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Abstract: Pyrimidine is a privileged scaffold in many synthetic compounds exhibiting diverse
pharmacological activities, and is used for therapeutic applications in a broad spectrum of human
diseases. In this study, we prepared a small set of pyrimidine libraries based on the structure of two
hit compounds that were identified through the screening of an in-house library in order to identify
an inhibitor of anoctamin 1 (ANO1). ANO1 is amplified in various types of human malignant tumors,
such as head and neck, parathyroid, and gastrointestinal stromal tumors, as well as in breast, lung,
and prostate cancers. After initial screening and further structure optimization, we identified Aa3 as
a dose-dependent ANO1 blocker. This compound exhibited more potent anti-cancer activity in the
NCI-H460 cell line, expressing high levels of ANO1 compared with that in A549 cells that express
low levels of ANO1. Our results open a new direction for the development of small-molecule ANO1
blockers composed of a pyrimidine scaffold and a nitrogen-containing heterocyclic moiety, with
drug-like properties.

Keywords: anoctamin 1; ion channel blocker; pyrimidine; library; anti-proliferative

1. Introduction

Pyrimidines are N-containing heterocyclic compounds with diverse pharmacological activities
including anti-cancer [1], anti-inflammatory [2], anti-HIV [3], anti-hypertensive [4], anti-diabetic [5],
and anti-microbial activity [6]. From the viewpoint of medicinal chemistry, pyrimidine derivatives
have a wide variety of therapeutic applications for drug discovery because the pyrimidine scaffold is a
major component of DNA and RNA [7]. In particular, many FDA-approved drugs and pharmaceuticals
currently being developed contain pyrimidines as their core structure [8,9]. Therefore, pyrimidine has
consistently been considered as an essential building block and a privileged scaffold for a wide range
of drug candidates [8,10,11].

Calcium-activated chloride channels (CaCCs) are anion channels activated by the elevation of
intracellular calcium ion concentration. Endogenous CaCCs play a role in transepithelial transport [12],
the regulation of neuronal excitability and cardiomyocyte [13], sensory transduction [14,15], as well as
blocking polyspermy in Xenopus oocyte [16].
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Research on CaCCs has been conducted over the past 30 years since they were first described in
Xenopus oocytes in the 1980s; however, their molecular identity has not yet been revealed. Identification
of the CaCC gene is important for understanding its role in physiological phenomena and disease.
However, gene cloning was difficult at that time because there were no specific agonists or antagonists
to be used as baits. In 2008, the gene of CaCC was finally discovered by three research groups using
different approaches and was named anoctamin 1 [17–19].

Anoctamin 1 (ANO1) is ubiquitously expressed in various cell types, such as non-excitable epithelial
and endothelial cells, smooth muscle cells, sensory neurons, and interstitial cells of Cajal [17,20,21]. The
widespread distribution of ANO1 indicates that it plays a vital role in many physiological processes, and
has been implicated in the pathophysiology of various diseases such as hypertension and asthma [17,22,23].
ANO1 is also overexpressed in numerous tumor cells. In fact, ANO1 (TMEM16A) was found to be located
on human chromosome 11q13, and is frequently amplified in various types of malignant tumors [24].
Because it is involved in tumorigenesis, invasion, migration, and metastasis [25,26], the development of
drugs that modulate the activity of ANO1 is of great interest in cancer treatment.

In previous reports, ANO1 current was effectively blocked by classical CaCC inhibitors including
niflumic acid (NFA), 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), and 4,4′-diisothiocyano-
2,2′-stilbenedisulfonic acid (DIDS) [17]. However, these compounds lack potency and specificity, and
thus, cannot be considered as drug candidates. More recently, several ANO1 inhibitors, including
CaCCinh-A01 [27,28], T16Ainh-A01 [28], tannic acid [29], idebenone [30], benzbromarone [31], and
Ani9 [32] have been identified through high-throughput screening (HTS) of compound libraries and
were found to inhibit the proliferation of cancer cells (Figure 1). However, the information regarding the
druggability and drug-likeness of these compounds is still in its infancy. For example, the benzoquinone
backbone of idebenone may generate reactive oxygen species (ROS). T16Ainh-A01 and Ani9 contain
potential pan-assay interferencing compounds (PAINS) structures such as heteroaryl sulfide and
acylhydrazone moiety [33].
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Thus, we embarked on the discovery of new structures of ANO1 channel blockers with drug-like
properties. Herein, we present our work on the preparation and biological evaluation of a novel series
of pyrimidine derivatives as ANO1 inhibitors and anti-cancer effects.
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2. Results and Discussion

2.1. Rationale of Compound Design and Initial Library Synthesis

Recently, a series of novel ANO1 inhibitors based on the pyrimidine scaffold was identified
via screening of a focused in-house library. In the preliminary screening assay, we obtained two hit
compounds 1 and 2, containing the 2,4-disubstituted-6-methylpyrimidine scaffold with moderate
inhibitory activity on ANO1 (Figure 2). The hit compounds were evaluated via an HTS campaign
by halide-sensitive yellow fluorescent protein (YFP) imaging technique. Based on these results, we
designed and synthesized pyrimidine analogues derived from the structures of hits 1 and 2. Our design
and synthetic strategy for novel ANO1 blockers are outlined in Figure 2. The structures of hit compounds
1 and 2 have oxygen-containing alkyl and p-substituted di-aryl ether substituents in common, although
the substituents are oppositely established at the C2 and C4 positions in a regioisomeric pattern.
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as shown in Scheme 1. All 2,4-disubstituted pyrimidine derivatives were prepared via a systematic
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in an approximately 1:2 mixture of C2- and C4-substituted regioisomers favoring C4-substitution.
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intermediates were converted to 2,4-disubstituted pyrimidine products (Aa1–Ae6 and Ba1–Be6),
respectively, with six p-substituted anilines through a second nucleophilic aromatic substitution
reaction. Aniline coupling reaction of mono-substituted pyrimidine intermediates in the presence of
trimethylsilyl chloride (TMSCl) in n-BuOH afforded the sixty disubstituted pyrimidine products in
reasonable yields (Scheme 1). The structures of synthesized compounds from Aa1–Be6 are depicted in
Table 1.

Table 1. Chemical structures of synthesized compounds.

