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Abstract: Purpose: Success of clinical trials increasingly relies on effective selection of the target patient
populations. We hypothesize that computational analysis of pre-accrual imaging data can be used
for patient enrichment to better identify patients who can potentially benefit from investigational
agents. Methods: This was tested retrospectively in soft-tissue sarcoma (STS) patients accrued into
a randomized clinical trial (SARC021) that evaluated the efficacy of evofosfamide (Evo), a hypoxia
activated prodrug, in combination with doxorubicin (Dox). Notably, SARC021 failed to meet its
overall survival (OS) objective. We tested whether a radiomic biomarker-driven inclusion/exclusion
criterion could have been used to improve the difference between the two arms (Evo + Dox vs. Dox)
of the study. 164 radiomics features were extracted from 296 SARC021 patients with lung metastases,
divided into training and test sets. Results: A single radiomics feature, Short Run Emphasis (SRE),
was representative of a group of correlated features that were the most informative. The SRE feature
value was combined into a model along with histological classification and smoking history. This
model as able to identify an enriched subset (52%) of patients who had a significantly longer OS in
Evo + Dox vs. Dox groups [p = 0.036, Hazard Ratio (HR) = 0.64 (0.42–0.97)]. Applying the same model
and threshold value in an independent test set confirmed the significant survival difference [p = 0.016,
HR = 0.42 (0.20–0.85)]. Notably, this model was best at identifying exclusion criteria for patients
most likely to benefit from doxorubicin alone. Conclusions: The study presents a first of its kind
clinical-radiomic approach for patient enrichment in clinical trials. We show that, had an appropriate
model been used for selective patient inclusion, SARC021 trial could have met its primary survival
objective for patients with metastatic STS.
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1. Introduction

In the last decade, there has been an explosion in the use of advanced image analysis
with machine learning, known as “Radiomics” [1,2]. Radiomic analyses of cancer can be
used to stage, prognose patient outcome, predict response to specific therapies and, most
recently, to inform therapeutic choices [3] with increasing connectivity between image
features and tumor biology [4]. However, this promising method has to date not been able
to compare two treatments and choose an optimal therapeutic approach or identify patients
likely to benefit from one drug over another. We aimed to develop an appropriate model,
allowing for radiomic approaches to be used in clinical trials for patient enrichment. We
tested this hypothesis in a retrospective analysis of data from the SARC021 [5] phase III
clinical trial in metastatic soft tissue sarcoma that compared overall survival (OS) in cohorts
treated with doxorubicin (Dox) to those treated with Dox + Evofosfamide (Evo), a hypoxia
activated pro-drug of a brominated version of isophosphoramide mustard (NCT01440088).
Although Dox + Evo had shown promise for sarcoma in phase II [6], the phase III trial
failed to meet its threshold of increased OS in the Dox + Evo cohort [5].

Soft tissue sarcomas are a heterogeneous group of malignancies originating in mes-
enchymal tissue that commonly metastasize to the lungs, with an associated poor progno-
sis [7]. An historical median OS of 12 months for metastatic soft tissue sarcoma patients
has steadily improved to 20.4 months on trials, which may be attributed to better patient
selection along with better supportive care and additional options in second line and
therapies beyond [8–10]. In the SARC021 trial, the shifting survival with Dox monotherapy
led to the study being under powered [11]. Biomarkers that can exclude patients who are likely
to benefit from standard therapy would thus be useful to focus trials on those most likely to benefit
from an experimental therapeutic approach. In this first of its kind study, we present a novel
analytic framework that can identify patients most and least likely to benefit from trial
enrollment. Radiomic feature extraction is combined with customized statistical analysis
to create a risk score. This score as iteratively analyzed to identify a threshold value to
identify subjects predicted to benefit from Dox monotherapy. These represented 48% of
the patients on the trial and, if they were excluded from enrolling, there was a significant
(p < 0.05) difference in OS between three Dox and Dox + Evo arms of the study. It is conceiv-
able that such biomarker could be used to exclude subjects in other STS interventional trials.

2. Materials and Methods
2.1. Patient Populations

This study was approved by the University of South Florida Institutional Review
Board. The analysis includes patients who participated in the TH CR-406/SARC021 mul-
ticenter clinical trial of Doxorubicin plus Evofosfamide (Dox + Evo) versus Doxorubicin
alone (Dox) in locally advanced, unresectable or metastatic soft-tissue sarcoma. Full trial
protocol and results were published by Tap et al. [5]. A total of 640 patients were enrolled.
The primary endpoint of the trial was OS. Survival and clinical data were available for
607 patients, and CT images obtained prior to treatment were available for analysis in
581 patients.

