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Abstract: The objective of this study was to improve the dissolution and solubility of dexibuprofen
(DEX) using hydroxypropyl beta cyclodextrin (HPβCD) inclusion complexes and also to evaluate the
effect of presence of hydrophilic polymers on solubilization efficiency of HPβCD. Three different
methods (physical trituration, kneading and solvent evaporation) were used to prepare binary
inclusion complexes at various drug-to-cyclodextrin weight ratios. An increase in solubility and drug
release was observed with the kneading (KN) method at a DEX/HPβCD (1:4) weight ratio. The
addition of hydrophilic polymers poloxamer-188 (PXM-188) and poloxamer-407 (PXM-407) at 2.5, 5.0,
10.0 and 20% w/w enhanced the complexation efficiency and solubility of DEX/HPβCD significantly.
Fourier-transform infrared (FTIR) analysis revealed that DEX was successfully incorporated into the
cyclodextrin cavity. Differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) revealed
less crystallinity of the drug and its entrapment in the cyclodextrin molecular cage. The addition
of PXM-188 or PXM-407 reduced the strength of the DEX endothermic peak. With the addition of
hydrophilic polymers, sharp and intense peaks of DEX disappeared. Finally, it was concluded that
PXM-188 at a weight ratio of 10.0% w/w was the best candidate for improving solubility, stability and
release rate of DEX.
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1. Introduction

To design safe and effective dosage form, drug solubility is the most important pa-
rameter among all others. In recent years, the number of hydrophobic drug molecules
used in the treatment of different diseases has been comparatively higher, and their ab-
sorption and biological activity all depend on aqueous solubility. Poor water solubility
and dissolution are key challenges for BCS class II (low solubility and high permeability)
drugs [1–4]. To address the limitations of BCS Class II drugs, several methods have been
developed, including salt formation, lipid-based formulations, particle size reduction, solid
dispersions, complexation with cyclodextrins or its derivatives [5–9] and supercritical
antisolvent co-precipitation [10]. Cyclodextrins (CDs) inclusion complexation is one of
the several methods available for improving the solubility of drug molecules. The most
important function of CDs is their ability to alter the physical and chemical properties of
guest molecule within their inner cavity and formation of effective inclusion complex [7,8].
Inclusion complexation may enhance the bioavailability and efficacy of the drugs, and this
may ultimately reduce the dose frequency [9–11]. A hydroxy-alkyl-cyclodextrin derivative
of cyclodextrin, i.e., hydroxypropyl-β-cyclodextrin (HPβCD), has an amorphous structure,
more aqueous solubility and a lower toxicity profile, and it has been effectively used in
pharmaceutical formulations [12]. HPβCD (Figure 1B) can increase the drug release, lead-
ing to the improvement of the drug absorption across biological barriers. Furthermore,
the amorphous structure of HPβCD is significant in reducing polymorphic transition and
crystallization of poor water-soluble drugs, thus ultimately enhancing the drug solubility
and oral bioavailability.

The use of CD is restricted because guest molecule (drug) assembling, whether entirely
or partially, within the cavity of the CD molecule is perilous for the guest molecule [7]. The
addition of hydrophilic polymers was found to improve the solubilization and complexa-
tion efficiency of cyclodextrins [13].

For example, poloxamers (1C) are added to the formulation to improve the solubility
and dissolution behavior of weakly water-soluble active pharmaceutical ingredients (APIs)
in solid dosage forms [14,15]. PXM-188 improves the dissolution profile significantly by
impeding the drug crystalline state, resulting in an amorphous form of the drug [16].

In previous works in the literature, it was revealed that ibuprofen (IBF) and β-
cyclodextrin (βCD) binary inclusion complexes were prepared at 2:3 weight ratio by various
methods, such as physical mixing, co-precipitation–evaporation (CE), co-precipitation–
centrifugation (CC), spray-drying (SD) and freeze-drying (FD) [17]. At molar ratios
of 1:1 and 2:1 (HPβCD/ibuprofen), electrospun nanofibers were generated to enhance
the solubility of ibuprofen [18], and ibuprofen–captisol®(sulfobutylether sodium salt
of β-CD) binary inclusion complexes were also prepared to enhance the in vitro dis-
solution [19]. Mianserin hydrochloride (MIA) toxicity could be decreased by encapsu-
lating the drug inside the beta-cyclodextrin molecules (βCD) [20]. Shuang et al. pre-
pared hydroxypropyl cyclodextrin/difenoconazole inclusion complex (HPβCD/DZ-IC)
nanofibers, which showed promise as a novel fast-dissolving pesticide formulation [21].
Perillaldehyde/hydroxypropyl-γ-cyclodextrin inclusion complex nanofiber (PA/HPγCD-
IC-NF) was produced by electrospinning. PA ((water immiscible liquid)) can be stored as a
solid inclusion compound with enhanced aqueous solubility and improved physicochemi-
cal properties [22].

