

response, and the effect is neutralized by polycomb repression

complexes in normal cells. This might suggest a possible role of

CUL4A in controlling p16INK4a transcription.
Altogether, these pieces of evidence suggest that by control-

ling the degradation of key players, CUL4A helps in maintaining

normal cell proliferation and survival under stressful conditions.

5.2. Maintenance of genomic stability
Genomic stability during cell cycle progression is maintained by

controlling the fidelity of DNA replication, accurate distribution

of chromosomes in daughter cells and efficient DNA repair and

via check point controls. CUL4A plays a crucial role in this pro-

cess by ensuring that the genome is replicated only once per cell

cycle. Studies in C. elegans first demonstrated the involvement of

CUL4 complex in preventing re-replication by degrading repli-

cation licensing factor CDT1 during S phase [46]. High levels of

CDT1 as well as massive DNA re-replication were observed in

proliferating cells containing inactivated CUL4 [46]. Later,

CUL4 complex containing CDT2 as substrate recognition

subunit in worms and humans was shown to target CDK inhibi-

tor CKI-1 and p21CIP1/WAF1, respectively, as a part of the

replication licensing mechanism [47].

During S phase, CDT1 binding to origin recognition complex

acts as nucleation site for pre-replication complex formation.

Once ori is licensed, CRL4CDT2 brings about the degradation

of chromatin bound CDT1 to prevent further licensing

[9,48,49]. Another factor that may contribute to re-replication is

PR-Set7/Set8 histone H4K20 methyltransferase that accumu-

lates during G2 and M phase. Monomethylation of lysine 4 of

histone H4 (H4K20me1) carried out by Set8 methyltransferase

promotes chromatin compaction, thereby allowing proper mito-

sis, and may hinder subsequent S-phase progression. CRL4CDT2

prevents premature accumulation of H4K20me1 at replication

origins by degrading it during the S phase [17,18,50]. Further-

more, p12 subunit of heterotetrameric DNA polymerase d

(pol d4) is degraded by CRL4CDT2 under normal as well as fol-

lowing UV irradiation to form trimeric pol d3 which exhibits

DNA repair properties (figure 3) [51].

CUL4A plays a vital role in maintaining genomic integrity

by preventing replication of genomic DNA during genotoxic

stress. Following DNA damage, CDT1 and PR-Set7/Set8 also

undergo rapid proteolysis by CUL4A complex to prevent reli-

censing of ori and enhance transactivation function of p53.

Additionally, p21CIP1/WAF1 also undergoes UV-induced degra-

dation by CUL4A. p21CIP1/WAF1 is the key protein involved in

mediating cell cycle arrest following DNA damage. It was

observed that Cul4AD17 – 19/D17 – 19 MEFs exhibit accumulation

of p21CIP1/WAF1 following UV irradiation leading to prolonged

G1/S arrest, which may allow additional time for NER to rec-

tify the damage [16]. Additionally, Cul4AD17 – 19/D17 – 19 mice

were also found to be hyper-resistant to UV-B-induced skin

carcinogenesis, and MEFs were unable to undergo G2 arrest,

DNA re-replication and cell death [16]. These results highlight

the physiological role of CUL4A in NER and tumourigenesis.

CRL4DDB2 and CRL4CSA are two well-known CRL4 E3

ubiquitin ligases that participate in the evolutionarily conserved

NER pathway. The NER pathway recognizes and corrects the

helix-distorting DNA damage caused by cross-linking agents,

mutagens and UV radiation. The bulky DNA adducts, generally

cyclobutane–pyrimidine dimers (CPDs) and pyrimidine (6–4)

pyrimidone photoproducts (6-4PPs), if not repaired by NER,

hamper transcription and replication and lead to apoptosis

[52,53]. Generally, the DNA helix experiences 7–98 kink

or bend in the presence of CPDs which constitutes 70–80% of

nucleosomal DNA damage, whereas 6-4PPs induce more
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prominent 448 bend, which comprises 20–30% of linker DNA

damage [54–56]. The importance of NER is illustrated by the

fact that mutations in genes coding for proteins involved

in this pathway results in pathologies such as xeroderma

pigmentosum (XP), Cockayne syndrome (CS) and trichothiody-

strophy (TTD), which are characterized by UV sensitivity,

neurological impairment, developmental complications and

premature ageing and in the case of XP, increased risk of

cutaneous neoplasm.