A or B R1 R2
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2.2. Identification of a Novel Aa3 as ANO1 Inhibitor

To identify novel ANO1 inhibitors, a cell-based HTS assay was performed using a heterocyclic
libraries containing sixty pyrimidine derivatives. As we have previously shown, ANO1 channel activity
was measured by the halide-sensitive YFP imaging technique. This was done by using a cell line that
stably expresses a genetically encoded iodide-sensing fluorescent protein YFP (F46L/H148Q/I152L)
and ANO1 [34]. Changes in the concentration of cytoplasmic iodide alter the fluorescence intensity of
the iodide-sensitive YFP; extracellular iodide influx induced by ANO1 activation leads to a decrease in
fluorescence intensity. For the screening of ANO1 inhibitors, the Fischer rat thyroid (FRT) cells were
plated in 96-well plates and pre-incubated with the test compounds for 20 min prior to the addition
of iodide and ATP (Adenosine triphosphate), known as an agonist of P2Y2 receptor in FRT cells, for
purinergic stimulation activated calcium-dependent iodide influx. After the primary screening, we
selected 19 compound candidates that showed an inhibitory response of over 70% at the concentration
of 100 µM (data not shown). Among them, 15 candidates exhibited the same inhibitory effect at a
concentration of 50 µM (Figure 4A). The 15 selected compounds with an apparent ANO1 blocking
effect were reanalyzed at a concentration of 30 µM (Figure 4B). In this evaluation step, we selected the
four most potent of the 15 compound candidates. Finally, we identified a novel ANO1 inhibitor, Aa3
(Figure 3), that inhibited ATP-induced ANO1 channel activity dose-dependently with an IC50 value of
32 µM (Figure 4C,D). The other three compounds such as Bd5, Ae5 and Ae6 exhibited cytotoxicity, and
consequently, they were excluded from the final candidate group despite having remarkable effects
(Supporting Information 16). Under physiological conditions, ANO1 is activated by various GPCR
stimulation, such as purinergic receptor subtype 2 [17]. Therefore, to verify whether the Aa3 compound
directly inhibits the biological activity of ANO1 or not, we utilized A23187, a calcium ionophore, which
is a mobile ion-carrier. Here, A23187 can increase intracellular Ca2+ concentration in intact cells by an
influx of calcium from extracellular fluid across the cell membranes. As a result, we confirmed that the
biological activity of ANO1 was inhibited by the Aa3 in A23187-treated FRT-YFP-ANO cells without
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ATP stimulation. Therefore, these results suggest that Aa3 can directly block the channel function of
ANO1 in P2Y2 receptor-independent manner (Supporting Information 17).
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channel, was assessed in Fischer rat thyroid yellow fluorescent protein (FRT-YFP) cells stably expressing
ANO1. (A) The cells were pre-treated with 50 µM of 19-candidate compounds for 20 min, and ANO1 was
activated by treating the cells with 100µM of ATP, an agonist of P2Y receptor. (B) Fifteen-compounds, which
were noteworthy, were selected. Subsequently, ANO1 activity was re-measured in a lower concentration
of 30 µM. (C) The selected Aa3 compound inhibits the activity of ANO1 in a dose-dependent manner. (D)
IC50-curve of Aa3 (mean ± S.E. n = 3). NC; negative control (DMSO-treated cells), PC; positive control
(cells treated with NPPB known as a chloride channel inhibitor).

2.3. The novel Aa3 Compound Reduces Cell Viability of ANO1 Overexpressed Cells

Since ANO1 has been reported to be highly expressed in many human tumors, biochemical
inhibition of ANO1 activity and induction of protein degradation using selective inhibitors suggests
that it can be therapeutically exploited to kill tumor cells [35]. Previous studies have revealed
that several inhibitors such as CaCCinh-A01, T16Ainh-A01, idebenone, N-((4-methoxy)-2-naphthyl)-5-
nitroanthranilic acid (MONNA), Ani9, and luteolin can inhibit the proliferation of ANO1 overexpressing
cancer cells [27,28,30,32,36–46]. To determine the biological effects of Aa3, we investigated whether
Aa3 could affect the proliferation of A549 and NCI-H460 cells with different expression levels of ANO1.
The expression levels of ANO1 were relatively low in A549 cells than in NCI-H460 cells by the result of
immunoblotting (Supporting Information 18). First, we performed the crystal violet cell cytotoxicity
assay to detect cell viability. The results showed that Aa3 remarkably reduced cell viability in a
dose-dependent manner, in both NCI-H460 and A549 cells. Moreover, cell viability was significantly
lower in NCI-H460 cells overexpressing ANO1 than in A549 cells (Figure 5A). Additionally, WST-1
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proliferation assay showed that Aa3 decreased proliferation of NCI-H460 cells compared with that of
A549 cells (Figure 5B). Meanwhile, induction of degradation of ANO1 protein by ANO1 inhibitors
could affect the growth of cancer cells [47]. To determine whether Aa3 can induce degradation of the
ANO1 protein, NCI-H460 cells was treated with Aa3. As shown in Figure 5C, there was no significant
effect on the protein levels of endogenous ANO1 protein. These results suggest that Aa3 can reduce
proliferation or have anti-cancer effects by controlling the physiological activity of ANO1, although it
cannot induce proteasomal degradation of endogenous ANO1 [1].
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of ANO1 (A549) and in those expressing high levels of ANO1 (NCI-H460). Anti-proliferation effect of
Aa3 in NCI-H460 (large cell carcinoma) and A549 (adenocarcinoma). To investigate the effects on ANO1
inhibition, NCI-H460 and A549 cells were seeded and treated with indicated concentrations of Aa3 for 48 h.
(A) The cells were fixed and stained using crystal violet for cell viability analysis. (B) Cell proliferation
was analyzed using WST-1 assay and Graphpad Prism 5 software (bars, mean ± S.E.; ** p < 0.01, n > 3).
(C) The effect on the endogenous ANO1 protein levels was examined by western blotting.

3. Materials and Methods

3.1. General Information

Unless otherwise noted all the starting materials and reagents were used without further purification.
Thin layer chromatography was carried out using Merck silica gel 60 F254 plates (Merck, Kenilworth, NJ,
USA), and flash chromatography was performed manually using Merck silica gel 60 (0.040–0.063 mm,
230–400 mesh, Merck, Kenilworth, NJ, USA). 1H- and 13C-NMR spectra were recorded using JEOL-500
(JEOL, Tokyo, Japan). 1H- and 13C-NMR chemical shifts are recorded in parts per million (ppm), with
the residual solvent peak used as an internal reference. 1H-NMR data were reported in the order of
chemical shift, multiplicity (brs, broad singlet; s, singlet; d, doublet; t, triplet; q, quartet; quint., quintet;
m, multiplet and/or multiple resonances), number of protons, and coupling constant in Hertz (Hz).
High-resolution mass spectra were obtained with Q Exactive Mass Spectrometer (Thermo Scientific,
Waltham, MA, USA).

3.2. Representative Synthetic Procedures for Mono-Substituted Pyrimidines (Aa–Ae and Ba–Be)

Synthesis of Aa and Ba: To a stirred solution of 2,4-dichloro-6-methylpyrimidine (1.00 g, 6.13 mmol)
in EtOH (20 mL) were added 2-methoxyethylamine (0.96 mL, 11.0 mmol, 1.8 equiv.) and triethylamine
(1.71 mL, 12.3 mmol, 2.0 equiv.) at room temperature. The reaction mixture was heated to 50 ◦C and
stirred for 4 h. The resulting mixture was cooled to room temperature and solvent was removed under
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reduced pressure. EtOAc (100 mL) was added to the reaction mixture and washed with water (10 mL)
twice. Then organic layer was dried over MgSO4 and concentrated in vacuo. The residue was purified
by column chromatography on silica gel (n-hexane/EtOAc = 3:1 to 2:1) to afford Aa (280 mg, 23%) and
Ba (540 mg, 47%).