Dexibuprofen (DEX), known as S (+)-ibuprofen, is more effective and has different
physicochemical characteristics than racemic ibuprofen. Because of a high concentration
of the active S-enantiomer in racemic mixture, DEX is considered to be pharmacologically
more active and tolerated than ibuprofen and has a better safety profile. It has poor aqueous
solubility, belongs to BCS class II and has a short pharmacological half-life (t1/2) of 1.8 to
3.5 h [23,24]. It shows the erratic bioavailability and variability in absorption. DEX is pri-
marily useful to control mild-to-moderate pain, such as headache, postoperative and dental
pain, dysmenorrhea, soft-tissue rheumatism and inflammatory conditions [25,26]. The
chemical structure of DEX is presented in Figure 1A. Mixed hydrotropic solubilization [27],
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nanocrystals [28] and binary complexes with βCD are also reported [29,30] to enhance
the solubility of DEX. In the current study, we intended to decrease the DEX limitation
by using ternary complexes. To achieve these objectives, we used hydrophilic polymers,
poloxamers (Figure 1C). These hydrophilic polymers could ameliorate the solubilizing and
complexation efficiency of cyclodextrins [31–33].

The purpose of this research work is to investigate the effect of hydrophilic poly-
mers (PXM-188 and PXM-407) on the DEX:HPβCD binary inclusion complex. The binary
(DEX: HPβCD) and the ternary inclusion complexes (DEX:HPβCD:PXM) were studied for
phase solubility. The solubility and dissolution study of the binary and ternary inclusion
complexes was performed to check the effect of ternary substances (PXMs).

All the complexes were characterized by using FTIR, SEM, XRD and DSC.

Figure 1. Chemical structure of (A) DEX, (B) HPβCD and (C) poloxamers. Note: x, y and z are
hydrophilic ethyleneoxide (EO), hydrophobic propyleneoxide (PO) and hydrophilic (EO) units.

2. Material and Methods
2.1. Materials

DEX reference standard was gifted from SAMI Pharmaceutical (Pvt) LTD., Karachi
(Pakistan). Hydroxypropyl β-cyclodextrin (HPβCD) (1380 gm molecular weight, 278 ◦C
melting point and 0.6 molar substitution) was supplied by Roquette (Lestrem, France).
Poloxamer-188 (PXM-188) and poloxamer-407 were bought from Sigma-Aldrich (St. Louis,
MO, USA). Ethanol 99% (35%) was bought from British Drug Houses (BDH). Distilled
water was provided by pharmaceutical lab, faculty of pharmaceutical sciences, GCUF. All
solvents and chemicals were of analytical grade.

2.2. Methods
2.2.1. Phase Solubility Study

The Higuchi and Connors (1965) method was used to conduct the phase solubility
study [34]. Excess quantity of DEX was introduced in 10 mL of molar solutions (5–20 mM)
of HPβCD with and without different concentrations of hydrophilic polymers (0, 2.5, 5.0,
10.0 and 20% w/v). To maintain equilibrium, the solutions were kept in a shaking water
bath (TSSWB15-USA) at 37 ◦C for 72 h. The samples were filtered after centrifugation at
6000 rpm for 30 min. The quantity of DEX in the samples was measured by using a UV spec-
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trophotometer (CECIL 7400-S, Cambridge, England) at 223.5 nm. The following equations
were used to quantify the stability constant (Ks) and complexation efficiency (C.E).

Ks =
slope

So(1 − slope)
(1)

where So is the equilibrium aqueous solubility of DEX, and the slope is attained by plotting
DEX concentration versus HPβCD concentrations with or without polymer.

C.E =
slope

1 − slope
(2)

2.2.2. Preparation of Binary Inclusion Complexes

HPβCD was used for the preparation of the DEX/cyclodextrin binary inclusion com-
plex at 1:1, 1:2, 1:4 and 1:8 weight (w/w) ratios. Three different methods were used to
prepare binary inclusion complexes (physical trituration, solvent evaporation and knead-
ing method).

Physical trituration (PT) was performed by properly mixing the weighed amounts of
DEX and HPβCD in a mortar and pestle for up to one hour to ensure a uniform mixture.
The final powder mixture was then sieved through sieve number 60 and stored in air
tight container.

In the solvent evaporation (SE), HβPCD was dissolved in 25 mL water and DEX was
in ethanol, followed by thorough mixing of these two solutions with a magnetic stirrer at
50 ◦C. Rotary evaporator was used to evaporate the solvents. The dry powder material
was collected and stored in an air-tight container.

In the kneading (KN) method, the drug (DEX) and polymer (HPβCD) were physically
mixed in four different ratios, namely 1:1, 1:2, 1:4 and 1:8 (w/w), and kneaded for 1 h in a
mortar with ethanol–water (1:1 v/v) to obtain a consistency akin to a slurry mass. It was
placed at 45 ◦C in an oven to dry. The resultant mass was crushed and sieved through a
sieve with a mesh size of 0.25 mm and kept in an air-tight container for further use.