2.2. Patient Data and CT Images

Patient covariates and CT image were obtained from the Sarcoma Alliance for Re-
search through Collaboration (SARC). The CT images were uploaded into HealthMyne
Quantitative Imaging Decision Support (QIDS) software (QIDS, Madison, WI, USA), where
a radiologist with 10 years of experience (S.F.) identified and segmented all visible le-
sions. 346 patients were found to have at least one lesion in the lung, the most common
metastatic site in the considered cohort (followed by liver lesions, identified in 106 patients),
as anticipated [7]. Only lung patients were included in the study to enable comparison
of image features between individuals, and hence the use of radiomics. Of these patients,
296 had contrast enhanced CT scans of the lung which could be analyzed, and these were
used for quantification. This total cohort of 296 patients used in this study was randomly
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divided 70:30 into training and test sets using the “sample” function in R version 4.0.2.
The test set was sequestered until the final model was developed in the training set for
its most stringent validation and increased reproducibility compared to cross-validation
approaches [12]. Robustness of the feature selection to the training/test split was confirmed
as described in Supplementary Materials.

2.3. Radiomic Feature Extraction

Anonymized imaging data and segmentation structures in DICOM format were
retrieved from Healthmyne servers. Details of image pre-processing are described in
Supplementary Materials. For each patient, a total of 163 features were calculated in 3D
using standardized algorithms from the Image Biomarker Standardization Initiative (IBSI)
v5 [13]. The radiomic features included statistical, histogram, shape & size, Grey Level
Cooccurrence Matrix (GLCM), Grey Level Run Length Matrix (GLRLM), Grey Level Size
Zone Matrix (GLSZM) and Neighboring Grey Tone Difference Matrix (NGTDM) features,
as well as 16 peritumoral features as described before [14]. Laws and Wavelet features
were not extracted due to their poor reproducibility reported in previous studies [15]. As
standard in radiomic studies [16], to ensure the radiomic signatures provide additional
information compared with tumor volume, the features strongly correlated to volume
(Pearson |r| > 0.8) were excluded from further analysis, while volume itself was included.
Spatial stability of the features was assessed, as described in the Supplementary Materials,
and unstable features excluded.

2.4. Feature Selection

The goal of this analysis was to identify the radiomic features and patient covariates
differentially associated with OS in the two treatment groups, which was the primary
endpoint in the original trial [5]. A new statistical framework was therefore developed.

First, univariable Cox proportional hazards regression analysis was used to assess
the degree and direction of statistical association of each feature and covariate with post-
treatment OS, separately in Dox and Dox + Evo arms. False discovery rate Benjamini-
Hochberg [17] correction was applied to the p values of radiomic features to account for
multiple testing. For each arm, features and covariates were considered promising in either
of the two scenarios: (i) They showed significant association (p < 0.05) with survival in one
treatment arm AND no association (p > 0.30) in the other arm, or (ii) they showed potential
association (p < 0.30) with survival in both groups in opposite directions (HR > 1 in one
group and <1 in the other).

Correlations between the remaining features were calculated (Pearson’s correlation
coefficient for continuous and Chi Square independence test statistics for categorical vari-
ables). For significantly correlated (p < 0.05) feature groups, features with lowest univariable
Cox regression p value in the corresponding treatment group was retained as a representa-
tive of the group, and others excluded to avoid redundant information. If these p-values
were exactly equal for several features due to the multiplicity correction, the p-values prior
to multiplicity correction were compared. Of the remaining features and covariates, the
one with lowest p-value ratio in the two treatment groups (low divided by high) was used
in model training.

2.5. Final Model Construction

The two final sets of features and covariates predicted to be most informative of
the differential response to Dox or Dox + Evo were used to build the corresponding
separate multivariable Cox proportional hazards regression models. Risk scores that are
log-transformed relative risks of death were calculated using the “predict.coxph” function
in R for all patients in the model training cohort and used to determine threshold for patient
virtual inclusion and exclusion from the trial. The process of determining the optimum risk
score threshold is described in the results section. Risk score values were predicted for all
patients in the test cohort from the final multivariable Cox models constructed as above.
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The threshold values found to result in best separation of the treatment arms as found in
the training set were applied to enrich the test cohort, and survival was compared between
the treatment arms in the included subset of the test cohort using log-rank test.

For the Dox model, where patients with high risk score values were expected to
perform poorly under Dox, and thus be more likely to favor Dox + Evo treatment, a search
for the optimal threshold was performed iteratively including sub-cohorts of patients with
risk score above 1st, 2nd, 3rd etc. to 97th percentile of the total training cohort, evaluating
survival difference between the treatment arms in terms of Cox regression p-value and
hazard ratio each time. Thus, the entire range of possible thresholds was interrogated, to
check if such selection can lead to significant treatment arm separation and identify an
optimal threshold value.

