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Abstract
Cardiac remodeling characterized by cardiac fibrosis is a pathologic process occurring after acute myocardial infarction. 
Fibrosis can be ameliorated by interferon-gamma (IFN-γ), which is a soluble cytokine showing various effects such as 
anti-fibrosis, apoptosis, anti-proliferation, immunomodulation, and anti-viral activities. However, the role of IFN-γ in car-
diac myofibroblasts is not well established. Therefore, we investigated the anti-fibrotic effects of IFN-γ in human cardiac 
myofibroblasts (hCMs) in vitro and whether indoleamine 2,3-dioxygenase (IDO), induced by IFN-γ and resulting in cell 
cycle arrest, plays an important role in regulating the biological activity of hCMs. After IFN-γ treatment, cell signaling 
pathways and DNA contents were analyzed to assess the biological activity of IFN-γ in hCMs. In addition, an IDO inhibi-
tor (1-methyl tryptophan; 1-MT) was used to assess whether IDO plays a key role in regulating hCMs. IFN-γ significantly 
inhibited hCM proliferation, and IFN-γ-induced IDO expression caused cell cycle arrest in G0/G1 through tryptophan 
depletion. Moreover, IFN-γ treatment gradually suppressed the expression of α-smooth muscle actin. When IDO activity 
was inhibited by 1-MT, marked apoptosis was observed in hCMs through the induction of interferon regulatory factor, Fas, 
and Fas ligand. Our results suggest that IFN-γ plays key roles in anti-proliferative and anti-fibrotic activities in hCMs and 
further induces apoptosis via IDO inhibition. In conclusion, co-treatment with IFN-γ and 1-MT can ameliorate fibrosis in 
cardiac myofibroblasts through apoptosis.
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Introduction

Cardiac remodeling is a pathologic process leading to struc-
tural and functional derangement of damaged cardiac tis-
sue after acute myocardial infarction [1]. The severity of 
cardiac remodeling is mainly determined by the extent of 
tissue infarction and the degree of cardiac repair. Cardiac 
fibrosis is a representative response to various pathophysi-
ological cardiac conditions. It is characterized by the exces-
sive production and accumulation of extracellular matrix 

(ECM) components (consisting of collagen, fibronectin, 
glycosaminoglycan, and elastin) in the injured cardiac tis-
sue [2]. This cellular change causes increased stiffness with 
decreased compliance of the heart, resulting in both systolic 
and diastolic dysfunction. Cardiac repair requires a balanced 
healing process from the early inflammatory phase to the 
reparative and proliferative phases [1, 3]. Appropriate induc-
tion and proliferation of cardiac myofibroblasts (CMs) help 
to prevent cardiac rupture with scar formation, though ongo-
ing pathological activation of CMs causes fibrotic changes to 
the non-infarcted surrounding tissues followed by a deterio-
ration of cardiac function [4–11]. One potential therapeutic 
approach is to inhibit the progression of cardiac fibrosis. 
CMs are widely recognized as a key factor mediating cardiac 
fibrosis because activated CMs can produce excessive ECMs 
and express the highly contractile protein α-smooth muscle 
actin that remodels the surrounding ECM [12].
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Interferons (IFNs) are a group of cytokines that elicit 
pleiotropic biological effects, including immunomodula-
tory, cell differentiative, anti-angiogenic, anti-proliferative, 
anti-fibrogenic effects [13–15]. IFN-γ is a sole type II IFNs 
and mediate their effects by binding to cell surface recep-
tors, consisting of IFN-γR1 and IFN-γR2 subunits [16, 17] 
and thus activating members of the non-receptor tyrosine 
kinases Janus-activated kinase (JAK)1 and JAK2. Activation 
of JAKs phosphorylates the signal transducers and activators 
of transcription (STAT) family of transcription factors. The 
JAK/STAT signal activated by IFN-γ induce expression the 
transcription factor IFN response factor 1 (IRF-1) and then 
regulate the various target genes, including apoptosis-related 
caspases, Fas/CD95, Fas ligand, and Bcl-2 [18, 19]. The 
anti-fibrotic effects of interferon-gamma (IFN-γ) are well 
established in hepatic fibrosis models. It has been reported 
that IFN-γ has anti-fibrotic effects on hepatic stellate cells, 
which play important roles in ECM production in the liver by 
suppressing ECM production regulated by mothers against 
decapentaplegic homolog 3 (Smad3), Smad7, Y-box-binding 
protein 1, or p300/CREB-binding protein [20–24]; inhibi-
tion of fibroblast–myofibroblast differentiation [25, 26]; and 
growth retardation of myofibroblasts [27–30]. In addition, 
IFN-γ modulates tryptophan metabolism by inducting and 
activating indoleamine 2,3 dioxygenase (IDO), which inhib-
its ECM production in human dermal fibroblasts [31]. IDO 
is a heme-containing enzyme that, in humans, is encoded by 
the IDO1 gene or the variant IDO2 gene [32, 33] and plays 
roles in inhibiting ECM production, suppressing inflamma-
tory responses, and promoting immune tolerance [31, 34]. 
However, no consensus has been reached regarding the role 
of IFN-γ or whether it is harmful or protective with respect 
to cardiac remodeling [35, 36]. Moreover, no obvious treat-
ment option is available to reduce cardiac fibrosis [36]. 
Therefore, we investigated whether IFN-γ shows anti-fibrotic 
effects in human cardiac myofibroblasts (hCMs) in vitro and 
whether IDO inhibition, which is induced by IFN-γ, would 
decrease the viability of hCMs.