2.2.3. Preparation of Ternary Complexes by Kneading Method

Ternary inclusion complexes were prepared by adding the hydrophilic polymer (PXM-
188 or PXM-407) at different concentrations (2.5%, 5.0%, 10.0% and 20%) of dry weight
(w/w) of binary inclusion complexes (having highest solubility). Hydrophilic polymers
(PXM-188 or PXM-407) were added to the prepared binary inclusion complex, followed by
all other necessary parameters of the abovementioned kneaded method.

2.2.4. Solubility Study

To carry out the solubility study, the excess amount of prepared binary and ternary
inclusion complexes was added into distilled water (10 mL). The flasks were vortexed for
three minutes and placed for 72 h at 100 rpm in a shaking water bath (TSSWB15-USA),
which was held at 25 ± 2 ◦C. Then 3 mL of sample was taken and passed through a
membrane filter of 0.45 µm. The filtrate (100 µL) was diluted if necessary and analyzed
by spectrophotometer (CECIL 7400-S, Cambridge, UK). The experiment was repeated
three times.

2.2.5. In Vitro Dissolution Studies

In vitro release studies were performed for DEX and for all prepared binary and
ternary inclusion complexes under sink conditions. For this purpose, the USP dissolution
device (PTWS 3CE, Pharma test, Hainburg, Germany) apparatus II paddle method (USP
XXXII, 2009) was used. Dissolution medium was encompassed on 900 mL of distilled water
that was kept at 37 ± 0.5 ◦C, with paddle rotating at a speed of 100 rpm. The quantity of
powder equivalent to 10 mg of the drug (DEX) was put into each vessel of the dissolution
apparatus. At programmed time intervals of 5, 10, 20, 30, 40, 50 and 60 min, a sample
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of 5 mL was taken, followed by a replacement with fresh dissolution media. The sample
was filtered through a 0.45 µm membrane filter. A UV spectrophotometer (CECIL 7400-S,
Cambridge, England) was used for quantification of the drug.

The dissolution efficiency (DE) was calculated by the trapezoidal method by using the
following equation:

DE(%) =

∫ t
0 y × dt

y 100 × t
× 100% (3)

In the abovementioned equation, y is the percentage of dissolved DEX. DE is the area
under the dissolution curve among time point t1 and t2, stated as a percentage of the curve
at maximum dissolution, y100, over the same period. It was calculated to quantify the
presence of a variety of carriers in inclusion complexation.

2.2.6. Scanning Electron Microscopy (SEM)

Surface morphology of DEX, HPβCD, PXM-188, PXM-407, and binary and ternary
inclusion complexes was analyzed by using scanning electron microscopy (SEM) at 2 KeV.
To increase the electrical conductivity, samples were stammered in a tinny coating of gold.

2.2.7. Fourier-Transform Infrared Spectroscopy (FTIR)

FTIR analysis gives the possible information of functional groups and structures.
In FTIR, the infrared spectra of samples (drug, polymers, and binary and ternary inclu-
sion complexes) were scanned (BRUKER Tensor II-Alpha, Berlin, Germany) from 400 to
4000 cm−1 by using the potassium bromide disk.

2.2.8. Differential Scanning Calorimetry (DSC)

DSC (Universal V4.2E TA Instruments, Newcastle, DE, USA) device was used to
test differential scanning calorimetry measurements of DEX, HPβCD, both hydrophilic
polymers (PXM-188, PXM-407), and binary and ternary inclusion complexes of DEX. In
an aluminum pan, a sample of 3 to 10 mg was measured and crushed. The samples were
scanned under a nitrogen purge of 20 mL/min at a steady rate of 10 ◦C per minute over a
range of 20–400 ◦C. Empty aluminum pan was used as a reference.

2.2.9. Powder X-ray Diffraction Study (XRD)

The physical form of DEX, HPβCD, PXM-188, PXM-407, and binary and ternary
inclusion complexes was analyzed by X-ray diffractometer (XRD) (Bruker D-8 Advance,
Berlin, Germany), using graphite monochromator with Cu-Kα radiation. X-ray tube was
run at 40 kV and 30 mA current. Samples were analyzed at a speed of 5◦ per minute with
increments of 0.05◦ over a range (2θ) to scan from 5◦ to 80◦.

2.3. Statistical Analysis

The data were statistically analyzed by using SPSS (version 20) and expressed as
mean and standard deviation (±SD). One-way analysis of variance (ANOVA) was used to
evaluate solubility data and dissolution efficiency (DE). A post hoc Tukey HSD test was
used to calculate statistically significant difference. The difference was definite statistically
significant when the p < 0.05 value was used.

3. Results and Discussion
3.1. Phase Solubility Study

Figure 2A–C illustrates the phase-solubility graphs of binary and ternary inclusion
complexes. This study revealed that, in the case of the binary inclusion complex, the
increase in the polymer (HPβCD) concentration contributed to the comparative increase in
drug solubility [18,34]. This can be categorized as the AL type of solubility diagram and
formation of the soluble complex.