The eukaryotic NER system consists of two major pathways,

global genome repair (GG-NER) and transcription-coupled

repair (TC-NER), which differ in lesion recognition but converge

to use a common set of proteins for the effector functions of lesion

incision, oligonucleotide removal, gap regeneration and nick

ligation. GG-NER interrogates the whole genome for helical

distortions via lesion-sensing complexes, DDB1–DDB2 and

XPC–hHR23B–CEN2 [57–59]. UV induces dissociation of

CSN (constitutively photomorphogenic-9 (COP9) signalosome)

from CUL4A and its translocation to chromatin, thereby activat-

ing CRL4 complex [60]. DDB2 scans the genome for bulky

adducts via its conserved tripeptide Phe–Gln–His (FQH) hair-

pin present at one end of its BP opposite the DDB1-binding

site. A lesion is recognized when the hairpin inserts into the

minor groove of DNA leading to flipping out of damaged pyri-

midine bases which are stabilized by a hydrophobic pocket at

the DDB2 surface [32]. While lesions containing 6-4PPs are

easily reached by repair machinery, accessing CPDs requires

relaxation of the nucleosome. CRL4DDB2 ensures this by ubiquiti-

nation of histones (H2A, H3 and H4) at the sites of UV lesions

[13,61]. Concomitantly, CRL4DDB2 also ubiquitinates DDB2 and

XPC. While ubiquitination of DDB2 decreases its DNA binding

ability and triggers its destabilization, XPC remains protected

owing to RAD23 [6,7,62,63]. A recent report also suggests that
DDB2 along with poly(ADP-ribose) polymerase 1 (PARP1)

recruits SWI/SNF chromatin remodelling enzyme ALC1 to

promote the NER reaction [64].

TC-NER is involved in repairing lesions in transcription-

ally active genes. In this process, stalled RNA polymerase II

(RNAPII) recruits Cockayne syndrome B (CSB), an SWI/

SNF family protein. CSB, in turn, associates with other

NER factors, including CSA and p300, which then translocate

into the nucleus and colocalize with RNAPII [60]. Similar to

DDB2, CSA is directly associated with DDB1–CUL4A com-

plex. So far, CSB is the only known substrate for CSA. CSA

and CSB then recruit HMGN1, TFIIS, XAB2 and UVSSA.

UVSSA forms a complex with deubiquitinating enzyme

USP7 which delays the CSA-dependent degradation of CSB.

The lesion is then removed via core NER reaction(s).

Earlier, it was established that CUL4A regulates the abun-

dance of Chk1 in normal cycling cells; however, the identity of

the substrate receptor was elusive [11,65]. Recently, it was

shown that under replicative stress, CUL4A recruits Cdt2 to

target activated Chk1 for proteolysis in a PCNA-independent

mechanism [66]. This explains how overexpression of Cdt2

can confer growth advantage in cancers. Recent data also

indicate that CRL4ACDT2 might also play an important role in

post-replication repair by binding to RAD18 and promoting

smooth replication via translesion synthesis at regions of spon-

taneous DNA damage [67]. All these studies imply that

CUL4A can be considered as one of the master regulators

that control multiple aspects of genomic stability.