Materials and methods

Cell culture

hCMs, isolated from normal adult ventricles, were purchased 
from Lonza (Walkersville, MD, USA) and maintained in 
fibroblast growth medium (FGM)-3 with 10% fetal bovine 
serum, growth factors (recombinant human fibroblast growth 
factor and insulin), and gentamicin/amphotericin-B. All cell 
culture media and supplements were purchased from Lonza. 
IFN-γ (100 ng/ml; R&D Systems, Minneapolis, MN, USA) 
or 1-MT (0.5 mM; 1-MT (Sigma, San Diego, CA, USA) 

were used in the experiments. In this study, P4 hCMs were 
used.

Methylthiazolyldiphenyl‑tetrazolium bromide 
(MTT) assays

hCMs (3500 cells/cm2) were plated in 96-well plates. After 
24 h, cells were treated with IFN-γ or 1-MT for the indicated 
time points and then MTT (Sigma), dissolved in phosphate-
buffered saline (PBS), was added to each well at a final con-
centration of 5 mg/ml. The hCMs were incubated at 37 °C 
for 2 h. Formazan (formed in the plates during the assay) 
was dissolved in 100 μl DMSO, and a microplate reader 
(BioTek Instruments, Winooski, VT, USA) was used to read 
the optical density of each well at 570 nm.

Cell cycle analysis

The Cycle TEST Plus DNA Reagent Kit (BD Biosciences, 
San Jose, CA, USA) was used to analyze the cellular DNA 
contents, as per the manufacturer’s instructions. hCMs were 
trypsinized and then trypsinization was neutralized by add-
ing FGM-3. Next, hCMs were centrifuged at 1800 rpm for 
5 min. The cells were washed twice using the wash buffer 
provided in the kit. Thereafter, the cells were sequentially 
treated with solutions A, B, and C in a dark room, in com-
pliance with the manufacturer’s instructions. Cellular DNA 
contents were analyzed by flow cytometry (BD FACSAria 
III, BD Biosciences).