An indication of the process of transfer of DEX from water to the aqueous solution of
HPβCD was obtained from the values of Gibbs free-energy change. The Gibbs free energy
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(∆G0) of DEX from pure water to the aqueous solution of cyclodextrin was calculated from
the following equation:

∆G0 = −2.303 RT log [S0/Ss] (4)

where S0/Ss is the ratio of solubility of drug in the absence and in the presence of cyclodextrin.
It was negative for all the concentrations of HPβCD, showing that DEX solubilization

was spontaneous. ∆G0 was decreased as the HPβCD concentration increased and the
reaction became more favorable [35]. This indicated the more stability and formation of
stable inclusion complex. Results are presented in Table 1.

Table 1. Gibbs free energy of the DEX–CD complex in water at 25± 2 ◦C.

Concentration of HPβCD (mM/L) ∆G0 (kcal mol−1)

5 −0.09
10 −0.12
15 −0.13
20 −0.15

PXM-188 produced the highest slope value and drug solubility [36]. The value of the
stability constant for both the binary and ternary complexes was from 200 to 5000 M−1 [37].
From their stability constant values (Table 2), it was clear that ternary inclusion complexa-
tion has the ability to improve the DEX solubility more than binary inclusion complex. The
phase-solubility study indicated that the ternary system was more effective on binary in
the presence of the ternary component [38].

Figure 2. Cont.
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Figure 2. (A) Phase solubility diagram of DEX in aqueous solution of HPβCD mean ± SD, n = 3.
(B) Phase solubility diagram of DEX in aqueous solution of HPβCD with/without PXM−188.
(C) Phase solubility diagram of DEX in aqueous solution of HPβCD with/without PXM−407.
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Table 2. Stability constant and complexation efficiency results of binary and ternary inclusion
complexes.

Inclusion Complexes Stability Constant (M−1) Complexation Efficiency

DEX:HPβCD 928.03 ± 0.1 0.65
DEX: HPβCD:PXM-188(1:4:2.5%) 1751.23 ± 0.2 0.12
DEX: HPβCD:PXM-188(1:4:05%) 3569.19 ± 1.1 0.49
DEX: HPβCD:PXM-188(1:4:10%) 4698.63 ± 0.5 2.5
DEX: HPβCD:PXM-188(1:4:20%) 5470.49 ± 0.4 3.29
DEX: HPβCD:PXM407(1:4:2.5%) 1573.20 ± 1.0 1.1
DEX: HPβCD:PXM-407(1:4:05%) 2610.45 ± 0.6 1.83
DEX: HPβCD:PXM-407(1:4:10%) 3854.24 ± 1.0 2.7
DEX: HPβCD:PXM-407(1:4:20%) 4825.60 ± 1.5 3.38

3.2. Solubility Study of Ternary Complexes

Table 3 presented the solubility data for DEX and the binary and ternary inclusion
complexes of DEX. It was determined that, with the binary inclusion complex, the solubility
was improved significantly from 0.0617 mg/mL (pure DEX) to 18.23 mg/mL (DEX:HPβCD
1:8). The KN method gave the highest solubility (18.23 mg/mL) at 1:8 w/w ratio, followed
by PT (11.55 mg/mL) and finally with the SE method (5.04 mg/mL). The concentration of
HPβCD used to solubilize DEX was important, and it was noted that, in all three methods,
the solubility of DEX was increased. In the case of the KN method, when the concentration
of HPβCD was increased from 1:4 (17.13 mg/mL) to 1:8 (18.23 mg/mL), no significant
improvement in the solubility of DEX (only with minute increase) was shown, so we
excluded the 1:8 from further analysis, since, at this point, the solubility was not increased
accordingly with the high polymer concentration.

Table 3. Solubility data of DEX and binary and ternary inclusion complexes. Mean ± SD, n = 3.

DEX:HPβCD: Hydrophilic Polymers (w/w) Solubility mg/mL

DEX 0.062 ± 0.01
DEX:HPCD1:1 (PT) 05.33 ± 0.63 *

DEX:HP-β-CD1:2 (PT) 07.83 ± 0.20 *
DEX:HP-β-CD1:4 (PT) 10.37 ± 0.38 *
DEX:HP-β-CD1:8 (PT) 11.55 ± 1.03 *

DEX:HP-β-CD 1:1 (KM) 6.98 ± 0.050 *
DEX:HP-β-CD 1:2 (KM) 10.90 ± 0.08 *
DEX:HP-β-CD 1:4 (KM) 17.13 ± 0.11 *
DEX:HP-β-CD 1:8 (KM) 18.23 ± 0.73 *
DEX:HP-β-CD1:1 (SE) 1.65 ± 0.150 *
DEX:HP-β-CD1:2 (SE) 1.89 ± 0.040 *
DEX:HP-β-CD1:4 (SE) 3.94 ± 0.000 *
DEX:HP-β-CD1:8 (SE) 5.04 ± 0.050 *

DEX: HPβCD:PXM-188 (1:4:2.5%) 24.83 ± 0.011 *,α

DEX: HPβCD:PXM-188 (1:4:5,0%) 30.86 ± 0.011 *,α

DEX: HPβCD:PXM-188 (1:4:10%) 40.54 ± 0.011 *,α

DEX: HPβCD:PXM-188 (1:4:20%) 42.66 ± 0.011 *,α

DEX: HPβCD:PXM-407 (1:4:2.5%) 19.50 ± 0.011 *,α

DEX: HPβCD:PXM-407 (1:4:5.0%) 20.48 ± 0.011 *,α

DEX: HPβCD:PXM-407 (1:4:10%) 33.34 ± 0.011 *,α

DEX: HPβCD:PXM-407 (1:4:20%) 34.88 ± 0.011 *,α

Note: * = comparison with pure drug, and α = comparison with binary inclusion complex (DEX:HPβCD at 1:4,
prepared by KN method).