5.3. Haematopoiesis
CUL4A, which is expressed throughout haematopoietic devel-

opment, is involved in degradation of multiple HOX proteins
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such as HOXA9, HOXA1, HOXA2, HOXA11, HOXB4,

HOXB7, HOXB8 and HOXB13 [68,69]. HOX genes belong

to a family of homeodomain containing transcription factors

that play pivotal roles in embryonic development and haema-

topoiesis [70]. Expression of these genes in haematopoietic

stem cells (HSCs) and their progenitors varies in lineage

and differentiation stage-specific manner. Hoxa and Hoxb
expression are restricted to HSCs and their precursors, wherein

they promote their expansion, and their expression declines

upon lineage commitment [71,72]. In bone-marrow-derived

diploid 32Dc13 myeloid progenitor cells induced with granulo-

cyte colony-stimulating factor (G-CSF), CUL4A was found to

promote granulopoiesis by targeting HOXA9, whereas low

levels of CUL4A resulted in HOXA9 accumulation and

reduced granulocytic differentiation [69]. Similar results were

obtained for HOXB4 [68]. These results indicate that CUL4A

might be involved in promoting maturation and differentiation

of HSCs. However, the effect of degradation of other HOX pro-

teins by CUL4A on HSCs proliferation and differentiation

awaits further investigation.

By contrast, overexpression of CUL4A in the human

myelomonoblastic cell line PLB-985, induced with dimethyl-

formamide or phorbol-myristate acetate, was found to

attenuate their granulopoietic or monocytopoietic differen-

tiation, respectively [73]. In addition, erythroid cells derived

from haploin-sufficient Cul4Aþ/2 mice showed reduced pro-

liferation and elevated levels of cell cycle regulator p27Kip1

[74]. In addition, while ectopic expression of CUL4A in G1E-

ER4 proerythroblast cells enhanced their proliferation, it inter-

fered with their maturation and cell cycle exit [74]. In another

study, Cul4Aþ/2 HSCs were found to show defects in engraft-

ment and self-renewal potential [75]. The discrepancy in results

might be due to use of different cellular systems in the studies

and different pathways being induced. It is also possible that

Cul4A might target different regulators in respective cellular

systems. Because most of these studies involved use of haplo-

insufficient Cul4Aþ/2 mice, replication of same in Cul4A2/2

mice would conclusively establish the functions. Overall,

these findings suggest that a delicate balance of Cul4A is

required for normal proliferation, maturation and maintenance

of self-renewal capacity of haematopoietic cells. It is also tempt-

ing to speculate a potential role of CUL4A in maintenance of

cellular stemness.

5.4. Spermatogenesis
Initial attempts to create Cul4A knockout mice found it to be

embryonically lethal [76]. The authors deleted exon 1 of the

Cul4A gene along with an approximately 1.1 kb upstream

sequence. The Cul4AD1/D1 embryos, though able to hatch and

implant, failed to survive beyond 7.5 dpc. However, it was

later discovered that Liu et al. [16] had inadvertently deleted

the promoter and transcription initiation site of Psid2 gene pre-

sent upstream on the complementary strand adjacent to Cul4A
exon 1. Psid2 gene codes for a PCI domain-containing protein

that is found in the essential subunits of CSN, translation

initiation factor 3 and 26S proteasome [77]. In 2009, Liu et al.
[16] conditionally inactivated Cul4A in mice having floxed

Cul4A exons 17–19, which encodes for ROC/RBX binding

site. Conditional deletion of this region in mutant mice exhibited

no obvious developmental defects. Another mutant Cul4A
mouse was developed independently having deletion of exons

Cul4A 4–8, which encode a portion of the DDB1 binding site,
and was surprisingly found to be infertile [26]. Although

female Cul4AD4–8/D4–8 mice were able to bear and deliver live

pups, albeit with low fertility, male Cul4AD4–8/D4–8 mice were

found to have extremely low sperm counts and defective sper-

matocytes with compromised motility. Moreover, testes of

Cul4AD4–8/D4–8 mice exhibited high levels of apoptosis and

defective homologous recombination in spermatocytes. It was

suggested that this gender-specific discrepancy in effect of

Cul4A knockout might be due to the low/no compensatory

effect of Cul4B, an X-linked gene, in males due to meiotic sex

chromosome inactivation. The authors also reported deficiency

in DNA double-stranded break (DSB) repair [26]. Later,

Cul4AD17–19/D17–19 mice were used to generate germ-line-

specific deletion of Cul4A and similar results were observed,

except there were no significant defects in DSB repair [27].