Immunoblotting

hCMs were treated with IFN-γ alone or IFN-γ + 1-MT 
for increasing amounts of time. hCMs were lysed with 
1X Laemmli sample buffer (62.5 mM Tris–HCl [pH 6.8], 
10% glycerol, 1% sodium dodecyl sulfate [SDS], and 5% 
β-mercaptoethanol) and boiled for 5 min. Proteins were 
separated by SDS–polyacrylamide gel electrophoresis 
(SDS-PAGE). Separated proteins were transferred to an 
Immobilon-P PVDF membrane (Millipore, Billerica, MA, 
USA). Then, the membrane was blocked for 30 min in Tris-
buffered saline containing 5% non-fat and 0.05% Tween-
20, followed by incubation with a primary antibody against 
IDO1, IDO2, IRF-1, Fas, Fas ligand (FasL), glyceraldehyde 
3-phosphate dehydrogenase (Santa Cruz Biotechnology, 
Santa Cruz, CA, USA), cellular (ED-A) fibronectin (Sigma), 
or α-smooth muscle actin (SMA) (Abcam, Cambridge, MA, 
USA). Species-specific horseradish peroxidase-conjugated 
secondary antibodies (Santa Cruz Biotechnology) were used 
to detect bound primary antibodies. Visualization of protein 
bands was performed with the West Pico chemiluminescent 
substrate (Thermo Scientific, Rockford, IL, USA) and the 
BioSpectrum imaging system (UVP, Upland, CA, USA).
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Measurement of IDO activity

IDO activities of hCMs were determined by detecting the 
conversion of tryptophan to kynurenine [37, 38]. Cells were 
treated with IFN-γ ± 1-MT for 48 or 72 h. Briefly, the cell 
pellets were washed twice in cold PBS. The cells were re-
suspended at 1.5 × 107 cells/ml in PBS and frozen at − 80 °C 
until being analyzed. Cells were rapidly thawed at 37 °C and 
refrozen in liquid nitrogen, and this process was repeated 
three times. Cell lysates (250 μl) were mixed with an equiva-
lent volume of 2 × IDO reaction buffer (100 mM potassium 
phosphate buffer [pH 6.5], 20 μM methylene blue, 40 mM 
ascorbate, 200 U/ml catalase, and 800 μM l-tryptophan) 
and incubated at 37 °C for 30 min. The reaction was ceased 
by adding 30% trichloroacetic acid (Sigma) and then incu-
bated at 50 °C for 30 min. One hundred microliters of each 
supernatant were transferred to a microfuge tube after pel-
leting the proteins at 3000×g for 10 min. An equal volume 
of Ehrlich’s reagent (2% p-dimethylaminobenzaldehyde in 
glacial acetic acid) was added, and the resulting mixture 
was incubated at room temperature for 10 min. Kynurenine 
products were detected at 490 nm using a microplate reader 
(BioTek Instruments).

Annexin‑V and 7‑aminoactinomycin (7‑AAD) 
staining

Apoptosis was measured with the PE-Annexin-V Apop-
tosis Detection Kit I (BD Biosciences) according to the 

manufacturer’s instructions. hCMs (3500 cells/cm2) were 
seeded in 60-mm dishes. After 24 h, cells were treated with 
IFN-γ or 1-MT for 72 h. hCMs were harvested, washed 
twice in cold PBS, and re-suspended in 1 × binding buffer. 
Then, hCMs were stained with PE-annexin-V and 7-AAD at 
room temperature for 15 min in the dark. Cells were rapidly 
analyzed without washing by flow cytometer within 1 h. To 
calculate the dead cell population, the percentages of early 
(Q4; PE-annexin-V/7-AAD, ±) and late apoptotic cells (Q2; 
PE-annexin-V/7-AAD, +/+) were analyzed.

Statistics

Data are expressed as the mean ± standard error (SE). Dif-
ferences between groups were analyzed by one-way analysis 
of variance with Tukey’s test against the control. Statistical 
analysis was performed using SPSS software, version 22.0 
(IBM Corporation, Armonk, NY, USA). Statistical signifi-
cance was defined as P < 0.05.