3. Results
3.1. Patients

Clinical covariates included in the analysis are listed in Table 1, with their descrip-
tion included in Supplementary Table S1. Presence of lung metastasis was associated
with significantly poorer overall survival in the entire cohort of 607 patients (p = 0.007,
HR = 1.34 (1.09–1.65)). This was not the case for patients with liver metastases, which was
the second most common metastatic site (p = 0.44). Among patients with lung metastases,
no significant survival difference was observed between the two treatment groups (p = 0.8),
similarly to the entire cohort (p = 0.45). Notably, the number of lung metastases in these
patients was also not significantly associated with survival (p = 0.15).

Table 1. Breakdown of patient characteristics. Numbers are presented for each treatment group in
training and test cohort. Data are median (IQR) or n (%). P value by Wilcoxon test (for age) or Chi
squared test (all other variables).

Training Cohort Test Cohort

Dox + Evo
(n = 105)

Dox
(n = 101) p-Value Dox + Evo

(n = 47)
Dox

(n = 43) p-Value

Age (years) 60 (47–73) 55 (33–78) 0.06 60 (44–75) 57 (38–76) 0.82

Sex 1.00 1.00
Female 59 (56%) 57 (56%) 26 (60%) 24 (51%)
Male 46 (44%) 44 (44%) 21 (49%) 19 (40%)

Smoking history 0.91 0.46
Never smoker 59 (56%) 55 (54%) 26 (60%) 28 (60%)
Ever smoker 46 (44%) 46 (46%) 21 (49%) 15 (32%)

Primary Tumor Site 0.89 0.25
Extremity 35 (33%) 40 (40%) 17 (40%) 20 (43%)
Head/Neck 7 (7%) 5 (5%) 0 (0%) 3 (6%)
Retroperitoneum 15 (14%) 12 (12%) 8 (19%) 4 (9%)
Visceral 19 (18%) 17 (17%) 9 (21%) 7 (15%)
Other 29 (28%) 27 (27%) 13 (30%) 9 (19%)

Metastatic sites number 1.00 0.46
≥2 73 (70%) 71 (70%) 36 (84%) 29 (62%)
<2 32 (30%) 30 (30%) 11 (26%) 14 (30%)

Lung lesions number 1.00 0.62
>1 82 (78%) 78 (77%) 35 (81%) 29 (62%)
1 23 (22%) 23 (23%) 12 (28%) 14 (30%)
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Table 1. Cont.

Training Cohort Test Cohort

Dox + Evo
(n = 105)

Dox
(n = 101) p-Value Dox + Evo

(n = 47)
Dox

(n = 43) p-Value

Stage 0.21 0.46
0 4 (4%) 0 (0%) 1 (2%) 0 (0%)
Stage I 3 (3%) 6 (6%) 2 (5%) 2 (4%)
Stage II 24 (23%) 20 (20%) 10 (23%) 16 (34%)
Stage III 44 (42%) 40 (40%) 16 (37%) 12 (26%)
Stage IV 30 (29%) 35 (35%) 18 (42%) 13 (28%)

Histology 0.78 0.44
Leiomyosarcoma 44 (42%) 39 (39%) 25 (58%) 17 (36%)
Epitheloid 1 (1%) 3 (3%) 0 (0%) 0 (0%)
Liposarcoma 7 (7%) 6 (6%) 0 (0%) 1 (2%)
Malignant peripheral nerve sheath
tumor 4 (4%) 4 (4%) 1 (2%) 4 (9%)

Myxofibrosarcoma 3 (3%) 4 (4%) 2 (5%) 3 (6%)
Pleomorphic rhabdomyosarcoma 0 (0%) 2 (2%) 0 (0%) 1 (2%)
Pleomorphic sarcoma/Malignant
fibrous histicytoma 17 (16%) 13 (13%) 9 (21%) 7 (15%)

Other 29 (28%) 30 (30%) 0 (0%) 1 (2%)

Histology Grade 0.83 0.08
Intermediate 29 (28%) 28 (28%) 21 (49%) 13 (28%)
Intermediate/High 1 (1%) 2 (2%) 0 (0%) 4 (9%)
High 75 (71%) 71 (70%) 26 (60%) 25 (53%)
Unknown 0 (0%) 0 (0%) 0 (0%) 1 (2%)

ECOG score 0.51 0.90
0 58 (55%) 59 (58%) 29 (67%) 25 (53%)
1 47 (45%) 41 (41%) 18 (42%) 18 (38%)
2 0 (0%) 1 (1%) 0 (0%) 0 (0%)

Prior radiotherapy 0.55 0.06
No 56 (53%) 59 (58%) 32 (74%) 20 (43%)
Yes 49 (47%) 42 (42%) 15 (35%) 23 (49%)