Taken together, these studies identify a novel indispensable

role of Cul4A in spermatogenesis.
6. Regulation of CUL4A
Although CUL4A complex itself is involved in regulation of a

myriad of cellular processes, its own activity is tightly regula-

ted by assembly and disassembly cycles mediated by various

factors, such as NEDD8 (neural precursor cell-expressed devel-

opmentally downregulated protein 8, CSN and CAND1 (cullin

associated NEDD8-dissociated 1. Dimerization of CRL4A is also

believed to play an important role in its regulation.

NEDD8 is the ubiquitin-like protein whose conjuga-

tion with cullins, referred to as neddylation, stimulates their

ubiquitin ligase activity. Neddylation of cullins has been

shown to promote conformational change in E3 complex

structure such that E2-Ub gets positioned adjacent to the

substrate for effective ubiquitin transfer [3,78,79]. Deneddyla-

tion of cullins is mediated by CSN, an evolutionarily

conserved eight subunit complex containing Nedd8 iso-

peptidase activity [80,81]. CSN inhibits autoubiquitination

of DCAF in non-enzymatic fashion and this inhibition is

relieved upon DCAF binding to substrate, which sub-

sequently causes CRL activation [33]. When deneddylated,

cullins are sequestered by a 120 kDa protein called CAND1

[82,83]. Although in vitro CAND1 binds to all cullins,

in vivo it has been found to interact with CUL 1, 2, 3 and

4A in human HeLa cells [83] and CUL 1, 4A and 5 in

HEK293T cells [84]. Intriguingly, CAND1 was found to

inhibit CRL ubiquitination activity in vitro; however, in vivo
it promoted CRL activity. This paradox was finally resolved

recently when it was shown that CAND1 functions in sub-

strate receptor exchange cycles on CUL1, which can also be

expected to be similar for other cullins. According to this

model, in saturating substrate concentration, the neddylated

form of cullin possesses high affinity for its adaptor–SR com-

plex and very low affinity for CSN. In such conditions,

substrate meets its fate depending upon its ubiquitination pat-

tern. However, once substrate is depleted, CSN affinity for

CRL complex increases, and it is able to dislodge Nedd8.

In this metastable transition state, depending upon the cellular

conditions, cullin–adaptor–SR complex can (i) bind to new

substrate and undergo neddylation to return to the ‘active ubi-

quitination state’ or (ii) enter an ‘exchange state’ to form a

transient complex with CAND1 which leads to dissociation of

adaptor–SR complex. In the latter case, CAND1–cullin–

ROC1 complex then binds to new adaptor–SR complex to
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form an unstable ternary intermediate state having stearic

interference between CAND1 and cullin bound adaptor–SR

complex. This ‘exchange regimen’ can either yield new CRL

complex or the intermediate state decays back to CAND1–

cullin–Rbx complex [19–21]. Thus, CAND1 and CSN can influ-

ence the function of CRLs by altering the neddylation status of

cullins, thereby remodelling the E3 complexes and regulating

the association and dissociation of substrate adaptors.

There may be additional proteins that interact with cullin

complexes to regulate their function, e.g. DDA1 (DDB1- and

DET1-associated factor) interacts with CUL4A–DDB1 com-

plex, but the importance of this interaction still needs to be

determined [31,85]. It is also speculated that dimerization of

CRL4A/4B through Nedd8 or substrate receptor may also

play an important role in regulating its activity [67].

Because PTMs are known to play a central role in imparting

dynamic functions to proteins and create diversity in signal-

ling, we investigated the possible modifications of CUL4A.