Results

Growth retardation of hCMs by IFN‑γ

hCMs were treated with 100 ng/ml IFN-γ for 3 days to 
investigate the growth-inhibitory effect. Cell viability sig-
nificantly decreased by approximately 22.5% at 2 days and 
31.5% at 3 days (Fig. 1a). After treatment with IFN-γ for 

Fig. 1   Growth suppression of hCMs by IFN-γ. a Cell viability of 
hCMs treated with IFN-γ. hCMs were treated with 100 ng/ml IFN-
γ. Cell viability was evaluated by performing MTT assays. Data are 
expressed as the mean ± SE of triplicate experiments. **P < 0.01 

b Cell cycle analysis of hCMs treated with IFN-γ for 72 h. Cellular 
DNA contents were analyzed by flow cytometry. The data shown are 
from one of three independent experiments. *P < 0.05
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3 days, cells in S and G2/M phase decreased in number, but 
the percentage of the G0/G1 population increased from 66.1 
to 83.9% versus the control group. However, the sub-G0/
G1 population was not increased by IFN-γ (Fig. 1b). These 
results suggest that cell cycle arrest in the G0/G1 phase by 
IFN-γ induced hCM growth retardation.

IDO induction by IFN‑γ in hCMs

We investigated whether IFN-γ could induce IDO expres-
sion and tryptophan depletion in hCMs. The IDO1 and 
IDO2 expression levels were elevated at 48- and 72-h post-
treatments with IFN-γ. ED-A fibronectin increased in a 
time-dependent manner, but α-SMA expression gradually 
decreased. The expression levels of apoptosis-related genes 
such as IRF-1 and FasL were also diminished, although 
IRF-1 tended to recover somewhat after 24 h (Fig. 2a). To 
analyze the IDO enzyme activity after IFN-γ treatment, 

kynurenine production from hCMs treated with IFN-γ for 
72 h was calculated. An average of 13 nmoles of kynurenine 
was produced by IFN-γ treatment for 72 h (Fig. 2b). These 
data suggest that IFN-γ induce IDO expression, resulting in 
tryptophan depletion.

Cell death after co‑treatment with IFN‑γ and 1‑MT 
in hCMs via IRF‑1, Fas, and FasL expression

Next, we investigated whether inhibiting IDO activity by 
1-MT could restore cell growth. Cell death was observed 
under a microscope after hCMs had been treated with 
IFN-γ + 1-MT for 3 days (Fig. 3a). Interestingly, growth 
retardation by IFN-γ was partially reversed by 1-MT on day 
2, but cell viability was further reduced by 1-MT treatment 
on day 3 (Fig. 3b). Moreover, IFN-γ-derived kynurenine pro-
duction was significantly reduced by 1-MT (Fig. 3c). These 
results suggest that 1-MT inhibited tryptophan depletion, 

Fig. 2   Signaling pathways activated by IFN-γ in hCMs. a hCMs were 
treated with IFN-γ (100 ng/ml) for the indicated time points, and the 
expression of proteins related to apoptosis (i.e., IRF-1, Fas, and FasL) 
or cell cycle arrest (i.e., IDO1 and IDO2) was detected by immunob-
lotting. In addition, STAT1 phosphorylation and α-SMA expression 

were also evaluated. *P < 0.05 Black arrows: IDO bands; red arrows: 
non-specific (ns) bands. b Kynurenine production in hCMs treated 
with IFN-γ for 72 h. The data shown are expressed as the mean ± SE 
of triplicate experiments. ***P < 0.001. (Color figure online)
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thereby partially reversing the growth-inhibitory activity of 
IFN-γ, but eventually induced cell death regardless of tryp-
tophan depletion.

