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Abstract: Prostate intratumoral heterogeneity, driven by epithelial–mesenchymal plasticity, con-
tributes to the limited treatment response, and it is therefore necessary to use the biomarkers to
improve patient prognostic survival. We aimed to characterize the tumor microenvironment (T lym-
phocyte infiltration, intratumoral CD34, and KI-67 expressions) by immunohistochemistry methods
and to study the biological mechanisms (cell cycle, cell proliferation by adhesion glycoproteins, cell
apoptosis) involved in the evolution of the prostate tumor process by flow-cytometry techniques.
Our results showed that proliferative activity (S-phase) revealed statistically significant lower values
of prostate adenocarcinoma (PCa) and benign prostatic hyperplasia (BPH) reported at non-malignant
adjacent cell samples (PCa 4.32 ± 4.91; BPH 2.35 ± 1.37 vs. C 10.23 ± 0.43, p < 0.01). Furthermore,
68% of BPH cases and 88% of patients with PCa had aneuploidy. Statistically increased values
of cell proliferation (CD34+ CD61+) were observed in prostate adenocarcinoma and hyperplasia
cases reported to non-malignant adjacent cell samples (PCa 28.79 ± 10.14; BPH 40.65 ± 11.88 vs. C
16.15 ± 2.58, p < 0.05). The CD42b+ cell population with a role in cell adhesion, and metastasis had
a significantly increased value in PCa cases (38.39 ± 11.23) reported to controls (C 26.24 ± 0.62,
p < 0.01). The intratumoral expression of CD34 showed a significantly increased pattern of PCa tissue
samples reported to controls (PCa 26.12 ± 6.84 vs. C 1.50 ± 0.70, p < 0.01). Flow cytometric analysis of
the cell cycle, apoptosis, and adhesion glycoproteins with a critical role in tumoral cell proliferation,
T cell infiltrations, Ki-67, and CD 34 expressions by IHC methods are recommended as techniques for
the efficient means of measurement for adenocarcinoma and hyperplasia prostate tissue samples and
should be explored in the future.

Keywords: prostate carcinogenesis; cell cycle; apoptosis; CD34; CD61; CD42b glycoproteins; T cell
infiltrations; Ki-67 expression
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1. Introduction

Prostate adenocarcinoma (PCa) is the most common cancer in men in the world, be-
ing the leading cause of death. Despite its high incidence, PCa prognosis for patients is
good when the carcinoma is detected in stages when androgen deprivation, prostatectomy,
or/and radiation therapies are implemented [1–3]. Prostate intratumoral heterogeneity,
driven by epithelial–mesenchymal plasticity, contributes to the limited treatment response;
therefore, it is necessary to use the biomarkers to highlight this efficiently and quickly to
improve patient prognostic survival. Flow cytometric analysis of ploidy and the cell cycle,
together with adhesion glycoproteins with an essential role in tumoral cell proliferation and
cell apoptosis, represent the rapid and efficient means of measurement for the microenvi-
ronment (TME) of the PCa and benign prostatic hyperplasia (BPH). DNA content observes
the cell frequency in the G0/G1, S, and G2/M phases of the cell cycle and assesses DNA
ploidy. The evidence of aneuploidy represents a marker of the tumor presence, being a
prognostic indicator of tumor progression and the treatment outcome [4]. DNA ploidy and
cell proliferation have provided prognostic information for prostate cancer [5]. Aneuploidy
represents a human cancer characteristic, being a tumorigenesis driver [6]. Aneuploidy
may arise during tumor initiation via polyploidization because unstable tetraploid interme-
diates determinate chromosomal gains, losses, and translocations [7–9]. Polyploid cells also
occur in cancer, but aneuploidy cells are found in various tumors, often indicating higher
malignancy. Flow cytometric analysis of aneuploidy has been used as a prognostic indicator
in prostate, colon, and breast tumors, and it highlights that aneuploidy results from deletion
or replication of specific chromosomes, with a different process from normal chromosome
replication [10]. Cell adhesion molecules (glycoproteins) are essential in cancer progression
and metastasis. Interactions between tumor cells, platelets, and leukocytes contribute
to cancer cell adhesion, extravasation, and the establishment of metastatic lesions [11].
CD61 transmembrane glycoproteins (β3 integrin) attach the cells to the extracellular ma-
trix (ECM), inducing cluster formation with signaling molecules (focal adhesions kinase),
which result in cell adhesion and cell migration. Changes in integrin gene expression were
shown in various malignancies, including prostate adenocarcinoma [12–15]. CD34 is a
transmembrane phosphoglycoprotein associated with the proliferative capacity of multipo-
tent mesenchymal stromal cells (MSC) [16,17]. In addition, CD34 represents a biomarker
of vascular endothelial progenitor cells [18]. Noncirculating adult endothelial cells were
represented by the CD34+ cell population, located within smaller blood vessels, while most
endothelial cells from larger veins and arteries are part of the CD34- cell population. CD34+
endothelial cells are involved in migration and adhesion [17]. The integrin αIIb/β3 (CD61
complex) is involved in prostate cancer metastasis [19]. In addition, integrin α5β1 (GPIB-V
complex) is vital in cell adhesion in prostate cancer cells [20]. T lymphocyte infiltration
into the tumor microenvironment plays an important role in antitumor immunity [21].
T lymphocyte infiltration into malignant tumors in controlling cancer progression and
survival of patients with cancer was described in [22]. Other authors suggest that patients
with tumors with increased T lymphocyte infiltration have a survival advantage, but it
appears that the mechanisms that contributed to escape the tumor cells originated from
immune responses [3,23,24].

Our study presents the DNA content and cell apoptosis related to adhesion glyco-
protein expressions and T lymphocyte infiltration in PCa and BPH tissue in a report with
non-malignant adjacent tissue samples. DNA content was measured by flow cytometry to
show cell distribution within the G0/G1, S, and G2/M phases of the cell cycle, to estimate
the frequency of apoptotic cells with the fractional DNA content (subG0/G1), and to calcu-
late the DNA ploidy of the observed cell population, being made by a PI stain. Adhesion
glycoproteins made by dual stain CD34 Alexa Fluor 488 and CD61-PE reveal mesenchy-
mal and endothelial cell proliferation and platelet and T cell aggregation to tumoral and
endothelial cells (CD34+ CD61+). The CD42b-PE stain observed the platelet aggregation in
tumor and endothelial cells. T lymphocytes, especially CD3 (total T lymphocytes), CD4
(helper T lymphocytes), and CD8 (cytotoxic T lymphocytes), were analyzed by immuno-
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histochemistry methods (IHC) to observe the infiltration degrees of leucocytes in tissue
samples. In addition, the intratumoral expression of CD34 and cell proliferation by Ki-67
expression in PCa and BPH tissue samples were reported to controls by ICH analysis.