4-Chloro-N-(2-methoxyethyl)-6-methylpyrimidin-2-amine (Aa). White solid; m.p. 40–42 ◦C; 1H-NMR
(500 MHz, CDCl3) δ 6.40 (s, 1H), 5.64 (brs, 1H), 3.57 (q, J = 5.3 Hz, 2H), 3.50 (t, J = 5.2 Hz, 2H), 3.32 (s,
3H), 2.26 (s, 3H); 13C-NMR (125 MHz, CDCl3) δ 169.6, 162.2, 161.2, 109.3, 71.2, 58.8, 41.2, 23.9; HRMS
(ESI+) found 202.0747 (calculated for C8H12ClN3O ([M + H]+): 202.0742).

2-Chloro-N-(2-methoxyethyl)-6-methylpyrimidin-4-amine (Ba). Colorless oil; 1H-NMR (500 MHz, CDCl3)
δ 6.09 (s, 1H), 5.38 (brs, 1H), 3.56–3.50 (m, 4H), 3.36 (s, 3H), 2.31 (s, 3H); 13C-NMR (125 MHz, CDCl3) δ
167.1, 164.1, 160.1, 103.3, 70.6, 58.8, 40.9, 23.6; HRMS (ESI+) found 202.0747 (calculated for C8H12ClN3O
([M + H]+): 202.0742).

2-((2-chloro-6-methylpyrimidin-4-yl)amino)ethan-1-ol (Ab). White solid; m.p. 130–132 ◦C; 1H-NMR
(500 MHz, DMSO-d6) δ 7.73 (s, 1H), 6.25 (s, 1H), 4.71 (s, 1H), 3.46 (t, J = 6.0 Hz, 2H), 3.30 (brs, 2H), 2.11
(s, 3H); 13C-NMR (125 MHz, DMSO-d6) δ 165.4, 164.6, 159.9, 103.3, 60.2, 43.2, 23.3.

2-((4-chloro-6-methylpyrimidin-2-yl)amino)ethan-1-ol (Bb). White solid; m.p. 100–102 ◦C; 1H-NMR
(500 MHz, DMSO-d6) δ 7.35 (s, 1H), 6.51 (s, 1H), 4.40 (s, 1H), 3.44 (t, J = 6.3 Hz, 2H), 3.27 (brs, 2H), 2.19
(s, 3H); 13C-NMR (125 MHz, DMSO-d6) δ 170.1, 162.5, 160.4, 108.3, 60.2, 43.9, 23.7.

3-((2-chloro-6-methylpyrimidin-4-yl)amino)propan-1-ol (Ac). White solid; m.p. 118–120 ◦C; 1H-NMR
(500 MHz, DMSO-d6) δ 7.66 (t, J = 3.2 Hz, 1H), 6.20 (s, 1H), 4.45 (s, 1H), 3.41 (q, J = 5.9 Hz, 2H), 3.25–3.24
(m, 2H), 2.11 (s, 3H), 1.60 (quint., J = 6.7 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 165.4, 164.4, 160.0,
103.2, 58.8, 37.7, 32.3, 23.3.

3-((4-chloro-6-methylpyrimidin-2-yl)amino)propan-1-ol (Bc). White solid; m.p. 76–78 ◦C; 1H-NMR
(500 MHz, DMSO-d6) δ 7.44 (s, 1H), 6.49 (s, 1H), 4.41 (t, J = 5.2 Hz, 1H), 3.40 (q, J = 5.9 Hz, 2H), 3.24
(brs, 2H), 2.19 (s, 3H), 1.61 (quint., J = 6.7 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 170.1, 162.5, 160.3,
108.1, 59.0, 38.5, 32.4, 23.7.

4-((2-chloro-6-methylpyrimidin-4-yl)amino)butan-1-ol (Ad). White solid; m.p. 82–84 ◦C; 1H-NMR (500 MHz,
DMSO-d6) δ 7.68 (s, 1H), 6.19 (s, 1H), 4.38 (t, J = 4.9 Hz, 1H), 3.36 (q, J = 5.7 Hz, 2H), 3.21–3.20 (m, 2H),
2.11 (s, 3H), 1.48 (quint., J = 7.0 Hz, 2H), 1.41 (quint., J = 6.6 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ
165.4, 164.4, 160.0, 103.1, 60.9, 41.7, 30.3, 25.8, 23.3.

4-((4-chloro-6-methylpyrimidin-2-yl)amino)butan-1-ol (Bd). White solid; m.p. 68–70 ◦C; 1H-NMR (500 MHz,
DMSO-d6) δ 7.47 (s, 1H), 6.47 (s, 1H), 4.34 (t, J = 4.9 Hz, 1H), 3.36 (q, J = 5.9 Hz, 2H), 3.19 (brs, 2H), 2.18
(s, 3H), 1.48 (quint., J = 7.0 Hz, 2H), 1.40 (quint., J = 6.9 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 170.1,
162.6, 160.4, 108.1, 61.2, 41.0, 30.4, 25.9, 23.7.

5-((2-chloro-6-methylpyrimidin-4-yl)amino)pentan-1-ol (Ae). White solid; m.p. 88–90 ◦C; 1H-NMR
(500 MHz, DMSO-d6) δ 7.67 (s, 1H), 6.19 (s, 1H), 4.32 (t, J = 4.9 Hz, 1H), 3.34 (q, J = 5.9 Hz, 2H), 3.19
(q, J = 5.2 Hz, 2H), 2.11 (s, 3H), 1.45 (quint., J = 7.3 Hz, 2H), 1.39 (quint., J = 7.2 Hz, 2H), 1.45 (quint.,
J = 7.6 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 165.3, 164.4, 160.0, 103.1, 61.1, 41.4, 32.6, 28.9, 23.4.

5-((4-chloro-6-methylpyrimidin-2-yl)amino)pentan-1-ol (Be). White solid; m.p. 128–130 ◦C; 1H-NMR
(500 MHz, DMSO-d6) δ 7.47 (s, 1H), 6.48 (s, 1H), 4.30 (t, J = 4.9 Hz, 1H), 3.34 (q, J = 5.7 Hz, 2H), 3.17
(brs, 2H), 2.18 (s, 3H), 1.45 (quint., J = 7.3 Hz, 2H), 1.39 (quint., J = 7.0 Hz, 2H), 1.25 (quint., J = 7.6 Hz,
2H); 13C-NMR (125 MHz, DMSO-d6) δ 170.1, 162.6, 160.2, 108.1, 61.1, 41.1, 32.7, 29.1, 23.7, 23.2.

3.3. Representative Synthetic Procedures for Di-Substituted Pyrimidines (Aa1–Ae6 and Ba1–Be6)

To a stirred solution of Aa (100 mg, 0.496 mmol) and 4-aminodiphenylamine (183 mg, 0.992 mmol,
2.0 equiv.) in n-BuOH (4 mL) was added chlrotrimethylsilane (5 drops) at room temperature.
The reaction mixture was heated to reflux and stirred overnight. The resulting mixture was cooled
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to room temperature and the solvent (n-BuOH) was removed under reduced pressure. The crude
product was purified by column chromatography on silica gel (DCM/MeOH = 20:1 to 10:1) to afford
Aa3 (280 mg, 81%).