The incorporation of the hydrophilic polymer within the binary inclusion complex sig-
nificantly increased the solubility of DEX (42.66 mg/mL). The literature has also illustrated
that poloxamer incorporation can increase the solubility of less-soluble drugs, such as
insulin and indomethacin. When PXM-407 (22.5% w/w) was incorporated with piroxicam,
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the solubility of piroxicam was enhanced up to 11-fold. The solubility of nifedipine with
PXM-407 (4% w/v) was also improved up to 27-fold and led to complete dissolution [39].
The same results were found in this solubility study: as the concentration of the polymer
was increased from 2.5 to 20% (w/w) of dry weight of the binary inclusion complex, the
solubility was also increased. In the case of the ternary inclusion complexation, PXM-188
presented the maximum DEX solubility enhancement effect as compared to PXM-407. The
increase in solubility with the increase in poloxamer concentration indicates that PXM-188
has solvent properties for the drug. The interfacial tension between the drug and the
solubility media was reduced by PXM-188 [40].

The ternary inclusion complexes had significantly increased the solubility, because
of the lower crystallinity of the drug and greater amorphousness of the polymer [34,35].
On the basis of solubility studies with different concentrations of both polymers, it was
found that PXM-188 was the best because of more solubility of DEX (42.66 mg/mL), as
compared to PXM-407 (34.88 mg/mL) at comparable ratio (20%). Thus, using a mixture of
HPβCD/hydrophilic polymers rather than one of them alone improved the solubility of
the drug moiety more effectively, and among the ternary complexes, DEX:HPβCD:PXM-
188 (1:4:10%) was found to be the best, because of the significant increase in solubility as
compared to the other ratio. DEX:HPβCD:PXM-188 (1:4:20%) had a non-significant increase
in solubility as compared to DEX:HPβCD:PXM-188 (1:4:10%), even by the 2-fold increase
in the percentage of PXM-188.

The maximum solubility was recorded for the DEX/HPβCD/PXM-188 ((1:4:20%)
ternary complex (42.54 mg/mL) at approximately 688 times that of pure drug solubility
(0.062 mg/mL) and was considered statistically significant (p < 0.05). A post hoc Tukey
HSD test was used to analyze the data.

The ternary complex was better than the binary systems in terms of complexation
efficiency and solubility. The polymer interacted with drug/CD complexes through the
outer surface of CD molecules, producing aggregates capable of solubilizing drug and
other hydrophobic compounds [41,42].

3.3. In Vitro Dissolution Studies

The encapsulation efficiency of all prepared complexes was determined, and it was
found to be more than 97% DEX entrapment.

The % cumulative drug release of DEX and the binary and ternary complexes is
presented in Figure 3A–E. Pure DEX was released with a minimum release rate of about
30% because of its low aqueous solubility. After an hour, more than 50% drug release was
observed in the binary inclusion complexes. It was found that the binary inclusion complex
prepared by using the KN method at a DEX:HPβCD (1:4) ratio had a release rate that was
up to 72% and was different significantly from that of pure DEX.

The release rate was increased because of enhancement of solubility [42,43]. DEX’s
solubility was improved by partial entrapment of hydrophilic polymer in the CDs complex,
allowing for the fastest release of the drug. The highest release was observed by PXM-188
at 10% w/w. Because the crystallinity of the drug was reduced, the dissolution process
required less energy, and the drug was dispersed uniformly [39]. The drug release was
decreased or slowed down when the % amount of PXM-188 and PXM-407 was increased
from 10% to 20%. This was because of the drawback of PXM having low mechanical power,
which causes the polymer to erode quickly. Poloxamer has also been shown to have the
capacity to convert from a less viscous solution to a gel at room temperature when used
in 18% or more [44]. At a high molecular weight and higher proportion of hydrophobic
polyoxypropylene segment (lower HLB value), PXM-407 was less effective than PXM-188.
When higher poloxamer ratios were used in the inclusion complex, the intrinsic dissolution
rate was decreased as compared to the lower ratios. This impact was especially noticeable
in the case of PXM- 407. On the other hand, greater amounts of poloxamers are thought to
improve gel-layer formation in water, which acts as a diffusion barrier and delays drug
release [45,46].
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HPβCD, along with PXM-188, increased the dissolution of hydrophobic drug in
the ternary inclusion complexes prepared by using the KN method. When comparing
the binary and ternary complexes, the amorphousness (lack of crystallinity), solubility,
dispersibility and small particle size are all regarded as important factors for dissolution.
Furthermore, the mixing of the hydrophobic drug with a hydrophilic carrier (PXM-188) may
increase the surface area for drug release and interfacial tension between the hydrophobic
drug; moreover, the dissolution media was decreased, and drug release was increased [41].
The binary inclusion complex showed the highest drug release within 60 min, at between
50 and 72%, while the ternary complex showed the highest release, at 90%. For the ternary
inclusion complex, 1:4 (10.0% PMX-188) was found to be the best not only on the basis
of solubility but also because of the high dissolution rate. Table 4 shows the findings for
dissolution efficiency (DE). A one-way ANOVA test was used to statistically measure the
dissolution efficiency (DE) (post hoc Tukey HSD test). Thus, it was concluded that DEX
inclusion complexes showed high rates of in vitro dissolution and DE, and they have a
statistically significant difference from those of pure drug (DEX).