2. Materials and Methods
2.1. Cases Selection

All tissue samples (n = 75) were recovered from patients (who signed informed consent
forms, agreeing to participate in this study) from the Clinical Service of Pathology, Sf. Apos-
tol Andrei Clinical Emergency County Hospital in Constanta, Romania. In agreement with
WHO classifications, the patients were divided into two experimental groups: (1) patients
with PCa without treatment (n = 25); (2) patients with BPH without treatment (n = 25);
(3) controls for experimental groups using non-malignant adjacent tissue samples recovered
from patients with PCa or BPH (n = 25, C, controls).

Tissue samples of PCa, BPH, and control, excised by transurethral resection of the
prostate (TURP), were divided into two parts: (1) samples used to evaluate the T cell
infiltrations, CD 34, and Ki-67 cell proliferation by IHC methods at Clinical Service of
Pathology, Sf. Apostol Andrei Clinical Emergency County Hospital, Constanta, Romania;
(2) samples mechanically homogenized with TissueRuptor II (Qiagen, USA), used for
flow cytometry determinations (DNA content, cell apoptosis, CD34, CD61, and CD42b
biomarkers at the Cell Biology Department, CEDMOG, Ovidius University of Constanta,
Romania). Our selection criteria were applied to identify and establish the clinical efficiency
of the human PCa and BPH biomarkers by flow cytometry and IHC methods, highlighting
the characterization of the tumor microenvironment in conformity with references [25].

2.2. Morphological Evaluation of Tissue Samples

After the macroscopic description, the prostate tissue specimens were fixed in 10%
formaldehyde, paraffin-embedded, sectioned, and stained in the usual laboratory stains.
For the microscopic evaluation, by the Gleason classification, primary prostate adenocarci-
nomas were divided into three categories: (1) well-differentiated—Gleason score (GS) 6;
(2) moderately differentiated—Gleason score 7; (3) poorly differentiated—Gleason scores
8–10. The second classification of PCa cases in the function of the prognostic grade of
the patient survival was made in accordance with the references: (1) Group I—Gleason
score ≤ 6 (n = 1); (2) Group II—Gleason score 3 + 4 = 7 (n = 16); (3) Group III—Gleason
score 4 + 3 = 7; (4) Group IV—Gleason score 4 + 4 = 8 (n = 3); (5) Group V—Gleason score
9–10 (n = 5) [26–28]. After the T stage (pTNM), the third classification identified two risk
groups: (1) patients with T1-T2 stage; (2) patients with T3-T4 stage [29].

2.3. Reagents and Equipment

Our study analyses used a flow cytometer (Attune, Acoustic focusing cytometer,
Applied Biosystems, part of Life Technologies, Bedford, MA, USA). The flow cytometer
was set using fluorescent beads (Attune performance tracking beads, labeling, and detection,
Life Technologies, Europe BV, Bleiswijk, The Netherlands) with standard size (four intensity
levels of beads population). The quantity was established by enumerating cells below 1 µm;
10,000 cells per sample for each analysis were gated by Forward Scatter (FSC) and Side
Scatter (SSC). Flow cytometry data were collected using Attune Cytometric Software v.1.2.5,
Applied Biosystems, 2010. Annexin V-FITC/PI (Bender MedSystems GmbH, Wien, Austria)
was used to observe the apoptotic cells. Propidium iodide (PI) (1.0 mg/mL, Sigma-Aldrich,
Chemie GmbH, Taufkirchen, Germany) and RNase A (4 mg/mL, Promega, Madison, WI,
USA) were used in cell cycle analysis. Anti-CD42b-PE (HIP1) and anti-CD61-PE (integrin
beta 3, Invitrogen, eBioscience) monoclonal antibodies conjugated with phycoerythrin (PE)
were used to assess platelet glycoproteins expressions of GPIba and GPIIIa. CD34 Antibody,
conjugate Alexa Fluor 488 (4H11(APG), Thermo Scientific, Waltham, MA, USA) was used
for glycoprotein expression of CD34. Anti-CD4 (EP204 clone), anti-CD 8 (SP16 clone),
anti-CD3 (EP41 clone), anti-CD34 (QB-End/10 clone), and anti-Ki67 (SP6 clone, Master
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Diagnostica, Sao Paolo, Brazil) monoclonal antibodies were used for immunohistochemistry
(IHC) methods to evaluate the T cell infiltration, intratumoral expression of CD34, and cell
proliferation in PCa and BPH tissue samples reported to controls. We used formalin-fixed,
paraffin-embedded tissue for IHC assessment, sectioned at 4 µm thickness. We followed
the staining protocol, as recommended by the producers. Master Diagnostica protocols
included dewaxing using xylene and decreasing grades of alcohol, HIER in ph8 Master
Diagnostica EDTA buffer in a pressure cooker incubating the ready-to-use monoclonal
antibodies at room temperature for 10 min. For detection, we used the Master Polymer Plus
Detection System (HRP) (DAB included), counterstained with hematoxylin, and mounted
the glass cover slides.

2.4. Cell Cycle Analysis

In the darkness, the homogenized cells (100 µL) were introduced into flow cytometry
tubes and fixed with 100 µL ethanol for 30 min. After this process, the cells were treated
with 20 µL of PI (20 mg/mL) and 30 µL of RNase A (30 mg/mL) and incubated for
30 min at room temperature into darkness. Then, 1 mL flow cytometry stain buffer (FCB,
eBioscienceTM, Life Technologies Europe BV, Bleiswijk, The Netherlands) was added, and
the cell cycle distribution was detected with the flow cytometer using a 488 nm excitation
and orange emission for PI (BL2 channel).