N2-(4-isopropoxyphenyl)-N4-(2-methoxyethyl)-6-methylpyrimidine-2,4-diamine (Aa1). Yield: 75%; pale brown
oil; 1H-NMR (500 MHz, DMSO-d6) δ 8.68 (s, 1H), 7.59 (d, J = 8.6 Hz, 2H), 6.70 (s, 1H), 6.73 (dt, J = 8.6,
2.6 Hz, 2H), 5.74 (s, 1H), 4.44 (quint., J = 6.0 Hz, 1H), 3.42 (brs, 4H), 3.23 (s, 3H), 2.05 (s, 3H), 1.19 (d,
J = 6.3 Hz, 6H); 13C-NMR (125 MHz, DMSO-d6) δ 163.7, 160.0, 151.9, 135.2, 120.3, 116.2, 95.7, 71.1, 69.9,
58.5, 40.3, 23.8, 22.4; HRMS (ESI+) found 317.1978 (calculated for C17H25N4O2 ([M + H]+): 317.1968).

N4-(2-methoxyethyl)-6-methyl-N2-(4-morpholinophenyl)pyrimidine-2,4-diamine (Aa2). Yield: 54%; dark
brown solid; m.p. 195–197 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 8.65 (s, 1H), 7.61 (d, J = 9.2 Hz, 2H),
6.96 (brs, 1H), 6.78 (d, J = 9.2 Hz, 2H), 5.75 (s, 1H), 3.67 (t, J = 4.6 Hz, 4H), 3.43 (m, 4H), 3.23 (d,
J = 11.4 Hz, 3H), 2.94 (t, J = 4.6 Hz, 2H), 2.06 (s, 3H); 13C-NMR (125 MHz, DMSO-d6) δ 163.7, 160.1,
145.8, 134.7, 120.0, 116.1, 95.7, 71.2, 66.7, 58.5, 50.0, 40.3, 23.9; HRMS (ESI+) found 344.2087 (calculated
for C18H26N5O2 ([M + H]+): 344.2084).

N4-(2-methoxyethyl)-6-methyl-N2-(4-(phenylamino)phenyl)pyrimidine-2,4-diamine (Aa3). Yield: 81%; blue
solid; m.p. 143–145 ◦C; 1H-NMR (500 MHz, CDCl3) δ 7.50 (d, J = 8.6 Hz, 2H), 7.21 (t, J = 7.7 Hz, 2H),
7.04–7.03 (m, 3H), 6.96 (d, J = 7.5 Hz, 2H), 6.83 (t, J = 7.5 Hz, 1H), 5.70 (s, 1H), 5.64 (s, 1H), 5.16 (brs,
1H), 3.56-3.51 (m, 4H), 3.37 (s, 3H), 2.23 (s, 3H); 13C-NMR (125 MHz, CDCl3) δ 165.4, 163.5, 159.7, 144.6,
137.0, 134.9, 129.3, 120.5, 120.4, 119.8, 116.2, 94.4, 71.1, 58.9, 40.9, 23.8; HRMS (ESI+) found 350.1981
(calculated for C20H24N5O ([M + H]+): 350.1971).

N4-(2-methoxyethyl)-6-methyl-N2-(4-phenoxyphenyl)pyrimidine-2,4-diamine (Aa4). Yield: 81%; white solid;
m.p. 159–160 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 8.93 (s, 1H), 7.78 (d, J = 9.2 Hz, 2H), 7.28 (dd, J = 8.6,
7.5 Hz, 2H), 7.02-6.99 (m, 2H), 6.96-6.83 (m, 4H), 5.80 (s, 1H), 3.43 (brs, 4H), 3.22 (s, 3H), 2.08 (s, 3H);
13C-NMR (125 MHz, DMSO-d6) δ 163.7, 160.0, 158.6, 149.7, 138.4, 130.3, 122.9, 120.2, 120.0, 117.8, 96.0,
71.1, 58.5, 40.3, 23.9; HRMS (ESI+) found 351.1821 (calculated for C20H23N4O2 ([M + H]+): 351.1811).

N2-(4-(4-chlorophenoxy)phenyl)-N4-(2-methoxyethyl)-6-methylpyrimidine-2,4-diamine (Aa5). Yield: 72%;
white solid; m.p. 160–161 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 8.97 (s, 1H), 7.50 (dt, J = 9.2, 2.3 Hz, 2H),
7.21 (dt, J = 9.2, 2.9 Hz, 2H), 7.04 (brs, 1H), 6.96-6.83 (m, 4H), 5.81 (s, 1H), 4.43 (brs, 4H), 3.22 (s, 3H), 2.08
(s, 3H); 13C-NMR (125 MHz, DMSO-d6) δ 163.7, 160.0, 157.6, 149.2, 138.7, 130.1, 126.6, 120.2, 119.2, 96.1,
71.1, 58.4, 40.3, 23.9; HRMS (ESI+) found 385.1431 (calculated for C20H22ClN4O2 ([M + H]+): 385.1422).

N4-(2-methoxyethyl)-6-methyl-N2-(4-(p-tolyloxy)phenyl)pyrimidine-2,4-diamine (Aa6). Yield: 79%; white
solid; m.p. 128–129 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 8.90 (s, 1H), 7.75 (d, J = 9.2, 2.9 Hz, 2H), 7.09
(d, J = 8.6 Hz, 2H), 7.03 (brs, 1H), 6.84 (dt, J = 8.6, 2.6 Hz, 2H), 6.80 (dt, J = 8.5, 2.6 Hz, 2H), 5.79 (s,
1H), 3.43 (brs, 4H), 3.22 (s, 3H), 2.21 (s, 3H), 2.07 (s, 3H); 13C-NMR (125 MHz, DMSO-d6) δ 163.7, 160.0,
156.1, 150.3, 138.0, 131.9, 130.6, 120.2, 119.5, 118.0, 96.1, 71.1, 58.4, 40.2, 23.9, 20.7; HRMS (ESI+) found
365.1967 (calculated for C20H23N4O2 ([M + H]+): 365.1978).

N4-(4-isopropoxyphenyl)-N2-(2-methoxyethyl)-6-methylpyrimidine-2,4-diamine (Ba1). Yield: 71%; black
solid; m.p. 140–142 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 8.80 (s, 1H), 7.49 (d, J = 8.6 Hz, 2H), 6.78 (dt,
J = 8.6, 2.6 Hz, 2H), 6.44 (s, 1H), 5.77 (s, 1H), 4.44 (quint., J = 6.0 Hz, 1H), 3.42–3.36 (m, 4H), 3.22 (s,
3H), 2.04 (s, 3H), 1.19 (d, J = 6.3 Hz, 6H); 13C-NMR (125 MHz, DMSO-d6) δ 164.9, 162.2, 161.7, 152.8,
134.1, 121.8, 116.4, 94.6, 71.4, 69.9, 58.4, 40.7, 24.0, 22.4; HRMS (ESI+) found 317.1978 (calculated for
C17H24N4O2 ([M + H]+): 317.1968).