Figure 3. Cont.
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Figure 3. (A) Dissolution profiles of DEX and DEX–HPβCD inclusion complexes by PT method
Mean± SD, n = 3. (B) Dissolution profiles of DEX and DEX–HPβCD inclusion complexes by KN
Mean± SD, n = 3. (C) Dissolution profiles of DEX and DEX–HPβCD inclusion complexes SE method.
Mean± SD, n = 3. (D) Dissolution profiles of DEX, binary system and DEX:HPβCD ternary systems
with PXM-188. Mean ± SD, n = 3. (E) Dissolution profiles of DEX, binary system DEX:HPβCD and
ternary systems with PXM-407. Mean ± SD, n = 3.
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Table 4. Dissolution parameter of DEX and binary and ternary systems. Mean ± SD, n = 3.

DEX:HPβCD:POLYMER DE60 (%)

DEX 38.76 ± 0.14
DEX:HPβCD1:1(PT) 62.76 ± 0.17 *
DEX:HPβCD1:2(PT) 62.90 ± 0.13 *
DEX:HPβCD1:4(PT) 62.82 ± 0.12 *
DEX:HPβCD1:1(KN) 63.21 ± 0.49 *
DEX:HPβCD1:2(KN) 63.56 ± 0.46 *
DEX:HPβCD1:4(KN) 62.98 ± 0.73 *
DEX:HPβCD1:1(SE) 63.93 ± 0.03 *
DEX:HPβCD1:2(SE) 63.35 ± 0.17 *
DEX:HPβCD1:4(SE) 63.70 ± 0.77 *
1: 4 (2.50% PMX-188) 65.71 ± 0.12 *,α

1: 4 (05.0% PMX-188) 66.01 ± 0.17 *,α

1: 4 (10.0% PMX-188) 65.85 ± 0.70 *,α

1: 4 (20.0% PMX-188) 66.18 ± 0.19 *,α

1: 4 (2.50% PMX-407) 65.27 ± 0.02 *,α

1: 4 (05.0% PMX-407) 65.80 ± 0.03 *,α

1: 4 (10.0% PMX-407) 65.52 ± 0.03 *,α

1: 4 (20.0% PMX-407) 64.83 ± 0.01 *,α

Note: * = comparison with pure drug, and α = comparison with binary inclusion complex (DEX:HPβCD at 1:4
prepared by KN method.

3.4. Scanning Electron Microscopy (SEM)

The SEM images demonstrate the morphological distinctions between the individual
components and inclusion complexes. DEX had irregularly formed particles/crystals of no
discernible form [37]. HPβCD is in amorphous form with indistinguishable shapes [45].
The DEX-HPβCD SEM images exposed small particles with an inclination to accumu-
late, indicating the presence of less crystallinity and a single component in the complex
(Figure 4A). The KN method transformed the drug (DEX) from being crystalline to a
less-crystalline form and increased the drug solubility and dissolution.

PXM-188 had a vast globular shape [46–49], and PXM-407 also had globular spiral
shape, but it does not have as fine a shape as PXM-188 (Figure 4B,C). The SEM images of
ternary inclusion complexes showed that the crystallinity was reduced because of ternary
inclusion complex formation and uniform drug dispersion within carrier molecules [50].
HPβCD, along with PXM-188, developed an amorphous ternary complex more than PXM-
407. In the case of PXM-188, the ternary inclusion complex seemed to be mixture or in an
aggregated form. The SEM images of ternary inclusion complexes revealed very small
particles with a greater tendency to penetrate and diffuse. The SEM images illustrated that
the basic composition of components was extinct and the original pure compounds could
not be identified.
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Figure 4. (A) SEM pictures of (a) DEX, (b)HPβCD and (c) 1:4 DEX:HPβCD. (B) SEM pictures of
(a) DEX, (b) PXM-188, (c), 1:4 DEX:HPβCD:PXM-188 2.5%, (d) 1:4 DEX:HPβCD:PXM-188 5.0%,
(e) 1:4 DEX:HPβCD:PXM-188 10% and (f) 1:4 DEX:HPβCD:PXM-188 20%. (C) SEM pictures of (a)
DEX, (b) PXM-407, (c) 1:4 DEX:HPβCD:PXM-407 2.5%, (d) 1:4 DEX:HPβCD:PXM-407 5.0%, (e) 1:4
DEX:HPβCD:PXM-407 10% and (f) 1:4 DEX:HPβCD:PXM-407 20%.
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3.5. Fourier-Transform Infrared Spectroscopy (FTIR)