2.5. Adhesion Glycoproteins Determinations

The homogenized cells (100 µL for each tube) spread: (1) CD61-PE and CD34+ -Alexa
Flour 488 dual stain; (2) CD42b-PE stain; (3) control negative-IgG stain. In the tubes with
cells were introduced 5µL of CD61-PE and 5µL of CD34-Alexa Flour 488. In the other tubes
with cells were added 5 µL of CD42b-PE. A control tube with cells and 5 µL of the negative
control (mouse IgG) were realized for each experimental sample. All work tubes were
vortexed and incubated into darkness for 25 min at 37 ◦C. Then, 1 ml of FCB was added
into each tube and vortexed for 1 min before analysis. Flow cytometry identified adhesion
glycoproteins based on the size and specificity of CD34, CD61, and CD42b expressions,
using the BL1 channel for Alexa Fluor 488 and the BL2 channel for PE.

2.6. Cell Apoptosis Assay

The homogenized cells from each sample were introduced in flow cytometry tubes
with 2 µL of Annexin V-FITC and 2 µL PI (20 mg/mL) for 30 min at room temperature
in darkness. After incubation, 1 mL of FCB was added. Viable cells, early apoptotic cells,
late apoptotic cells, and necrotic cells were examined with a flow cytometer using 488 nm
excitation, green emission for Annexin V-FITC (BL1 channel), and orange emission for PI
(BL2 channel).

2.7. Surface Glycoproteins of T Cell Analysis

The expressions of the CD4, CD3, and CD8 biomarkers were evaluated semi-quantitatively
as the number of lymphocytes (less or greater than 50 cells) on 400× magnification by mi-
croscope examination. Immunolabeling was considered brown positive at the membrane
level. Lymphocytes from the peritumoral stroma were evaluated, either as single cells or as
cell aggregates and intraepithelial cells. Tonsils were used as a positive control. Thus, the
degree of inflammation in the tissue samples was assessed and divided into three categories
depending on the lymphocyte’s percentage: (1) slight inflammation, when the inflammatory
infiltrates were equal to or less than 10% (n = 39); (2) moderate inflammation, with infiltrates
between 10 and 20 (n = 14); (3) severe inflammation, when the percentage of infiltrates was
equal to or greater than 20 (n = 22) [30].

2.8. Intratumoral Expression of CD34

Vascularity was evaluated by an average of CD34-positive numbers of stained vessels
in cases with non-malignant tissue, HBP tissue, and PCa tissue samples. CD34 expression
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was assessed in both small vessels within the prostate tumor tissue, which is more likely to
be formed during tumor angiogenesis, and in pre-existing stromal vessels. For evaluation,
the expression was observed by brown positivity in the monolayer endothelial cells, which
line the lumen of small vessels. Each section was initially examined with a low power
field of 100× to mark the area of MDV (microvessel density) and then with a large, high
power field of 400×. They were evaluated as vascular spaces, lumen-centered structures,
endothelial cell groups, or CD34-positive cell clusters that were considered a microvessel.
In the situation where at least two clusters or foci were observed, which seemed to belong
to the same vascular structure, they were also considered a microvessel. MVD count was
established as the sum of the three highest counts, in the hot spots, at 0.18 mm2 [29,31].

2.9. Ki-67 Cell Proliferation

The evaluation was quantified at the nuclear level by strong brown staining as the
percentage of cells that react with the antibody. Positive cells were counted from 500 cells
evaluated on the magnification of 400 (HPF—high power field). We used as reference for
interpretation the following values: below 2%, negative (n = 50); below 25%, score 1+
(n = 25); 26–50%, score 2+; 51–75%, score 3+; 76–100%, score 4+ [32].

2.10. Statistical Analysis

We analyzed the cell cycle, adhesion glycoproteins, cell apoptosis, T cell infiltrations,
and intratumoral expression of CD34 for all tissue samples, and the obtained results
were presented as mean values with standard deviations, made by SPSS v. 23 software,
IBM, Armonk, NY, USA, 2015. Data were analyzed by the Levene test for homogeneity
of the sample variances, an independent t test was used to show the differences between
cases, and p < 0.05 was considered statistically significant. The Pearson correlations were
made between DNA content, cell apoptosis, glycoproteins parameters, tissue inflammation
grade, and Ki-67 cell proliferation in PCa and HP tissue in a report with non-malignant
adjacent tissue samples. Figures 1–4 were produced with Attune Cytometric Software
v.1.2.5, Applied Biosystems, Bedford, MA, USA, 2010.
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Figure 1. Cell cycle, ploidy, and DNA fragmentation (AP, subG0/G1) represented by propidium
iodide stain (PI). Control DNA extrapolate on the PI ax. G0/G1 phase = (A) 95.48%; (B) 2c 59.44%;
4c 10.87%; 8c 6.52%; 16c 12.68%; (C) 0.00%; S phase = (A) 1.27%; (B) 0.00%; (C) 0.00%; G2/M phase
= (A) 1.13%; (B) 0.00%; (C) 99.92%; subG0/G1: (A) 1.05%; (B) 3.31%; (C) 0.07%. Legend: AP, cell
apoptosis; (A) malignant tumor tissue with an invasion of the prostatic urethra (hyperdiploid, cell
cycle arrest in G0/G1 phase); (B) adenoleiomyoma prostate tissue, chronic inflammation hyperplasia
(tetrapoliploidy); (C) benign prostatic tissue hyperplasia (aneuploid, present only the G2/M phase).
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CD61+ population: (A) 17.98%; (B) 33.63%; (C) 45.71%; (D) 59.68%. Legend: (A) non-malignant prostate
tissue adjacent to nodular hyperplastic tissue; (B) adenoleiomyoma prostate tissue, chronic inflammation
hyperplasia; (C) malignant prostate tumor tissue; (D) benign prostatic tissue hyperplasia.
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Figure 3. Integrin mediation of platelet aggregation to tumoral and endothelial cells by highlighting
the positive and negative glycoprotein populations (CD42b-/CD42b+) with CD 42b-PE stain. CD42b+
population: (A) 25.80 %; (B) 16.79%; (C) 41.10%; (D) 39.74%; CD42b- population: (A) 73.08%; (B) 82.88%;
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tumor tissue; (D) benign prostatic tissue hyperplasia.
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3. Results
3.1. DNA Content, CD34, CD61, CD42 b Glycoproteins Expressions, Cell Apoptosis by Flow
Cytometry Analysis in PCa and BPH Tissue Reported to Non-Malignant Adjacent Tissue Samples

The proliferative activity (S-phase) revealed statistically significant lower values of
prostate adenocarcinoma and hyperplasia reported at non-malignant adjacent cell samples
(PCa 4.32 ± 4.91; BPH 2.35 ± 1.37 vs. C 10.23 ± 0.43, p < 0.01, Table 1, Figure 1). Furthermore,
68% of BPH cases presented aneuploidy, 88% of patients with prostate adenocarcinoma
had aneuploidy, 4% of cases from these highlighted hypodiploid and hyperdiploid cell
heterogeneity, and 4% of cases showed polyploidy (tetrapoliploidy).