Prior systemic therapy 0.41 0.76
No 98 (93%) 90 (89%) 43 (100%) 41 (87%)
Yes 7 (7%) 11 (11%) 4 (9%) 2 (4%)

No significant difference in OS was observed between the full training and test cohorts
(p = 0.38, median OS: 17.0 (15.0–20.1) vs. 19.6 (14.0–26.9) training vs. test). No significant
differences were also seen between Dox and Dox + Evo treatment groups in the training
(p = 0.77, HR = 1.05 (0.76–1.46) median OS: 16.4 (12.1–20.6) vs. 17.1 (15.2–22.1) months
Dox vs. Dox + Evo) or test cohorts (p = 0.37, HR = 0.80 (0.48–1.32) median OS: 23.3
(15.6–31.8) vs. 14.9 (11.1–27.2) months Dox + Evo vs. Dox).

3.2. Feature Stability

Concordance coefficients describing the spatial stability of the features were calcu-
lated, showing significant heterogeneity between and within feature classes. All results
are visualized in Supplementary Figure S1 and detailed in Supplementary Table S2. As
expected, shape features remained relatively unchanged, while statistical and histogram
features were on average quite strongly affected by choice of ROI. Certain texture features,
especially these related to Inverse Difference and Run Length, showed high robustness.
Based on this exercise, 54 features with particularly poor robustness (CCC < 0.5) were
excluded from further analysis. In addition, 12 features strongly correlated with tumor
volume (Pearson Correlation Coefficient > 0.8) were represented by a single volume feature,
leaving 81 intratumoral and 16 peritumoral features.
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3.3. Feature Selection

Univariable Cox proportional hazards regression was performed separately in the
Dox and Dox + Evo treatment groups to identify radiomic features and clinical covariates
differently associated with OS, are shown in Supplementary Table S3. Among clinical
covariates, the histological classification of the primary tumor, tumor grade, and prior
radiotherapy were significantly associated with longer survival and smoking history was
significantly associated with shorter survival in the Dox cohort. None of these were
significant in the Dox + Evo groups. Following elimination of correlated features, the
clinical model retained histology (p = 0.010) and smoking history (p = 0.04).

No features or covariates were found to be significant in the Dox + Evo and not in the
Dox group. Three uncorrelated radiomic features were found significantly associated with
survival in the Dox but not in the Dox + Evo group: Short Run Emphasis, Normalized Run
Length Nonuniformity and Small Zone Emphasis. Of these features, Short Run Emphasis,
a measure of heterogeneity, showed the lowest ratio of p value in the Dox to the p value
in Dox + Evo groups (p = 0.006 and p = 0.88 respectively), and was chosen for training a
prediction model of post-treatment survival.

3.4. Multivariable Model

The three features identified above (histology, non-smoking history, and radiomic
Short Run Emphasis) were combined in a multivariable Cox model that was trained on the
Dox cohort and produced a highly significant (p < 0.0001) signature of survival. Details
of the model are shown in Supplementary Table S4. No significant correlation between
residuals and time was measured (p = 0.46, 0.45, 0.71, 0.58 for SRE, histology, smoking
history, and global test respectively) validating the proportional hazards assumption for
Cox model use. No corresponding model was developed in the Dox + Evo group, as no
clinical or radiomic features specific to this treatment arm were identified. The Dox model
was used to predict risk scores for the entire training set, providing a predicted measure of
risk of death if the Dox treatment was applied to all patients. Patients with highest risk scores
for Dox monotherapy (i.e., worse outcome) are expected to benefit the most from the alternative
(Dox + Evo) treatment, and hence they should be included in the trial. Conversely, patients with
a low Dox risk score should be excluded and undergo Dox monotherapy instead. Such a patient
enrichment strategy for the trial would thus be expected to result in an improved treatment
benefit of Dox + Evo in the included patients. To assess this, we performed the log-rank
test for difference in survival between Dox vs. Dox + Evo as a function of the risk score
threshold for the remaining patients whose score was above that threshold. The schematic
of the process is shown in Figure 1. As described in Supplementary Materials, the threshold
separating high- from low-risk groups was incrementally increased to identify an optimum
that reached a significant (p < 0.05) difference in OS, while including the largest fraction of
patients. The results of this analysis are shown in Figure 2, demonstrating that increasingly
different OS can be observed for the two treatment groups when patients with low-risk
scores are excluded from virtual accrual (Figure 2A). The smaller p-values encountered with
increasing thresholds were consistent with decreasing HR (Figure 2B), showing increasingly
significant treatment benefit of Dox + Evo vs. Dox with more stringent inclusion criteria.
A threshold of 1.45 allowed inclusion of 52% of the initial training cohort in the trial and
showed a significant advantage of Dox + Evo over Dox [p = 0.036, HR = 0.64 (0.42–0.97)].
This result was visualized in divergent Kaplan Meier curves for the treatment groups in the
included patients and longer survival in the Dox + Evo group (Figure 2C, median survival
16.0 (15.2–21.5) vs. 9.4 (7.6–16.0) months Dox + Evo vs. Dox) and a reverse trend for the
excluded patients (Figure 2D, median survival 20.9 (13.2–26.6) vs. 30.7 (20.0-N.E) Dox +
Evo vs. Dox, p = 0.036), with Dox treated group showing significantly longer survival,
possibly related to the lack of Evo response in the subgroup and its added toxicity [5].
No difference was observed in the whole training cohort (Figure 2E). These figures make
apparent that the most significant difference (p < 10−4) between included and excluded
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groups is their response to Dox monotherapy. Indeed, the difference in survival between
included and excluded groups in the Dox + Evo trial arms was insignificant (p = 0.49).