So far, neddylation is the only modification reported, thus we

performed several bioinformatics analysis of CUL4A primary

sequence and mapped various potential sites for PTM, which

were found to be conserved across species. These potential PTM

sites were found using the following tools: for phosphoryla-

tion, disorder-enhanced phosphorylation sites predictor

(DISPHOS) [86], NetPhos 2.0 [87] and Phosida [88]; for ubiqui-

tination, UbPred [89], BDM-PUB (http://bdmpub.biocuckoo.

org/) and CKSAAP [90]; for SUMOylation, SUMOplot

(http://www.abgent.com/sumoplot) and SUMOsp 2.0 [91];

for acetylation, ASEB [92] and Phosida [88]; and for nitrosyla-

tion, GPS-SNO 1.0 [93] and iSNO-PseAAC [94]. The sites

which consistently turned up in all the tools were taken into

consideration, and a schematic model was drawn (figure 4).

We hypothesize that some of these potential PTM sites may

be involved in regulation of CUL4A function possibly by alter-

ing its localization or stability or interaction with other

proteins. Because PTM at one site can promote or inhibit

PTM at an other site on a protein, it is probable that cross-

talk between these modifications may also be involved in reg-

ulating CUL4A function. For example, modifications such as

ubiquitination, SUMOylation, methylation and acetylation

may compete for certain lysine residues; SUMOylation at one

site, say position 480, may make other potential ubiquitination

sites more prone to get ubiquitinated, thereby altering the stab-

ility or function of CUL4A. As a result, function of CUL4A may

depend on its net multisite PTM profile. Thus, investigations

towards verification of these PTMs, demonstration of tempo-

ral and spatial dynamics of these modifications in vivo and

assignment of biological functions to these PTMs may shed

light on the molecular mechanism of action of CUL4A and

its interacting partners.
7. Deregulation of CUL4A leads
to tumourigenesis

Owing to its critical role in cell cycle regulation and genomic

stability, any deregulation in CUL4A copy number or

expression is expected to result in a profound effect on

cells. Human chromosomal region 13q34 appears to be one

of the hot spots in cancers that undergoes amplification ([8]

and references therein). These high level gains may help

cancer cells to upregulate genes that may drive tumourigenesis.

CUL4A has been found to be amplified in squamous cell

carcinoma [95], adrenocortical carcinomas [96] and childhood

medulloblastoma [97]. Its amplification and overexpression

was also found in hepatocellular carcinomas [8], primary

malignant pleural mesotheliomas [98], primary human breast

cancers [2] and prostate cancers [99]. A recent study also

observed overexpression of CUL4 in epithelial ovarian

tumours especially in the invasive carcinoma specimens

[100]. High CUL4A expression correlates with accelerated

neoplastic transformation along with significantly shorter

overall and disease-free survival in node-negative breast can-

cers and ovarian tumours [14,100]. Furthermore, conditional

overexpression of CUL4A in lungs of transgenic mice leads to

development of pulmonary hyperplasia [101], while

Cul4AD17 – 19/D17 – 19 mice were found to be hyper-resistant

to UV-B-induced skin carcinogenesis compared with wild-

type and heterozygotes [16]. Recent evidence also highlights

CUL4A’s essential role in ubiquitination of several well-

defined tumour suppressor genes. In unstressed cells,

CRL4CDT2 associated with MDM2 and p53, in a PCNA-

dependent manner, to bring about the polyubiquitination

and degradation of the latter. However, upon UV-irradiation

CRL4CDT2 affinity for p53 attenuates, leading to its stabilization

[10,102]. CUL4A also brings about inactivation of transcrip-

tional function of p73, a structural and functional homologue

of p53 [103]. This repression was found to correlate with over-

expression of CUL4A in human breast carcinoma [103].

Additionally, CUL4A targets p150/Sal2 for degradation

when cells transit from quiescence to mitotic state [104].