Table 1. Cell cycle phases, ploidy index, and DNA fragmentation at prostate adenocarcinoma, benign
prostatic hyperplasia, and non-malignant adjacent tissue samples.

Number Parameters Control
X ± SD

PCa
X ± SD

Control
X ± SD

BPH
X ± SD

1
G0/G1 phase 68.67 ± 1.51 76.84 ± 20.68 68.67 ± 1.51 66.74 ± 34.38

p values 0.14 0.86

2
S phase 10.23 ± 0.43 ** 4.32 ± 4.91 ** 10.23 ± 0.43 ** 2.35 ± 1.37 **
p values 0.00 0.00

3
G2/M phase 14.64 ± 2.99 8.81 ± 14.23 14.64 ± 2.99 20.42 ± 33.03

p values 0.19 0.60

4
DNA index 1.00 ± 0.01 * 1.38 ± 0.51 * 1.00 ± 0.01 * 1.19 ± 0.20 *

p values 0.01 0.03

5
subG0/G1 1.43 ± 0.11 * 4.63 ± 2.69 * 1.43 ± 0.11 2.19 ± 2.74

p values 0.01 0.40
Legend: X, obtained results mean; SD, standard deviation; PCa, prostate adenocarcinoma; BPH, benign pro-
static hyperplasia; ** p ≤ 0.01 and * p < 0.05 represent statistically significant differences between controls and
experimental samples made by independent t test.
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Index of ploidy presented significantly increased values at PCa and BPH cases reported to
control cases (PCa 1.38 ± 0.51; BPH 1.19 ± 0.20 vs. C 1.00 ± 0.01, p < 0.01). DNA fragmentation
(subG0/G1) had a significantly increased percentage in PCa tissue (4.63 ± 2.69) compared to
control tissue samples (1.43 ± 0.11, p < 0.01, Table 1, Figure 1).

Statistically increased values of cell proliferation (CD34+ CD61+) were observed in
prostate adenocarcinoma and hyperplasia cases reported to non-malignant adjacent cell
samples (PCa 28.79 ± 10.14; PH-40.65 ± 11.88 vs. C 16.15 ± 2.58, p < 0.05, Table 2, Figure 2).

Table 2. CD34 and CD61 glycoprotein expressions implied in cell proliferation in prostate adenocarci-
noma, benign prostatic hyperplasia, and non-malignant adjacent tissue samples.

Number Parameters Control
X ± SD

PCa
X ± SD

Control
X ± SD

BPH
X ± SD

1
CD61T 86.90 ± 4.39 * 70.59 ± 15.30 * 86.90 ± 4.39 91.15 ± 4.76

p values 0.019 0.273

2
CD34 + CD61+ 16.15 ± 2.58 ** 28.79 ± 10.14 ** 16.15 ± 2.58 * 40.65 ± 11.88 *

p values 0.005 0.019

3
CD61+ 16.26 ± 2.52 ** 37.81 ± 16.21 ** 16.26 ± 2.52 ** 36.50 ± 13.55 **

p values 0.000 0.002

4
CD61- 83.49 ± 2.72 ** 59.89 ± 17.38 ** 83.49 ± 2.72 ** 62.49 ± 13.57 **

p values 0.000 0.001

5
CD34T 87.29 ± 5.20 75.43 ± 14.20 87.29 ± 5.20 90.55 ± 6.38

p values 0.090 0.532

6
CD34+ 54.49 ± 0.72 57.81 ± 14.22 54.49 ± 0.72 ** 66.31 ± 11.28 **

p values 0.369 0.009

7
CD34- 45.25 ± 0.52 39.95 ± 13.36 45.25 ± 0.52 ** 32.69 ± 11.30 **

p values 0.136 0.007
Legend: X, obtained results mean; SD, standard deviation; PCa, prostate adenocarcinoma; BPH, benign prostatic
hyperplasia; CD61 T, total CD61 glycoproteins expression; CD34 T, total CD34 glycoproteins expression; ** p ≤ 0.01
and * p < 0.05 represent statistically significant differences between controls and experimental samples made by
independent t test.

CD 61+ cell population, characteristically for platelets and T cell aggregation to tu-
moral cells and endothelium, presented significantly increased levels of PCa (37.81 ± 16.21)
and BPH (36.50 ± 13.55) samples reported in controls (16.26 ± 2.52, p < 0.01). Mesenchymal
cell proliferation represented by the CD34+ cell population revealed a significant increase
in BPH cases reported to controls (66.31 ± 11.28 vs. 54.49 ± 0.72, p < 0.01). In addition,
benign prostatic hyperplasia showed a significantly lower pattern for the CD34- cell pop-
ulation reported to control cases (32.69 ± 11.30 vs. 45.25 ± 0.52, p < 0.01, Table 2), which
characterized the tumoral cells’ adhesion to endothelial cells from larger veins and arteries.

A significant increase in the CD42b+ cell population with a role in cell adhesion and
metastasis was observed in PCa cases (38.39 ± 11.23) reported to controls (26.24 ± 0.62,
p < 0.01). Instead, the CD42b- cell population presented significantly lower values in
PCa and BPH tissue samples compared to non-malignant adjacent cell samples (PCa
59.26 ± 12.02; BPH 59.97 ± 17.15 vs. C 73.14 ± 0.08; p < 0.01; p < 0.05, Table 3, Figure 3).

Cell viability had increased values without significant differences on PCa and control
tissue samples (81.30 ± 16.42; 86.95 ± 5.75, p > 0.05, Table 4, Figure 4), but the obtained
results for BPH cases showed a significantly lower value of this on BPH tissue samples
reported to controls (BPH 64.26 ± 22.68 vs. 86.95 ± 5.75, p < 0.05). Necrosis presented a
statistical increase of values in BPH cases compared with control cases (BPH 26.76 ± 6.32 vs.
C 13.04 ± 5.76), and incipient cell apoptosis had a statistical increase in PCa tissue samples
(7.08 ± 10.46) reported to non-malignant adjacent tissue samples (0.10 ± 0.01, p < 0.05,
Table 4, Figure 4).
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Table 3. CD42b glycoprotein expression at prostate adenocarcinoma, benign prostatic hyperplasia,
and non-malignant adjacent tissue samples.