N2-(2-methoxyethyl)-6-methyl-N4-(4-morpholinophenyl)pyrimidine-2,4-diamine (Ba2). Yield: 60%; dark
blue solid; m.p. 124–126 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 8.80 (brs, 1H), 7.46 (d, J = 8.6 Hz, 2H),
6.82 (d, J = 9.2 Hz, 2H), 6.44 (brs, 1H), 5.76 (s, 1H), 3.68 (t, J = 4.6 Hz, 4H), 3.41-3.36 (m, 4H), 3.22 (s,
3H), 2.98 (t, J = 4.6 Hz, 4H), 2.04 (s, 3H); 13C-NMR (125 MHz, DMSO-d6) δ 164.6, 162.2, 161.8, 146.8,
133.4, 121.5, 116.1, 94.7, 71.3, 66.7, 58.4, 49.7, 40.7, 23.9; HRMS (ESI+) found 344.2087 (calculated for
C18H26N5O2 ([M + H]+): 344.2077).
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N2-(2-methoxyethyl)-6-methyl-N4-(4-(phenylamino)phenyl)pyrimidine-2,4-diamine (Ba3). Yield: 59%; pale
purple foam; 1H-NMR (500 MHz, DMSO-d6) δ 8.79 (s, 1H), 7.90 (s, 1H), 7.49 (d, J = 8.1 Hz, 2H), 7.21
(dd, J = 8.6, 7.5 Hz, 2H), 6.97 (d, J = 8.6 Hz, 2H), 6.94 (d, J = 7.5 Hz, 2H), 6.70 (t, J = 7.2 Hz, 1H), 6.42
(brs, 1H), 5.76 (s, 1H), 3.45–3.45 (m, 4H), 3.21 (s, 3H), 2.04 (s, 3H); 13C-NMR (125 MHz, DMSO-d6) δ
164.5, 162.0, 161.7, 144.9, 138.0, 134.1, 129.6, 121.6, 119.2, 118.8, 116.0, 95.1, 71.3, 58.4, 40.7, 23.9; HRMS
(ESI+) found 350.1981 (calculated for C20H24N5O ([M + H]+): 350.1968).

N2-(2-methoxyethyl)-6-methyl-N4-(4-phenoxyphenyl)pyrimidine-2,4-diamine (Ba4). Yield: 70%; white solid;
m.p. 145–146 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 9.06 (s, 1H), 7.70 (d, J = 8.6 Hz, 2H), 7.30 (t, J = 8.0 Hz,
2H), 7.03 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 9.2 Hz, 4H), 6.54 (brs, 1H), 5.85 (s, 1H), 3.43-3.38 (m, 4H), 3.20 (s,
3H), 2.07 (s, 3H); 13C-NMR (125 MHz, DMSO-d6) δ 165.2, 162.2, 161.5, 158.2, 150.8, 137.3, 130.3, 123.2,
121.4, 120.0, 118.1, 95.3, 71.3, 58.4, 40.8, 24.1; HRMS (ESI+) found 351.1821 (calculated for C20H23N4O2

([M + H]+): 351.1811).

N4-(4-(4-chlorophenoxy)phenyl)-N2-(2-methoxyethyl)-6-methylpyrimidine-2,4-diamine (Ba5). Yield: 74%;
white solid; m.p. 143–144 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 9.05 (s, 1H) 7.70 (d, J = 8.6 Hz, 2H),
7.34 (dt, J = 9.2, 2.9 Hz, 2H), 6.96-6.83 (m, 4H), 6.53 (s, 1H), 5.83 (s, 1H), 3.43-3.34 (m, 4H), 3.20 (s, 3H),
2.07 (s, 3H); 13C-NMR (125 MHz, DMSO-d6) δ 165.4, 162.3, 161.5, 157.2, 150.2, 137.8, 130.2, 126.3, 121.3,
120.2, 119.6, 95.1, 71.3, 58.4, 40.8, 24.1; HRMS (ESI+) found 385.1431 (calculated for C20H21ClN4O2

([M + H]+): 385.1422).

N2-(2-methoxyethyl)-6-methyl-N4-(4-(p-tolyloxy)phenyl)pyrimidine-2,4-diamine (Ba6). Yield: 77%; Gray
solid; m.p. 140–142 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 8.96 (s, 1H), 7.64 (d, J = 8.6 Hz, 2H), 7.11
(d, J = 8.6 Hz, 2H), 6.86 (dt, J = 9.2, 2.9 Hz, 2H), 6.82 (dt, J = 8.6, 2.9 Hz, 2H), 6.48 (s, 1H), 5.80 (s,
1H), 3.42-3.29 (m, 4H), 3.20 (s, 3H), 2.23 (s, 3H), 2.05 (s, 3H); 13C-NMR (125 MHz, DMSO-d6) δ 162.7,
161.5, 155.8, 151.4, 137.0, 132.3, 130.7, 121.3, 119.4, 118.4, 71.3, 58.4, 40.8, 23.0, 20.7; HRMS (ESI+) found
365.1978 (calculated for C21H24N4O2 ([M + H]+): 365.1969).

2-((2-((4-isopropoxyphenyl)amino)-6-methylpyrimidin-4-yl)amino)ethan-1-ol (Ab1). White solid; 1H-NMR
(500 MHz, DMSO-d6) δ 8.95 (s, 1H), 8.71 (s,1H), 7.61 (d, J = 9.5 Hz, 2H), 7.00 (brs, 1H), 6.74 (d, J = 8.6 Hz,
2H), 5.76 (s, 1H), 4.72 (s, 1H), 4.42 (heptet, J = 6.0 Hz, 1H), 3.52 (t, J = 5.5 Hz, 2H), 3.33 (brs, 2H), 2.07 (s,
3H), 1.18 (d, J = 5.8 Hz, 6H); 13C-NMR (125 MHz, CDCl3) δ 163.8, 159.8, 152.0, 135.1, 120.4, 116.3, 95.7,
69.9, 60.3, 43.5, 23.7, 22.4.

2-((6-methyl-2-((4-morpholinophenyl)amino)pyrimidin-4-yl)amino)ethan-1-ol (Ab2). Purple solid; m.p.
206–208 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 10.10 (s, 1H), 8.94 (s, 1H), 7.38 (d, J = 8.0 Hz, 2H),
6.91 (d, J = 8.1 Hz, 2H), 5.99 (s, 1H), 4.89 (brs, 1H), 3.69 (brs, 4H), 3.52 (brs, 2H), 3.39 (brs, 2H), 3.03 (brs,
4H), 2.18 (s, 3H); 13C-NMR (125 MHz, DMSO-d6) δ 163.3, 153.0, 152.0, 148.4, 129.4, 122.3, 115.9, 96.9,
66.6, 59.4, 49.1, 44.1, 18.9.

2-((6-methyl-2-((4-(phenylamino)phenyl)amino)pyrimidin-4-yl)amino)ethan-1-ol (Ab3). Purple solid; 1H-NMR
(500 MHz, DMSO-d6) δ 10.25 (s, 1H), 9.14 (s, 1H), 8.26 (s, 1H), 7.37 (d, J = 8.6 Hz, 2H), 7.17 (t, J = 7.8 Hz,
2H), 7.06 (t, J = 8.6 Hz, 2H), 7.02 (d, J = 8.0 Hz, 2H), 6.75 (t, J = 7.2 Hz, 1H), 6.02 (s, 1H), 4.94 (brs, 1H), 3.53
(t, J = 5.5 Hz, 2H), 3.40 (q, J = 5.4 Hz, 2H), 2.19 (s, 3H); 13C-NMR (125 MHz, DMSO-d6) δ 163.3, 152.7,
151.4, 144.0, 140.6, 129.6, 122.5, 119.9, 117.7, 116.9, 96.9, 59.4, 44.2, 18.7.