Furthermore, RAS association domain family 1, isoform 1

(RASSF1A), a mitotic regulator and tumour suppressor, under-

goes CUL4A–DDB1 complex-mediated proteolysis during the

M phase of the cell cycle [105]. In addition, p21, the master

effector of multiple tumour suppressor pathways, has been

shown to accumulate in Cul4A deleted MEFs upon UV

irradiation leading to prolonged G1/S arrest [16]. CRL4b-TrCP

and CRL4Fbw5 also target mTOR signalling inhibitors REDD1

and Tsc2, respectively [106,107]. Taken together, these studies

highlight the importance of CUL4A in promoting

http://bdmpub.biocuckoo.org/
http://bdmpub.biocuckoo.org/
http://bdmpub.biocuckoo.org/
http://www.abgent.com/sumoplot
http://www.abgent.com/sumoplot


Table 1. CUL4A interacting partners with proven role in tumourigenesis.

interacting
partner function reference

Chk1 Ser/Thr kinase involved in cell

cycle arrest following DNA

damage

[11,65,66]

p27KIP1 cyclin-dependent kinase

inhibitor involved in cell

cycle arrest

[39 – 41]

HOXA9 transcription factor involved

in morphogenesis and

differentiation

[69]

ETV1 transcription factor belonging

to ETS (E twenty-six)

family

[108]

p53 tumour suppressor involved

in cellular response to DNA

damage

[10,102]

c-Jun component of transcription

factor AP-1

[109]

N-Myc, C-Myc transcription factor involved

in cell proliferation and

apoptosis

[110]

RASSF1A potential tumour suppressor [105]

p150 (ABL1) proto-oncogenic tyrosine

kinase

[104]

XPC nucleotide excision repair [63]
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tumourigenesis (see also table 1). However, there are also

reports wherein CUL4A has also been shown to target proto-

oncogenic targets such as N- and C-Myc and c-Jun by recruit-

ing TRCP4AP/TRUSS and COP1, respectively [109,110].
8. Exploitation of CRL4A by viral proteins
Manipulation of host CRLs is one of the common strategies

used by pathogenic viruses to override host factors that may

prevent or impede their infection [111–113]. Proteins encoded

by members of paramyxovirus, herpesvirus, lentivirus and

hepadnavirus families are known to target CUL4A machinery

(figure 5). Paramyxovirus V protein from Simian virus 5 (SV5)

and human parainfluenza virus type 2 (HPIV2) interact with

host CRL4A, forming V-dependent degradation complex

(VDC), to recruit STAT1–STAT2 heterodimer for degrada-

tion [114]. Similarly, mumps virus V protein uses VDC to

additionally degrade STAT3 protein [115]. Later, crystal struc-

ture of DDB1 in complex with SV5-V protein showed that viral

V protein inserts its N-terminal a1-helix into BPA–BPC double

propeller. This configuration allows it to recruit STAT1–STAT2

heterodimer for ubiquitination and subsequent degradation,

thereby attenuating the interferon pathway of antiviral

response [28]. Hepatitis B virus (HBV), which is one of the pri-

mary cause of liver diseases such as cirrhosis and
hepatocellular carcinoma, uses X protein (HBx) to hijack