Figure 5A–C shows the FTIR spectra of DEX, PXM-188, and binary (DEX: HPβCD)
and ternary complexes of DEX (DEX:HPβCD:PXM-188). FTIR bands of DEX revealed
typical O–H extending at 3052 cm−1 and CH3 stretching at a length of 2950 cm−1, and the
C=O (free acid carbonyl) peak appeared at a distance of 1720 cm−1; the peak at 775 cm−1

is because of the vibration of CH2 group, and a sharp peak at 1220 cm−1 was due to C-C
stretching. These are the most important peaks of the FTIR spectrum of DEX.

HPβCD showed sharp and wide bands between 3300 and 3400 cm−1, corresponding
to stretching vibrations of -OH groups, due to intermolecular hydrogen bonds. The peak
at 2950 cm−1 was assigned to the stretching vibration of aliphatic C-H group, a band at
1610 cm−1 is indicative of the twist vibration of O-H group and C-O stretching vibration
bands were situated between 3300 and 3400 cm−1 [51]. The absorption peak of α-type
glycosidic bond was obtained at 800 cm−1, indicating that CDs were produced by glu-
copyranose units by α-1,4-glycosidic bond. The absorption peak at 3400 cm−1 corresponds
to the stretching vibration of O-H. The absorption peak was broad and intense because
of the intramolecular hydrogen bond’s drop in the bond-force constant [52]. The princi-
pal absorption peaks in the spectrum of PXM-188 were found at 2880 cm−1 (C-H stretch
aliphatic), 1310 cm−1 (in plane O-H bend) and 1111 cm−1 (C–O stretch). PXM-407 had
absorption peaks at 2882 cm−1 (C–H stretch aliphatic), 1340 cm−1 (in-plane O–H bend)
and 1120 cm−1 in its FTIR spectrum. (C–O stretch), and they were uniform for all ternary
systems (DEX:HPβCD:PXM-407). The bands remained unchanged in the ternary complex
of DEX:HPβCD:PXM-188.

Figure 5. Cont.
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Figure 5. (A) FTIR spectrum of (a) DEX, (b) HPβCD, (c) DEX/HPβCD (1:1), (d) DEX/HPβCD (1:2) and
(e) DEX/HPβCD (1:4) prepared by kneading method. (B) FTIR spectrum of (a) DEX, (b) PXM−188,
(c) 1:4 DEX:HPβCD, (d) 1:4 DEX:HPβCD:PXM−188 2.5%, (e) 1:4 DEX:HPβCD:PXM−188 5.0%, (f) 1:4
DEX:HPβCD:PXM−188 10% and (g) 1:4 DEX:HPβCD:PXM−188 20%. (C) FTIR spectrum of (a) DEX, (b)
PXM−407, (c), 1:4 DEX:HPβCD, (d) 1:4 DEX:HPβCD:PXM−407 2.5%, (e) 1:4 DEX:HPβCD:PXM−407
5.0%, (f) 1:4 DEX:HPβCD:PXM−407 10% and (f) 1:4 DEX:HPβCD:PXM−407 20%.

The peak pattern of the pure drug was not changed considerably, and this shows
that the components had no chemical interactions [53] in both the binary and ternary
complexes. However, in the case of the binary inclusion complex DEX:HPβCD at a 1:4
weight ratio, we perceived the shifting of peaks and complexity of the inclusion complex
as compared to individual components. The kneading method reduced the sharpness of
the peaks [54]. The spectra of ternary inclusion complexes are mostly similar to the spectra
of individual components, although there are some very small changes that may suggest
the presence of intermolecular interactions between drug and PXM. When the PXM ratio
in the complex is increased, the C-H stretching vibrations change from 2880 to 2900 cm1.
These minor alterations in FTIR spectra are most likely the consequence of hydrogen-bond
formation between DEX and PXM. However, no further peak was observed in the inclusion
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complexes’ spectra, demonstrating the absence of any chemical interaction between DEX
and poloxamers.

It was observed that there are no interactions between DEX:HPβCD:PXM-188; no new
peaks were formed, but were the peaks were slightly shifted, and the intensity was reduced
in the case of ternary complexation. The reduction in the peak intensity might be due to the
Vander Waals forces and hydrogen bonding between the DEX and hydrophilic polymers,
as this could give the increase in dissolution rate of drug [55].