2-((6-methyl-2-((4-phenoxyphenyl)amino)pyrimidin-4-yl)amino)ethan-1-ol (Ab4). White solid; m.p. 245–247 ◦C;
1H-NMR (500 MHz, DMSO-d6) δ 10.30 (s, 1H), 8.97 (s, 1H), 7.64 (d, J = 6.3 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H),
7.09 (t, J = 6.9 Hz, 1H), 7.00 (d, J = 8.1 Hz, 2H), 6.97 (d, J = 7.5 Hz, 2H), 6.04 (s, 1H), 4.87 (brs, 1H), 3.52 (brs,
2H), 3.40 (brs, 2H), 2.21 (s, 3H); 13C-NMR (125 MHz, DMSO-d6) δ 163.3, 157.5, 153.3, 153.1, 133.4, 130.5,
123.8, 122.8, 119.8, 118.8, 97.3, 59.4, 44.2, 19.0.

2-((2-((4-(4-chlorophenoxy)phenyl)amino)-6-methylpyrimidin-4-yl)amino)ethan-1-ol (Ab5). White solid; m.p.
244–246 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 8.96 (s, 1H), 7.80 (d, J = 9.2 Hz, 2H), 7.33 (dt, J = 9.2,
2.9 Hz, 2H), 7.01 (brs, 1H), 6.90 (d, J = 8.6 Hz, 4H), 5.79 (s, 1H), 4.68 (brs, 1H), 3.51 (t, J = 5.7 Hz, 2H),
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4.33 (brs, 2H), 2.08 (s, 3H); 13C-NMR (125 MHz, CDCl3) δ 163.8, 159.9, 157.6, 149.2, 138.7, 130.1, 126.5,
120.2, 120.2, 119.3, 96.1, 60.3, 43.6, 23.8.

2-((6-methyl-2-((4-(p-tolyloxy)phenyl)amino)pyrimidin-4-yl)amino)ethan-1-ol (Ab6). Gray solid; 1H-NMR
(500 MHz, DMSO-d6) δ 8.91 (s, 1H), 7.77 (d, J = 8.6 Hz, 2H), 7.08 (d, J = 8.1 Hz, 2H), 7.01 (brs, 1H), 6.85
(d, J = 9.2 Hz, 2H), 6.80 (d, J = 8.0 Hz, 2H), 5.80 (s, 1H), 4.71 (brs, 1H), 3.52 (t, J = 5.7 Hz, 2H), 3.34 (brs,
2H), 2.21 (s, 3H), 2.08 (s, 3H); 13C-NMR (125 MHz, CDCl3) δ 163.8, 159.9, 156.1, 150.3, 138.0, 132.0, 130.6,
120.2, 119.5, 118.0, 96.3, 60.3, 43.4, 23.8, 20.6.

2-((4-((4-isopropoxyphenyl)amino)-6-methylpyrimidin-2-yl)amino)ethan-1-ol (Bb1). Gray solid; m.p. 214–216 ◦C;
1H-NMR (500 MHz, DMSO-d6) δ 10.53 (s, 1H), 7.54 (m, 3H), 6.89 (d, J = 9.2 Hz, 2H), 6.05 (s, 1H), 4.89
(s, 1H), 4.45 (heptet, J = 6.0 Hz, 1H), 3.52 (t, J = 5.5 Hz, 2H), 3.39 (q, J = 5.7 Hz, 2H), 2.23 (s, 3H), 1.22 (d,
J = 5.8 Hz, 6H); 13C-NMR (125 MHz, CDCl3) δ 160.9, 154.9, 154.7, 152.5, 131.3, 123.2, 116.2, 96.9, 69.9, 59.5,
44.0, 22.3, 18.8.

2-((4-methyl-6-((4-morpholinophenyl)amino)pyrimidin-2-yl)amino)ethan-1-ol (Bb2). White solid; 1H-NMR
(500 MHz, DMSO-d6) δ 10.75 (s, 1H), 7.72 (s, 1H), 7.57 (d, J = 8.1 Hz, 2H), 6.91 (d, J = 8.6 Hz, 2H), 6.13
(s, 1H), 4.90 (brs, 1H), 3.69 (t, J = 4.6 Hz, 4H), 3.52 (t, J = 5.7 Hz, 2H), 3.40 (q, J = 5.2 Hz, 2H), 3.05 (m,
4H), 2.21 (s, 3H); 13C-NMR (125 MHz, DMSO-d6) δ 160.8, 154.9, 152.2, 148.3, 130.4, 122.5, 115.6, 97.1,
66.5, 59.5, 49.0, 43.8, 18.8.

N2-(2-methoxyethyl)-6-methyl-N4-(4-(phenylamino)phenyl)pyrimidine-2,4-diamine (Bb3). Blue solid; m.p.
228–230 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 10.63 (s, 1H), 8.22 (s, 1H), 7.66–7.53 (m, 2H), 7.19 (t,
J = 7.2 Hz, 2H), 7.05 (t, J = 9.2 Hz, 2H), 7.03 (d, J = 8.0 Hz, 2H), 6.77 (t, J = 7.2 Hz, 1H), 6.08 (s, 1H), 4.89
(brs, 1H), 3.52 (t, J = 5.7 Hz, 2H), 3.40 (q, J = 5.3 Hz, 2H), 2.22 (s, 3H); 13C-NMR (125 MHz, DMSO-d6) δ
160.6, 154.9, 152.0, 143.9, 140.7, 130.8, 129.6, 122.8, 120.1, 117.3, 117.1, 96.9, 59.5, 43.8, 18.8.

2-((4-methyl-6-((4-phenoxyphenyl)amino)pyrimidin-2-yl)amino)ethan-1-ol (Bb4). Gray solid; 1H-NMR (500
MHz, DMSO-d6) δ 10.36 (s, 1H), 9.07 (s, 1H), 7.54 (d, J = 9.2 Hz, 2H), 7.35 (t, J = 8.0 Hz, 2H), 7.09 (t,
J = 7.4 Hz, 1H), 7.01 (d, J = 9.2 Hz, 2H), 6.99 (d, J = 9.2 Hz, 2H), 6.05 (s, 1H), 4.80 (brs, 1H), 3.52 (t,
J = 5.4 Hz, 2H), 3.40 (q, J = 5.4 Hz, 2H), 2.22 (s, 3H); 13C-NMR (125 MHz, CDCl3) δ 163.2, 157.4, 153.4,
152.7, 151.7, 133.2, 130.5, 123.9, 123.0, 119.8, 118.9, 97.4, 59.4, 44.2, 18.8.

2-((4-((4-(4-chlorophenoxy)phenyl)amino)-6-methylpyrimidin-2-yl)amino)ethan-1-ol (Bb5). Gray solid; 1H-NMR
(500 MHz, DMSO-d6) δ 9.11 (s, 1H), 7.72 (d, J = 8.6 Hz, 2H), 7.34 (dt, J = 9.2, 2.9 Hz, 2H), 6.96–6.92 (m,
4H), 6.52 (s, 1H), 5.85 (s, 1H), 4.64 (brs, 1H), 3.49 (t, J = 6.0 Hz, 2H), 3.31 (q, J = 6.1 Hz, 2H), 2.07 (s, 3H);
13C-NMR (125 MHz, CDCl3) δ 164.9, 162.2, 161.5, 157.2, 150.3, 137.7, 130.2, 126.9, 121.4, 120.2, 119.6, 95.1,
60.7, 44.1, 24.0.