Figure 1. Patient inclusion model. Patient selection into the trial based on Dox group survival was
executed according to the following method: firstly (1) radiomic and clinical features associated
in training cohort with survival in Dox but not Dox + Evo treatment group were included in a
multivariable Cox regression model (2), trained on Dox treated patients. The risk score assigned
by the model to each training set patient was then used as a biomarker for inclusion into analysis,
iteratively calculating the p-value and hazard ratio for survival comparison between treatment arms
depending on minimum risk score threshold (3). If available, threshold corresponding to significant
(p-value < 0.05) treatment benefit of Dox + Evo at highest percentage of patients included was chosen
(4), and subsequently tested in the test cohort (5), with risk scores assigned by the multivariable Cox
model developed in step (2). A corresponding model can also be developed based on Dox + Evo
group survival, using a maximum risk score threshold.

Figure 2. Multivariable Cox model enables selection of patients who benefit from Evofosfamide + Dox-
orubicin in training cohort. Quantification of the p value of overall survival difference in the training
cohort between the Evofosfamide + Doxorubicin (Dox + Evo) vs. Doxorubicin alone (Dox) treatment
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arms depending on the minimum risk score for patient inclusion, as predicted by the model (A),
shows a risk score threshold of 1.00 at which Doxorubicin + Evofosfamide (Dox + Evo) group shows
significantly longer OS (p < 0.05). Exclusion of patients with high risk scores leads to monotonic
decrease in the hazard ratio (B), and the 1.00 risk score threshold corresponds to inclusion of 52% of
patients in the trial (indicated by red dotted line). The Kaplan-Meier plots by treatment arms show
significantly better OS in the included (C) and significantly worse OS in the (D) excluded patients for
the Dox + Evo treatment compared to Dox only. In all training set patients (E) no difference between
the arms was observed.

A model using only clinical features as input was also trained and its performance
evaluated as above. At the same inclusion rate as the radiomic-clinical model (52%), this
approach does not show a significant survival difference between treatment arms (p = 0.20,
HR = 0.78 (0.52–1.15)), reaching significance at a slightly lower proportion of included
patients (48%, p = 0.02, HR = 0.59 (0.38–0.92) (see Supplementary Figure S2 for performance
details). Although the Short Run Emphasis feature by itself did not significantly discrimi-
nate the groups (Supplementary Figure S3), it added to the significance of clinical features
and thus increased the number of potential patients on trial from 48% to 52%. Selection
based on lesion volume, routinely used in radiological analysis, could not separate patients
likely to respond significantly differently to Dox and Dox + Evo treatments, neither through
application of upper nor lower volume threshold (see Supplementary Figure S4).

3.5. Model Testing

The multivariable Cox model trained in the above section was used to predict risk
scores for all patients in the test cohort. Similar to the training cohort, an increase
in minimum risk score threshold for inclusion led to a monotonic decrease in p value
(Figure 3A) and HR (Figure 3B) for the overall survival comparison between treatment
groups. Applying the threshold of 1.45 determined a priori in the training set as the optimum
threshold for inclusion, showed a significantly better survival in the Dox + Evo vs. the Dox
treated group [p = 0.016, HR= 0.42 (0.20–0.85) Figure 3C]. As in the training cohort, this was
significantly associated with an increased median survival of 20.6 months (12.3–31.5) for
Dox + Evo vs. 9.6 (4.9–14.0) for Dox. As shown in Figure 3D the differences in the two
treatment arms for the remaining excluded patients was insignificant for both OS (p = 0.67)
and median survival 26.0 (15.6–N.E) vs. 27.2 (20.4–N.E), similar to the starting whole test
cohort (Figure 3E). In the test cohort, applying the threshold of 1.44 resulted in inclusion of
50% of the subjects. As in the training set (Figure 2C,D), the selection by risk score threshold
separated patients who did and did not respond to Dox (p < 10−3), whereas it did not
discriminate (p = 0.27) responses of the Dox + Evo group. The plot of p-value vs. inclusion
threshold (Figure 3A) shows a matching profile of improving treatment benefit of the
Dox + Evo treatment (because of decreasing effectiveness of Dox) with increasing risk score,
further supporting the model and the use of radiomics in patient selection. The similar
proportions of ‘included’ patients in the training and test set (52% and 50% respectively)
support the validity of the model and its statistical consistency between the sets [1].