3.6. Differential Scanning Calorimetry (DSC)

DSC is used to analyze the thermal properties of drug (DEX), polymers (HPβCD, PXM-
188 and PXM-407), and cyclodextrin binary and ternary inclusion complexes (DEX:HPβCD,
DEX:HPβCD:PXM-188 and DEX:HPβCD:PXM-407). This analysis may provide knowledge
about the physicochemical status of the guest molecule within the cavity of cyclodextrin
(host). Absence or moving of the endothermic peak of molecules may provide the informa-
tion about changes in the crystal lattice, melting point, boiling point, or sublimation [41].
The DEX DSC profile revealed a pronounced endothermic peak, consistent with its melting
transition temperature at Tmax of 55.6 ◦C. In Figure 6A, an endothermic peak of PXM-188
was at 58.20 ◦C, and at 56.5 ◦C PXM-407 showed its endothermic peak (Figure 6B).

Figure 6. (A) DSC thermo-grams of (a) DEX, (b) PXM−188, (c), 1:4 DEX:HPβCD (d) 1:4
DEX:HPβCD:PXM−188 2.5%, (e) 1:4 DEX:HPβCD:PXM-188 5.0%, (f) 1:4 DEX:HPβCD:PXM−188
10% and (g) DEX:HPβCD:PXM−188 20%. (B) DSC thermo-grams of (a) DEX, (b) PXM−407, (c),
1:4 DEX:HPβCD, (d) 1:4 DEX:HPβCD:PXM−407 2.5%, (e) 1:4 DEX:HPβCD:PXM−407 5.0%, (f) 1:4
DEX:HPβCD:PXM4−07 10% and (g) 1:4 DEX:HPβCD:PXM−407 20%.
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DEX/HPβCD (1:4) binary complexes showed a significant drop in peak strength and
decrease in the intensity of the endothermic peak of DEX. DEX in the binary complex was
either amorphous or semi-crystalline. DSC thermographs showed that pure DEX was
losing its fusion peak, indicating that all of the drug molecules were participating in com-
plexation [56]. The melting points’ peaks were considerably reduced. A virtually flat region
was achieved with polymers (PXM-188 and PXM-407), indicating the amorphousness and
greater complexation with ternary inclusion complexes. The endothermic peak of DEX was
not found in the DEX:HPβCD binary and also in ternary complexes. This may be due to
the reduction in drug crystallinity [57]. DEX is in amorphous state or in a less crystal-like
form in binary and ternary compounds.

3.7. X-ray Diffractometry (XRD)

XRD is used to identify the presence of CD complexation in powder form. When a
chemical (guest) interacts with a host (CD), changes in crystallinity can be detected by
using this technique [58].

Figure 7A,B shows the XRD diffractograms of DEX, hydrophilic polymers (PXM-188
and PXM-407), and binary and ternary complexes with these polymers. DEX generated
sharp X-ray diffractograms, indicating its crystalline nature. PXM-188 produced the func-
tional peaks at 19.17◦ and 23.33◦, and pure PXM-407 X-ray diffractograms revealed distinct
peaks at 18.89◦ and 23.09◦.

The DEX–HPβCD inclusion complexes revealed the lower crystallinity of both com-
pounds (drug and polymer) with flat peaks’ strength. The KN method could result in
reducing the crystallinity in the inclusion complex. The reduced crystallinity and increased
amorphousness result in low free Gibbs energy and high solubility [59]. Adsorption of
polymer (amorphous) on surfaces of DEX causes the amorphousness. The smaller the
particle size, the less sharp the X-ray diffractogram is expected to be, with several peaks
disappearing [60]. In the case of the binary inclusion complex of DEX/HPβCD (1:4), both
compounds (drug and polymer) were found to be amorphous, with higher flat peaks’
strength. It was illustrated that the binary complex showed less crystallinity or more
amorphousness with high free Gibbs energy and solubility [61]. It is generally stated that
the Gibbs energy is high in its amorphous state than its crystalline state (has low Gibbs
energy), and because of this, ternary complexes have a more aqueous solubility and release
rate as compared to DEX and binary complexes.

Figure 7. Cont.
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Figure 7. (A) XRD Diffractrograms of (a) DEX, (b) PXM-188, (c), 1:4 DEX:HPβCD, (d) 1:4
DEX:HPβCD:PXM-188 2.5%, (e) 1:4 DEX:HPβCD:PXM-188 5.0%, (f) 1:4 DEX:HPβCD:PXM-188
10% and (g) 1:4 DEX:HPβCD:PXM-188 20%. (B) XRD Diffractrograms of (a) DEX, (b) PXM-407, (c),
1:4 DEX:HPβCD, (d) 1:4 DEX:HPβCD:PXM-407 2.5%, (e) 1:4 DEX:HPβCD:PXM-407 5.0%, (f) 1:4
DEX:HPβCD:PXM-407 10% and (g) 1:4 DEX:HPβCD:PXM-407 20%.

4. Conclusions

In this study, the binary-inclusion complex of DEX:HPβCD was prepared successfully.
The samples showed a significant enhancement in their aqueous solubility and drug-release
profile. The addition of hydrophilic polymers (PXM-188 and PXM-407) further increased the
solubility and dissolution rate of the drug. The solid-state characterization results reported
the formation of the complex with the presence of more agglomerated and amorphous DEX
structure. Ternary complexes with PXM-188 presented a comparatively better increase in
the solubility and dissolution of DEX.
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