N2-(2-methoxyethyl)-6-methyl-N4-(4-(p-tolyloxy)phenyl)pyrimidine-2,4-diamine (Bb6). Gray solid; m.p.
108–110 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 10.77 (s, 1H), 7.69 (brs, 3H), 7.16 (d, J = 8.0 Hz, 2H), 6.95
(d, J = 8.6 Hz, 2H), 6.89 (dt, J = 8.6 Hz, 2H), 6.13 (s, 1H), 4.88 (brs, 1H), 3.51 (t, J = 5.5 Hz, 2H), 3.40 (q,
J = 5.2 Hz, 2H), 2.49 (s, 6H); 13C-NMR (125 MHz, CDCl3) δ 161.3, 154.9, 154.7, 154.2, 152.9, 133.8, 133.2,
130.9, 123.2, 119.3, 118.9, 97.1, 59.5, 43.8, 20.7, 18.9.

3-((2-((4-isopropoxyphenyl)amino)-6-methylpyrimidin-4-yl)amino)propan-1-ol (Ac1). Gray solid; m.p. 156–158 ◦C;
1H-NMR (500 MHz, DMSO-d6) δ 10.19 (s, 1H), 9.1 (s, 1H), 7.42 (d, J = 9.6 Hz, 2H), 6.88 (d, J = 9.2 Hz,
2H), 5.98 (s, 1H), 4.54 (s, 1H), 4.52 (heptet, J = 6.0 Hz, 1H), 3.41 (t, J = 6.0 Hz, 2H), 3.36 (q, J = 6.3 Hz,
2H), 2.19 (s, 2H), 1.65 (quint., J = 6.6 Hz, 2H), 1.21 (d, J = 6.3 Hz, 6H); 13C-NMR (125 MHz, DMSO-d6) δ
161.2, 155.6, 154.6, 131.6, 123.2, 116.2, 96.2, 69.9, 58.8, 38.6, 32.3, 22.3, 19.4.

2-((6-methyl-2-((4-morpholinophenyl)amino)pyrimidin-4-yl)amino)propan-1-ol (Ac2). Black solid; m.p.
135–137 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 9.04 (s, 1H), 7.54 (d, J = 7.5 Hz, 2H), 6.82 (d, J = 8.0 Hz,
2H), 5.77 (s, 1H), 4.47 (s, 1H), 3.68 (brs, 4H), 3.43 (s, 2H), 3.33 (s, 2H), 2.97 (s, 3H), 2.08 (s, 3H), 1.64
(quint., J = 6.6 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 163.6, 146.5, 133.2, 120.7, 116.1, 95.6, 66.7,
58.9, 49.8, 38.0, 32.6, 22.3.
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2-((6-methyl-2-((4-(phenylamino)phenyl)amino)pyrimidin-4-yl)amino)propan-1-ol (Ac3). Blue solid; m.p.
113–115 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 9.59 (s, 1H), 8.25 (s, 1H), 8.04 (s, 1H), 7.50 (d, J = 8.6 Hz,
2H), 7.14 (t, J = 8.0 Hz, 2H), 7.02 (d, J = 8.0 Hz, 2H), 6.71 (t, J = 7.2 Hz, 2H), 5.89 (s, 1H), 4.53 (s, 1H), 3.44
(d, J = 6.3 Hz, 2H), 3.36-3.33 (m, 2H), 2.14 (s, 3H), 1.66 (quint., J = 6.6 Hz, 2H); 13C-NMR (125 MHz,
DMSO-d6) δ 163.3, 155.8, 144.7, 138.9, 131.9, 129.6, 121.7, 119.4, 118.4, 116.2, 96.5, 58.8, 38.3, 32.4, 20.6.

2-((6-methyl-2-((4-phenoxyphenyl)amino)pyrimidin-4-yl)amino)propan-1-ol (Ac4). White solid; 1H-NMR
(500 MHz, DMSO-d6) δ 8.94 (s, 1H), 7.81 (dt, J = 9.2, 2.6 Hz, 2H), 7.28 (m, 2H), 7.00 (t, J = 7.5 Hz, 1H),
6.89 (d, J = 9.2 Hz, 4H), 5.76 (s, 1H), 4.47 (brs, 1H), 3.45 (t, J = 6.3 Hz, 2H), 3.32 (brs, 2H), 2.08 (s, 3H),
1.67 (quint., J = 6.7 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 163.7, 159.9, 158.6, 149.6, 138.4, 130.3,
122.8, 120.2, 120.1, 117.7, 95.8, 59.1, 37.9, 32.8, 23.8.

2-((2-((4-(4-chlorophenoxy)phenyl)amino)-6-methylpyrimidin-4-yl)amino)propan-1-ol (Ac5). White solid;
1H-NMR (500 MHz, DMSO-d6) δ 8.96 (s, 1H), 7.83 (dt, J = 9.2, 2.6 Hz, 2H), 7.32 (dt, J = 8.6, 2.9 Hz, 2H),
6.88 (dt, J = 9.2, 2.6 Hz, 2H), 6.98 (brs, 1H), 6.92-6.88 (m, 4H), 5.76 (s, 1H), 4.47 (s, 1H), 3.46 (t, J = 6.0 Hz,
2H), 3.32 (brs, 2H), 2.08 (s, 3H), 1.67 (quint., J = 6.6 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 163.7,
159.9, 157.6, 149.1, 138.8, 130.1, 126.5, 120.2, 120.2, 119.2, 96.6, 59.1, 37.8, 32.8, 23.8.

2-((6-methyl-2-((4-(p-tolyloxy)phenyl)amino)pyrimidin-4-yl)amino)propan-1-ol (Ac6). White solid; 1H-NMR
(500 MHz, DMSO-d6) δ 10.37 (s, 1H), 9.05 (s, 1H), 7.56 (d, J = 8.6 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 6.95
(d, J = 9.2 Hz, 2H), 6.86 (t, J = 8.0 Hz, 2H), 6.01 (s, 1H), 4.54 (s, 1H), 3.41 (t, J = 6.0 Hz, 2H), 3.38 (q,
J = 6.3 Hz, 2H), 2.23 (s, 3H), 2.20 (s, 1H), 1.66 (quint., J = 6.6 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ
163.0, 155.0, 153.7, 152.9, 151.9, 133.1, 132.9, 130.9, 122.7, 119.3, 118.9, 97.2, 58.6, 38.5, 32.0, 20.7, 18.9.

2-((4-((4-isopropoxyphenyl)amino)-6-methylpyrimidin-2-yl)amino)propan-1-ol (Bc1). Gray solid; m.p. 176–178 ◦C;
1H-NMR (500 MHz, DMSO-d6) δ 10.25 (s, 1H), 7.52 (s, 1H), 6.86 (d, J = 9.2 Hz, 2H), 5.97 (s, 1H), 4.57 (s,
1H), 4.53 (heptet, J = 6.0 Hz, 2H), 3.45 (t, J = 6.0 Hz, 2H), 3.36 (q, J = 5.8 Hz, 2H), 2.18 (s, 2H), 1.66
(quint., J = 6.5 Hz, 2H), 1.22 (d, J = 6.5 Hz, 6H); 13C-NMR (125 MHz, DMSO-d6) δ 161.2, 155.6, 154.6,
131.6, 123.2, 116.2, 96.2, 69.9, 58.8, 38.6, 32.3, 22.3, 19.4.