Repeated random draw of 70% of all analyzed patients confirmed the robustness
of associations between the final model variables and survival to training/test split, as
described in Supplementary Materials.
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Figure 3. Results in the test cohort confirm the validity of the model. Risk scores predictions in the
test cohort based on a multivariable Cox model trained on Dox treated training cohort patients can
be used to identify patients who would benefit from Dox + Evo treatment. Graph in (A) shows that
increasing the minimum risk score of patients included in the analysis leads to a stronger difference
in survival between the treatment groups, as described by the p value of the comparison. For the risk
score threshold of 1.45, a highly significant difference is observed (red point and dotted line), which
corresponds to a decreased hazard ratio of the combination vs. standard therapy (B). These differences
are apparent from the Kaplan-Meier curve in the included patients (C) showing significantly longer
survival in the Dox + Evo group, while the excluded patients (D), or all test set patients (E) show no
difference in survival between treatment groups.

3.6. Model Interpretation

The hazard ratios for the constituent variables in the final model, as shown in Sup-
plementary Table S4, can be used to shed light on the underlying relationships. Here
HR > 1 suggests a poor prognostic factor for Dox monotherapy, with its enrichment improv-
ing the potential treatment benefit of Evo addition. Most histologies, except for a relatively
rare Myxofibrosarcoma, show high HR vs. Leiomyosarcoma, an observation in line with
the lack of response to Evosfosfamide in Leiomyosarcoma noted in the original SARC021
trial [5]. Excluding this common histology from the trial does not result in a significant
OS benefit in the cohort of the remaining patients, both in the training (p = 0.28, HR = 0.80
(0.53–1.20)) or full dataset (p = 0.47, HR = 0.88 (0.62–1.24)). A past history of smoking is
a trending poor prognostic factor in the model and including only current or ex-smokers
in the analysis would result in an improved benefit of Dox + Evo in the training cohort
(p = 0.12, HR = 0.68 (0.42–1.10)). Interestingly, conversely the never-smokers of the co-
hort show nearly significantly better survival on standard Dox compared to Dox + Evo
(p = 0.07, HR = 1.52 (0.96–2.40)). Analysis of the full cohort of trial patients confirmed the rel-
evance of smoking history in the treatment response. For patients without lung metastases,
not included in this study, Dox treatment showed no benefit for never-smokers (p = 0.89,
HR = 0.97 (0.59–1.57)) while a trending benefit of Dox + Evo was observed in Ex/Current
smokers (p = 0.11, HR = 1.53 (0.92–2.54)).

Given the complexity of the question, directly interpreting the imaging information
in the model may be challenging. Considering Short Run Emphasis (SRE) individually,
analysis shows that the treatment benefit of Dox + Evo is maximized if only patients with
tumors of low SRE are included (Supplementary Figure S3). The final multivariable model
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developed above also favors low SRE values, as shown in Figure 4A for both training and
test cohorts. The biological meaning of the SRE feature is not obvious, but inferences can
be made. For example, comparing representative tumors with extreme SRE values reveals
visual differences. In line with the model, a patient censored after over 2.5 years showed
a very low SRE in the lung lesion (Figure 4B) at baseline; and this is visually associated
with regularity and homogeneity of the mass. Conversely, another patient deceased on Dox
therapy less than 5 months after enrollment presented a lung lesion with high SRE and
highly heterogeneous appearance (Figure 4C). While these show extremes, the value of using
a quantitative SRE threshold is to identify those patients whose scans may be less obvious and hence,
equivocal. SRE was not shown to correlate with the CT image characteristics, with Pearson
correlation coefficient to in-plane voxel size r = −0.03, and Wilcoxon test p-value = 0.70
between the scans of slice thickness ≤3 and >3, supporting the biological origin of the
signal. The feature also showed particularly high spatial stability (Concordance coeff. 0.90,
80th percentile).