To confirm that cell death occurred in hCMs treated 
with IFN-γ and 1-MT, PE-annexin-V/7-AAD staining 
was performed and DNA contents were analyzed by 
flow cytometry. The percentage of early (PE-annexin-V-
PE/7-AAD, ±) and late apoptotic cells (PE-annexin-V/7-
AAD, +/+) increased after co-treatment with IFN-γ and 
1-MT to 11.5%, compared with 5.8% in the control group 
(Fig. 4a). The sub-G0 population also increased from 1 
to 10% (Fig. 4b). In addition, α-SMA, ED-A fibronec-
tin, IDO1, and IDO2 expression decreased markedly in 

hCMs co-treated with IFN-γ and 1-MT compared to that 
of the IFN-γ-treated group (Fig. 2a). On the other hand, 
IRF-1 expression increased until 12 h and then gradu-
ally decreased to 72 h. But, the IRF-1 expression level 
was still higher than baseline. Fas, an apoptosis-related-
gene, gradually increased over time (Fig. 4c). In addition, 
although FasL was reduced by 24 h, the expression level 
was restored at 48 and 72 h. These results suggest that 
1-MT modulated the activity of IDO; induced apoptosis 
in myofibroblasts via the expression of apoptosis-related 
genes such as IRF-1 and Fas and/or FasL; and conse-
quently reduced fibrosis.

Fig. 3   Release from IFN-γ-induced cell cycle arrest by inhibit-
ing IDO activity. a, b Growth-inhibitory effects of IFN-γ (100  ng/
ml) and/or 1-MT (0.5  mM) in hCMs. hCMs were treated with 
IFN-γ or IFN-γ + 1-MT for the indicated time points, and cell via-
bility was examined by light microscopy (a) or MTT assays (b). 

*P < 0.05, **P < 0.01, and ***P < 0.001 c Kynurenine production in 
hCMs treated with IFN-γ or IFN-γ + 1-MT for 48 or 72 h. The data 
shown are expressed as the mean ± SE of triplicate experiments. 
***P < 0.001
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Discussion

Activated CMs lead to myocardial scarring and fibrosis of 
damaged or diseased myocardium by regulating cardiac 
ECM production [39]. Therefore, CM regulation is impor-
tant for ameliorating cardiac remodeling. We observed that 
(1) IFN-γ inhibited hCM proliferation through G0/G1 cell 
cycle arrest and reduced the expression of α-SMA, a marker 
of fibrosis [40]. (2) G0/G1 cell cycle arrest was induced 
by tryptophan depletion through increased IDO activity, 
induced by IFN-γ. (3) Co-treatment with IFN-γ and IDO 
inhibitor (1-MT) markedly reduced the activity of hCMs 

expressing α-SMA and induced apoptosis through up-regu-
lating the IRF-1, Fas, and FasL genes.

Conflicting data have been reported regarding whether 
IFN-γ is harmful or protective for the heart. IFN-γ over-
expression caused chronic active myocarditis, eventually 
resulting in cardiomyopathy in IFN-γ transgenic mice [41]. 
Marko et al. [42] reported that IFN-γ blockade reduced 
inflammation and cardiac fibrosis in IFN-γ receptor-knock-
out mice. Han et  al. [43] also demonstrated that IFN-γ 
knockout reduced the accumulation of α-SMA-positive cells 
and α-SMA expression in an angiotensin II-induced cardiac 
fibrosis model. In contrast, Fairweather et al. [44] reported 

Fig. 4   Cell death induced by IFN-γ and 1-MT in hCMs. a Cell 
death of hCMs induced by IFN-γ and 1-MT. hCMs treated with 
IFN-γ + 1-MT for 72 h were analyzed by PE-annexin-V and 7-AAD 
staining, and cell death was quantified by flow cytometry. Necrotic 
(PE-annexin-V/7-AAD, ±), late apoptotic (PE-annexin-V/7-AAD, 
+/+), live (PE-annexin-V/7-AAD, –/–), and early-apoptotic cells (PE-
Annexin-V/7-AAD, ±) are shown in Q1–Q4, respectively. b Change 
in the cell cycle phase induced by IFN-γ + 1-MT. Cellular DNA con-
tents were analyzed by flow cytometry. The data shown are expressed 