Number Parameters Control
X ± SD

PCa
X ± SD

Control
X ± SD

BPH
X ± SD

1
CD42bT 86.98 ± 5.23 76.07 ± 12.95 86.98 ± 5.23 77.75 ± 17.37
p values 0.113 0.209

2
CD42b+ 26.24 ± 0.62 ** 38.39 ± 11.23 ** 26.24 ± 0.62 38.06 ± 17.43
p values 0.001 0.061

3
CD42b- 73.14 ± 0.08 ** 59.26 ± 12.02 ** 73.14 ± 0.08 * 59.97 ± 17.15 *
p values 0.000 0.038

Legend: X, obtained results mean; SD, standard deviation; PCa, prostate adenocarcinoma; BPH, benign prostatic
hyperplasia; CD42b T, total CD42b glycoprotein expression; ** p ≤ 0.01 and * p < 0.05 represent statistically
significant differences between controls and experimental samples made by independent t test.

Table 4. Cell apoptosis at prostate adenocarcinoma and benign prostatic hyperplasia cases reported
to control cases.

Number Parameters Control
X ± SD

PCa
X ± SD

Control
X ± SD

BPH
X ± SD

1
Viability 86.95 ± 5.75 81.30 ± 16.42 86.95 ± 5.75 * 64.26 ± 22.68 *
p values 0.396 0.037

2
Necrosis 13.04 ± 5.76 8.56 ± 13.40 13.04 ± 5.76 * 26.76 ± 6.32 *
p values 0.470 0.030

3
Incipient apoptosis 0.10 ± 0.01 * 7.08 ± 10.46 * 0.10 ± 0.01 6.67 ± 10.14

p values 0.025 0.105

4
Late apoptosis 0.00 ± 0.00 2.96 ± 6.55 0.00 ± 0.00 2.28 ± 5.58

p values 0.115 0.286
Legend: X, obtained results mean; SD, standard deviation; PCa, prostate adenocarcinoma; BPH, benign prostatic
hyperplasia; IA, incipient apoptosis; LA, late apoptosis; * p < 0.05 represents a statistically significant difference
between controls and experimental samples made by independent t test.

3.2. Surface Glycoproteins of T Cells, Intratumoral Expression of CD34, and Ki-67 Cell
Proliferation by ICH Analysis in PCa and BPH Tissue Reported to Non-Malignant Adjacent
Tissue Samples

This study presented prostate tissue samples with T cell infiltrates from areas of PCa
and BPH versus non-malignant adjacent tissue regions. PCa samples presented similar
patterns for CD3+, CD4+, and CD8 lymphocytes that formed clusters adjacent to adeno-
carcinoma areas, which appeared separated from the lymphocytic infiltration. Healthy
prostate tissue samples contain CD3+, CD4+, and CD8+ lymphocytes dispersed in the
interstitial stroma without cluster formation. BPH tissue samples presented CD3+, CD4+,
and CD8 lymphocytes with their distribution, such as healthy tissue, but they sometimes
may form significantly smaller clusters than those of the adenocarcinoma tissue. The total
CD3 lymphocytes presented slightly higher patterns without significant differences in
PCa and BPH reported in non-malignant tissue samples (59.00 ± 22.43, 57.70 ± 25.48 vs.
44.00 ± 22.62, p > 0.05). The cytotoxic CD8 lymphocytes had slightly lower PCa and BHP
tissue sample values without significant differences in controls (PCa 31.25 ± 17.55 and BPH
26.00 ± 14.49 vs. C 45.00 ± 28.28, p > 0.05, Table 5, Figure 5).
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Table 5. Evaluation of T lymphocyte biomarkers and intratumoral expression of CD34 in prostate
adenocarcinoma, benign prostatic hyperplasia, and non-malignant adjacent tissue samples.

Number Parameters Control
X ± SD

PCa
X ± SD

Control
X ± SD

BPH
X ± SD

1
CD3+ 44.00 ± 22.62 59.00 ± 22.43 44.00 ± 22.62 57.70 ± 25.48

p values 0.386 0.499

2
CD4+ 66.00 ± 48.08 54.68 ± 21.09 66.00 ± 48.08 66.00 ± 26.11

p values 0.533 0.919

3
CD8+ 45.00 ± 28.28 31.25 ± 17.55 45.00 ± 28.28 26.00 ± 14.49

p values 0.334 0.166

4
CD34+ 1.50 ± 0.70 ** 26.12 ± 6.84 ** 1.50 ± 0.70 2.60 ± 1.07

p values 0.000 0.204
Legend: X, obtained results mean; SD, standard deviation; PCa, prostate adenocarcinoma; BPH, benign pro-
static hyperplasia; CD3, total lymphocytes; CD4, T helper lymphocytes; CD8, cytotoxic T lymphocytes; CD34,
intratumoral CD34 glycoproteins; ** p ≤ 0.01 represents statistically significant differences between controls and
experimental samples made by independent t test.
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Figure 5. T cell infiltrates from areas of PCa and BPH tissue samples. Legend: (A) Microscopic appear-
ance of benign prostatic hyperplasia, usual staining (×20); (B) prostate adenocarcinoma, usual staining,
Gleason score 3 + 4 (×20); (C) CD4-positive peritumoral lymphocytes, more than 50 cells/HPF, prostate
adenocarcinoma, Gleason score 3 + 4 (×20); (D) CD4-intensely positive in the peritumoral stroma, more
than 50 cells/HPF, prostate adenocarcinoma, Gleason score 4 + 5 (×20); (E) CD3-positive (adenocarcinoma,
Gleason score 4 + 5), less than 50 cells /HPF (×20); (F) CD8-positive (adenocarcinoma, Gleason score
4 + 4), more than 50 cells /HPF (×20).
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The intratumoral expression of CD34 showed a significantly increased pattern of PCa
tissue samples reported to controls (26.12 ± 6.84 vs. 1.50 ± 0.70, p < 0.01, Table 5, Figure 6).
In addition, Ki-67 was expressed in only PCa tissue samples, the score of cell proliferation
being below 25% (score 1+) for all studied PCa cases (Figure 6).
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Figure 6. Intratumoral CD34 and Ki-67 expressions of PCa and BPH tissue samples. Legend: (A) CD34
positive vascular endothelial, intratumoral, 10–20 vessels/HPF, prostate adenocarcinoma, Gleason
score 4 + 3 (×20); (B) CD34 positive intratumoral vasculature, 20–30 vessels/HPF adenocarcinoma,
Gleason score 4 + 4 (×20); (C) Ki67 nuclear positive, score 1+, less than 25% of tumor cell proliferation
9 (×40); (D) Ki67 nuclear positive, score 1+, less than 25% of tumor cell proliferation (×40).