Figure 4. Differences in radiomic features can be apparent visually. The model for selection of
patients likely to benefit from Evofosfamide treatment favored low Short Run Emphasis (SRE) ra-
diomic feature for proposed inclusion into the trial. As shown in the violin plot (A), significantly
lower SRE is observed in the included vs. excluded patient groups both in training and test cohorts.
Qualitatively, a representative tumor with low Short Run Emphasis SRE (B) appears more regular
and homogeneous in a contrast enhanced CT scan than a corresponding tumor with similar volume
(15.0 vs. 16.5 mL respectively), and relatively high SRE (C), which shows higher intratumor hetero-
geneity. In the violin plot a solid line indicates median while dotted lines indicate 25th and 75th
percentile. **** p < 0.0001.

4. Discussion

Herein, we developed a novel radiomic framework, based on the combination of
pre-treatment CT data and clinical information, that can provide a treatment-specific
model for patient survival prediction in a randomized two-arm trial. This framework
was successfully applied to identify STS patients who went on to have a relatively long
OS with Dox monotherapy in the SARC021 trial. The strong predictive model of Dox
monotherapy response shows significant promise for both clinical care and warrants
consideration for prospective validation towards more optimal patient selection in future
sarcoma trials with doxorubicin. The sarcoma community has long sought additional
efficacious agents in metastatic soft tissue sarcomas with large trials dedicated to alkylators
such as ifosfamide [18], and derivatives like palifosfamide [19] that have shown increased
response rates but not overall survival benefit. Additionally, albeit in localized soft tissue
sarcomas, a recent trial comparing histology-directed therapy compared to doxorubicin
concluded that doxorubicin and ifosfamide remained the standard first line agent for all
tested histologies [20].
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In the SARC021 trial, enrichment for patients unlikely to benefit from doxorubicin
would have improved the relative effect of evofosfamide, a compound with renewed
clinical interest [21]. These results were successfully validated in the test set and, if applied,
the phase 3 trial would have met its primary objective of increased OS with p < 0.05. The
failure of the SARC021 trial is at least in part due to a shifting OS for Dox monotherapy that
is likely multifactorial; inclusive of better patient selection based on histologies, improved
supportive care and additionally available subsequent therapies [5,18,19].

Patient selection for drug trials remains a challenge in clinical trial design. In the study,
it is notable that the inclusion/exclusion strategy was generated from readily available
standard-of-care images and clinical data and can therefore be applied prior to trial start
with no protocol changes required. Herein, radiomic methods [16] in combination with
novel statistical analysis was used to provide and validate a patient inclusion framework
based on widely available standard of care imaging data in a retrospective cohort. While
radiomics methods have been used to predict patient survival following different treat-
ments [22–25], and correlate to tumor hypoxia [26,27], this is the first study to derive the
prognostic radiomic features and multivariable models required to discriminate between
two arms of an interventional trial. This unique capability to train and implement a strictly
treatment-specific model for survival prediction constitutes the main novelty and impact of
this work. The proposed general framework can be applied to most solid malignancies to
help highlight the drivers of response to particular therapy, especially important in early
clinical stages of drug development.

The analysis in this study focused on patients with lung metastases, as they are the
most common and deadly metastatic site. This study highlighted the value of combining
tumor histology, smoking history, and CT imaging data for trial population enrichment.
Notably, neither clinical nor imaging information alone were sufficient to show significant
benefit of Evo + Dox in the selected cohort, emphasizing the value of the quantitative
model framework proposed in this study, and specific identification of the population of
interest. Interestingly, current or ex-smokers were more likely to benefit from the addition
of Evofosfamide than those who never smoked. This observation is consistent with the
hypoxia-targeting action of the drug, as smoking is known to exacerbate tumor hypoxia
through reduction of blood oxygen carrying capacity [28], especially in the lungs, which
may lead to improved response to hypoxia targeted treatment in these tumors compared
to standard therapy, contributing to the final proposed model. Notably, while there were
a number of prognostic features associated with positive outcomes in both groups, there
were no features associated with survival in the Dox + Evo cohort independent of the Dox
group. This suggests that the biological factors that govern Evo response may not be related
sufficiently strongly to the information available from clinical and imaging data. Con-
versely, the model specific to Dox response as presented in this work, may be prospectively
validated and applied directly in upcoming STS trials of doxorubicin treatment.

A significant strength of the developed model comes from the heterogeneity of the
training and testing data. Obtained in a multicenter international trial, the CT imaging
was performed on multiple systems with varying acquisition parameters, making the
final signature more robust and generalizable than if it were acquired on a single type of
instrument or in a single institution. However, there are some limitations to the presented
study. First, it is limited to subjects with lung metastases. Although these are common
in STS and are the most lethal, it does limit the applicability of this model [7]. While the
same radiomic features have been shown to be prognostic in different organ sites, such
as Lung and Head&Neck cancers [29], this should be confirmed directly for our model
in similar well annotated patient cohort. A mixed advantage of the current approach is a
special radiologic protocol was not used for acquisition and, indeed, no planning for this
radiomic analysis was considered in the trial design. While this can improve the portability
of the model, some level of standardization or qualification would likely have increased the
potential statistical power. Going forward, a prospective observational trial could compare
the model-calculated risk score to actual OS and to validate the model and understand its
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biological underpinnings [4]. A prospectively validated model can thus be used to support
this radiomic biomarker for patient selection in future trials.