DDB1–Cul4A complex [116,117]. Structural analysis of

CUL4A–DDB1–HBx revealed that HBx adopts a helical struc-

ture similar to SV5 V protein, which it slips into BPA–BPC

along with its H-box motif which docks on the top surface of

the DDB1–BPC domain [118]. Although the cellular targets

of CUL4A–DDB1–HBx are yet to be identified, it has been

shown that this interaction promotes viral replication and

leads to stabilization of proto-oncogene pituitary tumour-

transforming gene 1 (PTTG1), which is overexpressed in hepa-

tocellular carcinoma [119–121]. Additionally, despite having

any homology with SV5V protein or HBx protein, M2 protein

of murine g-herpesvirus 68 (gHV68) was found to interact

with DDB1 resulting in inhibition of DNA-damaged-induced

apoptosis, which may help in viral latency [122]. In addition,

Epstein–Barr virus (EBV) large tegument protein BPLF1 has

been found to remove NEDD8 from Cul4A by using its DUB,

thereby stabilizing the CDT1 and pushing the host cell towards

S phase [123]. Finally, Vpr and its paralogue Vpx, small encapsi-

dated accessory proteins of HIV, with the former being shared by

HIV-1 and HIV-2 and the latter being exclusive to HIV-2/SIV,

associatewith VprBP/DCAF1, a substrate receptor of CUL4 com-

plex [15,124]. Uracil DNA glycosylases UNG2 and SMUG1 and

transcriptional regulators ZIP and sZIP and Dicer are the only

known substrates of HIV-1 Vpr–CRL4VprBP-mediated degra-

dation [125–128]. However, the significance of targeting these

substrates and bringing about G2 arrest for viral propagation

still remains to be ascertained [15]. On the other hand, HIV-2

Vpx recruits CRL4VprBP to target SAMHD1 (SAM domain and

HD domain-containing protein 1) to facilitate HIV-2 invasion

in macrophages and dendritic cells [124,129–131]. SAMHD1 is

a deoxynucleoside triphosphate triphosphohydrolase that

depletes the dNTP pool in non-dividing cells, thereby impeding

viral replication [132]. Thus, Cul4A–DDB1 complex seems to be

an attractive target for viruses, and elucidation of mechanisms of

CUL4A hijacking and their significance for the survival of

viruses can help in developing better therapeutic strategies

against HIV and other viral infections.
9. Promising prospects of CUL4A in
diagnosis, prognosis and treatment
of cancer

Recent studies (discussed above) clearly identify CUL4A as a

potential candidate gene for cancer progression. Thus, CUL4A

can be a potential target for developing anti-cancer therapeutics

because of the following reasons: first, it has been found to be

overexpressed in multiple cancers and implicated to play a role

in carcinogenesis [2,8,95–100]; second, its overexpression corre-

lates with poor prognosis of patient survival [14,100]; and third,

knockdown of its expression leads to inhibition of cancer cell

growth and apoptosis and, conversely, its overexpression leads

to formation of pulmonary hyperplasias [16,101]. This indicates

that CUL4A can be a promising anti-cancer target.

Evidence also suggests that CUL4A levels can be used as a

biomarker for predicting whether a patient will respond to

a particular therapeutic. It was shown that high CUL4A

expression levels confer prostate and breast cancer cell sensi-

tivity to thalidomide and trabectedin, respectively [99,133].

Thus, screening for CUL4A levels in cancer patients may
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help in achieving better drug response with minimal unwanted

side effects.

A dysfunctional UPS has been associated with multi-

ple cancers, wherein it degrades various cell cycle inhibitors

and apoptotic proteins, thereby helping the tumour cells to

evade apoptosis and undergo uncontrolled division. Thus,

UPS represent an attractive potential target for anti-cancer

therapeutics. This led to the approval of the first and only pro-

teasome inhibitor, bortezomib (also known as Velcade or

PS-341) by the US Food and Drug Administration, further driv-

ing the interest in the development of anti-cancer drugs

targeting the UPS [134,135]. Bortezomib has been approved

for the treatment of multiple myeloma and mantle cell lym-

phoma. However, its clinical use is hampered by substantial

toxicity, other side effects including inhibition of a multitude

of proteins involved in various processes [136–138]. Hence, it

is predicted that such general proteasome inhibitors may have

a very narrow therapeutic window. Therefore, there is a press-

ing need for developing inhibitors which specifically target a

particular aspect of the UPS pathway, thereby moderating the

deregulated pathway of cancer cells. Because specificity of

the UPS pathway is dictated by E3 ligases, they represent an

appealing target for developing anti-cancer therapies.