3.3. Correlations between DNA Content, Cell Apoptosis, Adhesion Glycoproteins Expressions,
Tissue Inflammation Grade, and Ki-67 Cell Proliferation in Tissue Samples

Relationships between the DNA content and adhesion glycoproteins are presented in
Table 6. Pearson correlations were observed between the G0/G1 phase of cell cycle and
CD34+ CD61+ glycoproteins (r = −0.514; p < 0.01), and CD42b+ cell population (r = −0.475;
p < 0.05), between G2/M phase of cell cycle and CD34+ CD61+ glycoproteins (r = 0.513;
p < 0.01), and CD42b+ cell population (r = 0.446; p < 0.05), between S phase and CD61+ cell
population (r = −0.430; p < 0.05, Table 6).

Table 6. DNA content and adhesion glycoproteins expressions correlations.

Cell Cycle CD34 + CD61+ CD61+ CD61- CD42b+ CD42b-

G0/G1 phase −0.514 ** −0.150 0.121 −0.475 * 0.490 **
p values 0.005 0.447 0.539 0.011 0.008
S phase −0.236 −0.430 * 0.431 * −0.121 0.151
p values 0.226 0.023 0.022 0.539 0.444

G2/M phase 0.513 ** 0.226 −0.200 0.446 * −0.470 *
p values 0.005 0.247 0.307 0.017 0.012

Legend: * p < 0.05 and ** p < 0.01 represent statistically significant differences between cases made by Pearson
correlations.

Double-positive population of glycoproteins (CD34+ CD61+) were positively corre-
lated with total CD61 and CD34 glycoprotein levels (r = 0.512; r = 0.503, p < 0.01), CD61+,
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CD34+, and CD42b+ cells populations (r = 0.589; r = 0.500; r = 0.623; p < 0.01), and were neg-
atively correlated with CD61-, CD34-, and CD42b- cell populations (r = −0.550; r = −0.516;
r = −0.641; p < 0.01, Table 7).

Table 7. Correlations between glycoprotein levels implied in cell proliferation.

Glycoproteins CD61T CD61+ CD61- CD34T CD34+ CD34- CD42b+ CD42b-

CD34+
CD61+ 0.512 * 0.589 * −0.550 * 0.503 * 0.500 * −0.516 * 0.623 * −0.641 *

p values 0.005 0.001 0.002 0.006 0.007 0.005 0.000 0.000

Legend: * p < 0.01 represents a statistically significant difference between cases made by Pearson correlations.

The grade of tissue inflammation by T lymphocytes was directly correlated with
CD 61, CD42b-positive cell populations (r = 0.544; p < 0.05; r = 0.664, p < 0.01), late
apoptosis (r = 0.528; p < 0.05) and was inversely correlated with CD 61, CD42b-negative
cell populations (r = −0.535; p < 0.05; r = −0.639, p < 0.01), and cell viability (r = −0.632;
p < 0.01, Table 8).

Table 8. Tissue inflammation grade (TIG) correlated with adhesion glycoproteins expressions, cell
viability, and late cell apoptosis.

Parameters CD61+ CD61- CD42b+ CD42b- Viability LA

TIG 0.544 * −0.535 * 0.664 ** −0.639 ** −0.632 * 0.528 *
p values 0.024 0.027 0.004 0.006 0.011 0.043

Legend: ** p < 0.01 and * p < 0.05 represent statistically significant differences between cases made by Pearson
correlations; LA, late apoptosis.

Cell proliferation by Ki-67 expression was positively correlated with cell viability
(r = 0.548; p < 0.05) and intratumoral CD34 expression (r = 0.611; p < 0.01), and was
negatively correlated with necrosis (r = −0.682; p < 0.01, Table 9).

Table 9. Ki-67 cell proliferation correlates with viability, necrosis, and intratumoral CD34 expression.

Parameters Viability Necrosis CD34 IT

Ki-67 expression 0.548 * −0.682 ** 0.611 **
p values 0.034 0.005 0.009

Legend: ** p < 0.01 and * p < 0.05 represent statistically significant differences between cases made by Pearson
correlations; CD34 IT, intratumoral CD34 glycoproteins expression.

4. Discussion

The cell cycle is characterized by the interphase and mitosis phases. Interphase is
represented by three sub-phases, G1, S, and G2. In G1, cells based on internal/external
signals lead to a decision of DNA replication or not [4]. The S phase is defined by the ability
to synthesize genomic DNA. G2 is the second gap between S and Mitosis, with a function
such as DNA damage repair and preparation for entering into Mitosis (M phase). G0/G1,
S, and G2/M phases of the cell cycle are quantitatively identified by the flow cytometry
method based on propidium iodide stain and RNase.

Ploidy and cell cycle analyses were the first flow cytometry applications, being rapid
and efficient measurement methods [33,34]. DNA ploidy is defined as DNA index (DI), and
for normal cells in the G0/G1 phase of the cell cycle, DI is 1.0. Aneuploid/polyploid cell
populations are divided by DI distribution into categories such as hypodiploid (DI < 0.95),
hyperdiploid (DI = 1.15−1.91), tetraploid (DI = 1.92−2.04), hypertetraploid (DI ≥ 2.05), and
multiploid (DNA content histogram has ≥2 peaks corresponding to aneuploid/polyploid
cell population) [35]. Apoptotic cell frequency that is characterized by fractional DNA
content is defined as a subG0/G1 cell population [4].
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In our study, 68% of BPH cases present aneuploidy. In addition, 88% of PCa patients
had aneuploidy, including hypodiploid and hyperdiploid cell heterogeneity and tetrapoli-
ploidy. PCa samples presented modified cell cycle phases, represented by cell cycle arrest
in G0/G1 and a low S phase.