5. Conclusions

In summary, in this work we demonstrate for the first time that machine learning
can be used to predict differential survival to distinct treatment regimens. We show that
radiomic analysis of CT imaging data can be used in combination with clinical information
to develop a first of its kind model capable of identifying soft tissue sarcoma patients
likely to benefit from novel combination of Doxorubicin + Evofosfamide vs. standard
Doxorubicin. Application of the proposed model shows that should patient selection be
performed a significant survival benefit could have been observed in an otherwise negative
Phase 3 trial. Used prospectively, this approach may in the future improve the chance
of determining efficacy of novel therapeutic regimens through better patient selection
and guide therapeutic decisions for all metastatic STS through actionable, personalized,
image-based, survival prediction.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/tomography8010028/s1, Figure S1: Feature robustness to tumor segmentation. For all tumors
in the training cohort, radiomic features were calculated for the original ROI as segmented by the
radiologist, as well as the same ROI shrunk or dilated radially by 1 mm. Concordance Coefficient for
feature values between the ROIs is presented in the heatmap, with each line representing a radiomic
feature, showing differences between feature types, as indicated on the left. GLCM—Grey Level
Co-occurrence Matrix, GLRLM—Grey Level Run Length Matrix, GLSZM—Grey Level Size Zone
Matrix, NGTDM—Neighboring Gray Tone Difference Matrix; Figure S2: Clinical model performance.
Including only the tumor histology and patient smoking history information in a multivariate Cox
model, a risk score threshold was identified for a significantly (p < 0.05) different survival in the two
treatment groups (A). The graph of corresponding treatment Hazard Ratios (HR) for the considered
threshold values (B) shows an increasing benefit of Evo with exclusion of low-risk score patients, and
48% of the original training cohort included at the optimal threshold. Solid red line indicates p = 0.05
significance level and dashed red line indicates the optimal threshold value and corresponding p and
HR; Figure S3: Single feature model performance. Considering the value of Short Run Emphasis
(SRE) radiomic feature as a threshold for inclusion, the graph of p value of survival differences
between treatment arms depending on the threshold value is presented in (A), while the correspond-
ing Hazard Ratio plotted against a percentage of patients included at this threshold is shown in
(B). The graphs on the left describe the approach where patients with SRE below the threshold are
included in the analysis, showing an improved survival of Evo treated patients (HR < 1), while the
graphs on the right, patients with SRE over the threshold are considered, favoring Dox treatment
(HR > 1). Solid red line indicates p = 0.05 significance level and dashed red line indicates the optimal
threshold value and corresponding p and HR; Figure S4: Tumor volume cannot be used for patient
selection. Graphs of p value of survival differences between treatment arms in the treatment cohort
depending on the volume threshold value are presented for patient cohort below the maximum
volume threshold (A) and above minimum volume threshold (B). Neither of these graphs show
points reaching 0.05 value, as indicated by red line. The corresponding Hazard Ratio values for Dox +
Evo treatment depending on the percentage of entire training cohort are shown in (C) and (D) for
patient inclusion below and above threshold value respectively; Table S1: Description of clinical
features; Table S2: Correlation to volume and spatial stability of radiomic features. The Pearson corre-
lation coefficient and concordance coefficient for spatial stability analysis are shown for all radiomic
features; Table S3: Association with survival in radiomic features and clinical covariates by treatment
arm. Univariable Cox regression model was applied separately in the Doxorubicin + Evofosfamide
(Dox + Evo) and Doxorubicin only (Dox) treatment arms to calculate the p value (‘p Evo’ and ‘p
Dox’ respectively) and hazard ratio (‘HR Evo’ and ‘HR Dox’ together with 95% Confidence Intervals)
for the relationship of each feature and covariate with overall survival. P values below 0.05 are
highlighted in red, while these above 0.30 are highlighted in green. Hazard Ratios for categorical
variables were calculated against most common category; Table S4: Multivariable Cox model. The
Hazard Ratios (HR) together with 95% Confidence Intervals (CI) and the associated p values (log-rank
test) in the multivariable Cox regression model, in the Doxorubicin arm of the training cohort. The

https://www.mdpi.com/article/10.3390/tomography8010028/s1
https://www.mdpi.com/article/10.3390/tomography8010028/s1
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model was further applied to identify patients expected to benefit from Doxorubicin monotherapy.
Hazard Ratios for categorical variables were calculated against most common category.
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