as the mean ± SE of triplicate experiments. *P < 0.05 and **P < 0.01 
c Signaling pathways activated by IFN-γ and 1-MT in hCMs. In 
hCMs treated with IFN-γ (100  ng/ml) and 1-MT (0.5  mM) for the 
indicated time points, the expression of apoptosis-related proteins 
(i.e., IRF-1, Fas, and FasL) were analyzed by immunoblotting. The 
y axis of the lower left graph is the logarithmic scale. *P < 0.05 and 
**P < 0.01. Additionally, p-STAT1, α-SMA, IDO1, and IDO2 were 
also detected. Black arrows: IDO bands; red arrows: non-specific (ns) 
bands. (Color figure online)
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that IFN-γ deficiency led to increased chronic viral myo-
carditis following cardiac fibrosis, pericarditis, and dilated 
cardiomyopathy in IFN-γ-deficient mice. Mast cell degranu-
lation and profibrotic cytokines (i.e., transforming growth 
factor-β1, interleukin-1β, and interleukin-4) were increased 
in the heart. Moreover, Afanasyeva et al. found that IFN-γ 
deficiency increased cardiac inflammation and resulted in 
dilated cardiomyopathy and heart failure in a mouse model 
of autoimmune myocarditis [45].

Despite these conflicting results, little information has 
been reported regarding whether IFN-γ can directly regulate 
the proliferation and activity of CMs. IFN-γ is well known to 
express IDO, a rate-limiting enzyme of tryptophan catabo-
lism. Consequently, degradation of the essential amino acid 
tryptophan to kynurenine causes cell starvation and induces 
anti-proliferative effects for pathogens, tumor cells, immune 
cells, and mesenchymal stem cells [46–49], as well as the 
hCMs used in this study. In addition, tryptophan-derived 
catabolites including kynurenine inhibited activated T cell 
and natural killer cell proliferation [50].

Interestingly, co-treatment with IFN-γ and 1-MT induced 
cell death in hCMs rather than the recovery of proliferative 
activity. The underlying mechanism is not fully understood. 
IFNs regulate the expression of interferon regulatory factor 
protein family members, including IRF-1. IRF-1 regulates 
the expression of target genes including IDO by binding 
to an interferon-stimulated response element in their pro-
moters. IRF-1 can also modulate the expression of FasL 
and induce apoptosis in T cells [51]. In our systems, IFN-γ 
reduced IRF-1 expression, but co-treatment with IFN-γ and 
1-MT gradually increased the expression of IRF-1 by 12 h. 
However, after 12 h, these expression levels decreased but 
remained at levels comparable to those of the control group 
at 72 h. In addition, Fas expression markedly increased in 
hCMs co-treated with IFN-γ and 1-MT, but FasL expres-
sion decreased by 24 h before returning to an increased 
level by 48 and 72 h. These results suggest that the role of 
IRF-1 in the expression of IDO and Fas may be different in 
hCMs. In other words, IFN-γ can induce IRF-1-independent 
IDO expression, thereby promoting G0/G1 cell cycle arrest 
through tryptophan depletion in hCMs. However, the IDO 
inhibitor 1-MT may increase IRF-1-dependent Fas expres-
sion and induce apoptosis of hCMs..

Because this in vitro study was performed at the cellular 
level, in vivo animal models are needed to confirm these 
results. However, to our knowledge, this is the first study 
to demonstrate the regulation of activated CMs by IFN-γ 
and 1-MT. In the future, it should be confirmed whether co-
treatment with IFN-γ and 1-MT can control cardiac fibrosis 
in animal and human models.

In summary, we report that IFN-γ-induced IDO expres-
sion decreased cell growth and induced G0/G1 cell cycle 
arrest in hCMs through tryptophan depletion. Moreover, 

inhibition of IDO expression with the IDO inhibitor 1-MT 
increased apoptosis in hCMs through the induction of Fas, 
FasL, and IRF-1.
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