The authors proposed to gain prognostic information by dividing the S proliferative
phase (S-phase) into three prognostic categories: low (<7.0%), intermediate (7.0−11.9%),
and high (≥12%). These categories allow for the grouping of the patients according to
their level of risk. The risk of death or recurrence for diploid and aneuploid cases is 50%
higher for the high S-phase category, and 50% higher for the intermediate category than
for the low category. Despite different techniques (the tissue samples are fresh, frozen, or
paraffin-embedded), a higher S phase of the cell cycle is correlated with worse tumor grade
and larger tumors in breast cancer tissue samples [35]. Lower values of the S-phase for PCa
and BPH cases were observed in our study, included in the first category of prognostics
reported by the references. In addition, we observed a significant negative correlation
between the S-phase and CD 61 cell positive population, which means a better survival
rate for the patients.

Adhesion glycoproteins from this study, represented by the increased values of double-
positive populations of CD34/CD61, and the platelets, T cell aggregation to tumoral cells
and endothelium, represented by the CD61+ cell population, observed at PCa and BPH
cases, support adhesion, migration, and cell proliferation and are in accord with the
following references.

Integrins, the transmembrane glycoprotein receptor superfamily, are represented
in our study by the CD61 and CD42b glycoproteins with a role in cancer progression.
Altered cell adhesion leads to cell proliferation, migration, and metastasis correlated to
the different stages of human tumors and pathological outcomes (metastasis, recurrence,
survival) [36–44].

Other integrins, with roles in tumoral cell adhesion and metastasis, such as the CD42b+
cell population had increased values in PCa cases, conforming to the following references. β
integrins are transmembrane protein receptors that attach cells to the ECM or bind ligands
secreted by other cells. The type I membrane glycoproteins (CD42b) play essential roles in
cell signaling networks, growth, differentiation, mobility, and survival [12,15,45].

Integrins are essential in acquiring and maintaining the neoplastic phenotype by
escaping from cell apoptosis and maintaining cell proliferation. Integrin expression is
modified upon the normal-to-neoplastic transition. Activated platelet integrins αIIbβ3 help
the cancer cells of blood circulating from induced tumor cell arrest by binding to leukocytes
and platelets to survive a long time [46].

α1β1, α2β1, and α5β1 integrin activation stimulates vascular endothelial growth
factor (VEGF) expression, promotes VEGF receptor activation, and increases the adhesion
of endothelial cells to ligands (angiogenic effect) [11,47,48].

Other authors observed that cell platelet interactions are mediated either by p-selectin
or platelet integrin αIIbβ3 in metastasis. αIIbβ3 integrins or p-selectin inhibition by function-
blocking antibodies determine lower platelet-tumor cell interaction and tumor cell adhesion
on activated endothelium [11]. A bridging factor between platelet αIIbβ3 integrins and tu-
moral cells was identified as a fibrinogen that facilitates tumor cell arrest in the vasculature
and metastasis to various tissues [46]. The authors investigated the role of β1 integrins in
tumor growth and metastasis and observed that β integrin overexpression correlated with
the metastatic spread of these cells to the lung and liver [11].

Metastasis is the common cause of cancer-related deaths because it is based on the
complex formation process of the migratory cells, named the epithelial–mesenchymal
transition (EMT). The cell-to-cell and cell-to-matrix adhesion molecule expressions are
essential to metastasis formation. The leukocytes/cancer cells’ attachment to the endothe-
lium is mediated by different integrins [49]. L1-CAM ligands interact with integrins such
as α5ß1, αVß5, αVß1, αVß3, and αIIbß3 with a role in the adhesion process in tumor cell
extravasation [50]. In agreement with the references presented above, we observed that
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CD61+/CD34+ glycoproteins were positive and significantly correlated with the biomarker
of cell metastasis (CD42b+). In BPH cases, mesenchymal cell proliferation is represented
by higher values of the CD34+ cell population. According to the references, the characteri-
zation of the tumoral cells’ adhesion to endothelial cells from larger veins and arteries is
represented by a lower pattern for the CD34- cell population.

Mesenchymal cells (MSC) present in in vitro mesenchymal differentiation potential,
which is well reported by the references. These are associated with properties such as
paracrine wound healing, niche forming abilities, immune privilege, and immunomodula-
tion [51,52]. Is was reported that the freshly extracted stromal cells from various tissues
contain a CD34+ cells population with distinct characteristics from the total MSC popula-
tion [53]. CD34+ cells were associated with MSC biomarkers such as CD271 and Stro-1 and
biomarkers such as CD45 and CD133 [16,53–56]. CD34+ cells have a greater tendency for
endothelial transdifferentiation [57,58]. CD34 was found on embryonic stem cell-derived
MSC, suggesting that it is a marker of early human MSC [59]. In addition, CD34 expression
was observed on the luminal membrane of cellular processes and the abluminal membrane
of cells found at the tips of vascular sprouts [15].

PCa has a lower proliferative capacity, which renders apoptosis induction impor-
tant for targeted therapies, especially for studying the apoptotic signaling mechanisms
responsible for apoptosis evasion [60]. In our study, cell viability was increased for PCa
samples, without significant differences reported to the controls. An easily increased but
significant value of incipient cell apoptosis was observed in PCa cases. Instead, BPH cases
presented a lower pattern of cell viability and a higher necrosis value reported to controls.
Our observations are essential to understanding the molecular mechanisms implied in cell
apoptosis in PCa and BPH cases because they seem to be different. Cancer progression
results from an imbalance in cell proliferation and apoptosis.

Anoikis represents a form of cell apoptosis based on the detachment of cells from
the extracellular matrix (ECM), which is evaded by tumor cells to spread [60,61]. This is a
developed strategy by the tumor cells in the metastatic spread and therapeutic resistance.
Tumor cells undergoing EMT can evade the anoikis based on cellular reprogramming.
Pro-EMT molecules such as transcriptional repressors SNAIL and SLUG and cell adhesion
molecules confer the resistance of tumoral cells to anoikis [62].

Prostate cancer cells can modify their integrin expressions to lead to an anoikis-
resistant phenotype. Integrins in the prostate and other cancers confer a migratory phe-
notype. Anoikis and EMT processes contribute to chemoresistance, immune evasion, and
metastasis [61]. Biochemical recurrence of prostate cancer (bcr) and metastasis prediction
after PCa curative treatment were shown by the references for other molecular tests [63].