MLN4924, a small molecule inhibitor of NEDD8 activating

enzyme (NAE) has entered phase I clinical trials for haemato-

logical and solid tumour malignancies [139]. MLN4924

specifically prevents NEDD8 modification of cullins, thereby

selectively attenuating their activity. It has already shown

promising growth inhibitory properties in cancer cell lines

derived from colon, lung, myeloma and lymphoma and in

xenograft models. Although compared with bortezomib

MLN4924 appears to be a better candidate drug as it targets

particular superfamily of E3 ligases, it would be judicious to

wait for the results of phase I clinical trials to see whether it

exhibits any serious side effects.
More selective E3 ligase targeting molecules are Nutlins,

which are considered bona fide inhibitors of p53 and MDM2

interaction [140]. These molecules are cis-imidazoline ana-

logues that compete for p53 binding site on MDM2, thereby

leading to p53 stabilization, cell cycle arrest and apoptosis

[140]. As a result, this class of molecules has shown promising

anti-cancer efficacy in cancer cell line xenograft assays.

Examples include Nutlin-3 and its pharmacologically opti-

mized form, RG7112, which are currently undergoing

phase I clinical trials for the treatment of retinoblastoma and

liposarcomas, and haematological malignancies, respectively

[141,142]. Owing to their selective nature, Nutlin-3 and

RG7112 are expected to have less deleterious effects on healthy

tissues, although the real scenario will only be clear once the

results of the clinical trials are published.
10. Perspective
As a result of intense research effort, today we know that

CUL4A ubiquitin ligase plays a key role in a wide range

of cellular processes, including the cell cycle, chromatin

remodelling, DNA damage response, DNA replication, sper-

matogenesis and haematopoiesis. On the pathology front,

CUL4A is attacked by several viral proteins, and its overex-

pression is a common feature of many human cancers.

Considering the significance of CUL4A complexes in assorted

cellular functions and how perturbation in its expression or

function leads to pathologies, it represents an attractive

target for drug discovery efforts. However, discovery of

highly specific inhibitors remains a challenging task. With

increased understanding of CUL4A’s physiological partners,

biological functions, molecular mechanism of action and

structure–function relationships, and with the availability of

advanced research technologies, more selective CUL4A-
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directed therapeutics are expected to be discovered. This calls

for extensive research in this emerging area involving func-

tional delineation of CUL4A adaptors and substrates and

study of deregulated pathways leading to human diseases.
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Appendix A. Ubiquitin – proteasome system
The ubiquitin–proteasome system (UPS) is one of the major

proteolytic systems involved in vital processes such as protein

quality control, stress response, homeostasis and cell survival

[143–145]. It functions by covalent tagging of substrate protein

with ubiquitin (Ub) via enzymatic cascade involving thio-

esterification reactions [146–148]. The process involves two

E1 enzymes, about 40 E2s and nearly 600 E3s in the case of

humans [149–152]. First, ubiquitin activating enzyme, E1,

forms a thioester linkage with the C-terminal glycine residue

of Ub in an ATP-dependent manner. Then, again via thioester

linkage, Ub is transferred to ubiquitin conjugating enzyme, E2.

Finally, E2 enzyme binds to ubiquitin ligase enzyme, E3, and

the complex mediates isopeptide linkage formation between

carboxy terminal glycine residue of Ub and lysine 1-amino

group of the substrate [146,148]. Repetition of this catalytic

cycle leads to polyubiquitination of the substrate [153]. Ub

can bind to the substrate either through its N-terminal or

other internal lysine residues (K6, K11, K27, K29, K33, K48

and K63). While monoubiquitination alters the cellular localiz-

ation or protein–protein interactions, substrates bound to Ub

chains of four or more residues through K11 and K48
of Ub are marked for proteasomal degradation. The role of

other atypical linkages such as branched chains, mixed

chains or multiple monoubiquitination is still being deduced

(figure 6) [154,155].
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