Another objective of our study was to observe lymphocyte infiltrations, their activation
status, and their distribution in PCa and BPH tissues compared to non-malignant prostate
tissue samples. T cell infiltrations provide information about the immune system–tumoral
cell interactions and the immune evasion mechanisms, which are necessary for developing
anti-tumoral immunotherapies.

T cell infiltration in PCa samples forms the clusters adjacent to adenocarcinoma areas,
separated from lymphocytic infiltration. The T lymphocytes are dispersed in the interstitial
stroma in controls without cluster formation. In addition, T lymphocyte distribution in
BPH cases is similar to non-malignant tissue. Analysis of lymphocyte distribution in the
tumor environment was described for different tumors [22,64]. An intense infiltration of
CD3+ cells is related to slow progression and better prognosis. Our study presented directly
correlated T cell infiltrations and CD61+ and CD42b+ adhesion glycoproteins. We observed
that an intense T cell infiltration contributes to the generally small tumor size of PCa. A
similar association was observed in small-cell lung cancer, where a high number of T cells
was associated with a significantly smaller tumor size [65]. The immune cells’ recruitment
and interactions with the prostate microenvironment promote PCa progression. Studies
about the profiles of the prostate tumor-infiltrating lymphocytes are limited. It has been re-
ported that the immune response might have anti- or pro-tumorigenic potential, depending
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on cell phenotypes and the tumor microenvironment. Distribution and inflammatory cell
interactions in the PCa and BPH represent promising indicators of the potential response
of the target cell populations in immunotherapies and biomarkers to measure therapeutic
efficacy [66,67]. The causal relationship between tumor proliferation and inflammation
is widely studied, and in this regard, chronic inflammation has a vital role in developing
malignant epithelial tumors [68]. A causal link between inflammation in normal prostate
tissue and samples with a diagnosis of malignancy was also observed [66]. In this regard,
tumor cells, including prostate malignant neoplastic cells, are modified, atypical cells that
can induce a strong immune response in the body, which during the inflammatory process,
are consumed, and the lymphocyte-mediated antitumor immune response is gradually
reduced [69–71].

Intense tumor neovascularization is closely associated with tumor growth and metas-
tasis. Angiogenesis is thereby a crucial factor affecting the prognosis of cancer patients.
The analysis of microvessel density (MVD) by CD34, made in our study, showed a signifi-
cant increase in the number of microvessels in PCa compared to BPH and non-malignant
tissue samples. Intratumoral CD34 represents a biomarker for the IHC visualization of
microvessels in benign and malignant prostate tissue. The authors observed that in PCa,
a sensitive biomarker for newly derived blood vessels was CD34, and IHC analysis and
MVD quantification within the tumor represents the basis for understanding the effects of
antiangiogenic treatment [72]. CD34, a myeloid progenitor cell antigen also expressed by
endothelial cells of arteries and venules, is considered the most sensitive and stable vascular
marker, with a high positive rate and expression level [73]. In addition, the expression of
CD34 in new vessels—tiny ones, compared to large ones, considered to be old vessels—in
the tumor microscopic field suggests and strengthens the idea that this vascular marker
plays a crucial role in the process of tumor neoangiogenesis [74]. Angiogenesis represents
a prognostic factor by using CD34 as an endothelial biomarker in various solid tumors,
including prostate adenocarcinoma [75–77]. A high immunoexpression of CD34 in the
vessels of tumor tissue indicates intensive neoplastic neovascularization and increased
MVD. According to some authors, increased MVD was associated with increased PSA and
Gleason scores and later clinical stage, which may be due to rapid tumor growth induced
by a high nutrient supply rate of newly formed blood vessels [29]. The authors observed
a strong correlation between GS and therapeutic response to cabazitaxel in metastatic
castration-resistant prostate cancer patients [78].

As men are diagnosed with prostate cancer at an older age than other malignancies,
more attention should be paid to markers of anti-angiogenic activity. Combining anti-
angiogenic drugs with other drugs of different classes may open a door for more promising
clinical results [79].

Another studied biomarker, Ki-67 cell proliferation, was expressed only in prostate ade-
nocarcinoma tissue samples, agreeing with authors who also observed that this biomarker
is expressed in PCa reported in BPH tissue samples [29,80,81]. In addition, a significant
positive correlation between Ki-67 staining and intratumoral CD34 expression was ob-
served. It was reported that Ki 67 as a proliferating biomarker has higher accuracy in the
early diagnosis of PCa [82], although qualifying it as an independent prognostic marker in
prostate adenocarcinoma is still controversial. According to some authors, the Ki-67 index
is more expressed in adenocarcinoma tissues than in benign prostate hyperplasia and is still
higher in metastatic than non-metastatic cases. Thus, an increased Ki-67 value may indicate
a poor prognosis of the disease [32]. Our study observed a direct correlation between Ki
67 cell proliferation and intratumoral CD34 expression, but no correlation between Ki67
expression and Gleason scores, as observed in the study [81], which concluded that this
nuclear biomarker could be a prognostic factor for prostate cancer.

In this study, the principal limitation to developing the utility of cell cycle, apoptosis,
and adhesion glycoproteins, T cell infiltrations, Ki-67, and CD 34 expressions by flow
cytometry and IHC methods in adenocarcinoma and hyperplasia prostate cases was a small
number of samples recovered from the patients. Another limitation of our study may be
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represented by the heterogeneity of the PCa tissue samples. With the macro-dissection
technique, it is difficult to purify the tumor and non-malignant parts because some cancer
parts may still have BPH tissue. For the ideal cases, micro-dissection with laser captures
may be needed, but in Romania, only macro-dissection is used to separate the tumoral
from the non-malignant parts of tissue samples made by experienced pathologists.

Future directions in this research area will be to study the importance of these biomark-
ers in many malignant affections because there is a promise to be critical regarding diagnos-
tic biomarkers for diseases and uses to improve patient prognostic survival. In addition,
these biomarkers may be studied in the prostate cell line co-culture system, which may
provide more information about the biological mechanisms implied in the characterization
of the tumoral microenvironment.

5. Conclusions

Biological mechanisms implied in the prostate tumor microenvironment character-
ization represented by the cell cycle, apoptosis, adhesion glycoproteins, T lymphocytes
infiltrations, Ki-67, and intratumoral CD 34 biomarkers provide efficient means of measure-
ment by flow cytometry and IHC techniques for PCa and BPH tissue samples and should
be explored in the future not only for diagnostics but also for therapeutic purposes.
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