2-((4-methyl-6-((4-morpholinophenyl)amino)pyrimidin-2-yl)amino)propan-1-ol (Bc2). Gray solid; m.p. 162–166 ◦C;
1H-NMR (500 MHz, DMSO-d6) δ 9.19 (s, 1H), 7.48 (d, J = 8.0 Hz, 2H), 6.85 (d, J = 9.2 Hz, 2H), 5.77
(s, 1H), 4.54 (s, 1H), 3.69 (t, J = 4.6 Hz, 4H), 3.42 (t, J = 6.0 Hz, 2H), 3.27 (q, J = 6.3 Hz, 2H), 2.99 (t,
J = 4.6 Hz, 2H), 2.06 (s, 1H), 1.63 (quint., J = 6.3 Hz, 6H); 13C-NMR (125 MHz, DMSO-d6) δ 161.2, 155.6,
154.6, 131.6, 123.2, 116.2, 96.2, 69.9, 58.8, 38.6, 32.3, 22.3, 19.4.

2-((4-methyl-6-((4-(phenylamino)phenyl)amino)pyrimidin-2-yl)amino)propan-1-ol (Bc3). Blue solid; m.p.
104–108 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 9.77 (s, 1H), 8.05 (s, 1H), 7.54 (d, J = 8.6 Hz, 2H), 7.15
(t, J = 7.7 Hz, 2H), 7.01 (t, J = 8.6 Hz, 2H), 6.98 (t, J = 8.0 Hz, 2H), 6.72 (t, J = 7.2 Hz, 2H), 5.90 (s, 1H),
4.59 (s, 1H), 3.44 (t, J = 6.0 Hz, 4H), 3.32 (q, J = 5.7 Hz, 2H), 2.01 (s, 3H), 1.65 (quint., J = 6.3 Hz, 2H);
13C-NMR (125 MHz, DMSO-d6) δ 172.7, 161.4, 158.7, 144.5, 139.0, 132.3, 129.6, 122.2, 119.5, 118.3, 116.3,
95.3, 59.0, 38.6, 32.7, 21.6.

2-((4-methyl-6-((4-phenoxyphenyl)amino)pyrimidin-2-yl)amino)propan-1-ol (Bc4). White solid; 1H-NMR
(500 MHz, DMSO-d6) δ 9.10 (s, 1H), 7.71 (d, J = 8.6 Hz, 2H), 7.31 (td, J = 9.2, 2.3 Hz, 2H), 7.03 (t,
J = 7.4 Hz, 1H), 6.93-6.91 (m, 4H), 6.63 (brs, 1H), 5.83 (s, 1H), 4.44 (s, 1H), 3.43 (t, J = 6.3 Hz, 2H), 3.28 (q,
J = 6.9 Hz, 2H), 2.06 (s, 3H), 1.64 (quint., J = 6.4 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 164.7, 162.2,
161.5, 158.2, 150.7, 137.3, 130.4, 123.2, 121.4, 120.0, 118.1, 95.0, 59.2, 38.5, 33.1, 23.9.

2-((4-((4-(4-chlorophenoxy)phenyl)amino)-6-methylpyrimidin-2-yl)amino)propan-1-ol (Bc5). White solid;
m.p. 142–144 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 9.10 (s, 1H), 7.73 (d, J = 9.2 Hz, 2H), 7.34 (dt, J = 9.2,
2.9 Hz, 2H), 6.94 (d, J = 8.6 Hz, 2H), 6.93 (dt, J = 9.2, 2.3 Hz, 2H), 6.62 (brs, 1H), 5.82 (s, 1H), 4.41 (brs,
1H), 3.43 (t, J = 6.3 Hz, 2H), 3.29 (q, J = 6.5 Hz, 2H), 2.06 (s, 3H), 1.64 (quint., J = 6.3 Hz, 2H), 13C-NMR
(125 MHz, DMSO-d6) δ 164.9, 162.2, 161.5, 157.3, 150.2, 137.7, 130.2, 126.8, 121.3, 120.2, 119.6, 94.7, 59.2,
49.1, 38.4, 33.1, 23.8.
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3-((4-methyl-6-((4-(p-tolyloxy)phenyl)amino)pyrimidin-2-yl)amino)propan-1-ol (Bc6). White solid; m.p.
136–138 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 9.03 (s, 1H), 7.68 (d, J = 8.6 Hz, 2H), 7.10 (d, J = 8.6 Hz,
2H), 6.88 (dt, J = 9.2, 2.6 Hz, 2H), 6.82 (dt, J = 8.6, 2.3 Hz, 2H), 6.59 (brs, 1H), 5.81 (s, 1H), 4.43 (s, 1H),
3.43 (t, J = 6.3 Hz, 2H), 3.28 (q, J = 6.5 Hz, 2H), 2.22 (s, 3H), 2.06 (s, 3H), 1.64 (quint., J = 6.4 Hz, 2H);
13C-NMR (125 MHz, DMSO-d6) δ 164.9, 162.3, 161.5, 155.8, 151.4, 137.0, 132.3, 130.7, 121.4, 119.5, 118.3,
94.6, 59.2, 38.5, 33.1, 24.0, 20.7.

4-((2-((4-isopropoxyphenyl)amino)-6-methylpyrimidin-4-yl)amino)butan-1-ol (Ad1). Gray solid; m.p. 170–172 ◦C;
1H-NMR (500 MHz, DMSO-d6) δ 10.19 (s, 1H), 9.04 (s, 1H), 7.41 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz,
2H), 5.99 (s, 1H), 4.51 (heptet, J = 5.9 Hz, 1H), 4.46 (s, 1H), 3.36 (t, J = 6.0 Hz, 2H), 3.29 (m, 2H), 2.18 (s,
3H), 1.53 (quint., J = 7.0 Hz, 2H), 1.41 (quint., J = 6.7 Hz, 2H), 1.20 (quint., J = 5.8 Hz, 6H); 13C-NMR
(125 MHz, DMSO-d6) δ 163.0, 154.5, 153.1, 151.9, 130.5, 122.7, 116.4, 96.9, 69.9, 60.8, 41.1, 30.4, 25.6,
22.3, 18.9.

4-((6-methyl-2-((4-morpholinophenyl)amino)pyrimidin-4-yl)amino)butan-1-ol (Ad2). Black solid; m.p. 160–162 ◦C;
1H-NMR (500 MHz, DMSO-d6) δ 9.95 (s, 1H), 8.70 (s, 1H), 7.41 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 8.1 Hz,
2H), 5.92 (s, 1H), 4.44 (s, 1H), 3.69 (brs, 4H), 3.37 (t, J = 6.3 Hz, 2H), 3.30 (s, 2H), 3.02 (brs, 4H), 2.17 (s,
3H), 1.53 (quint., J = 7.2 Hz, 2H), 1.42 (quint., J = 7.2 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 163.1,
153.8, 148.1, 130.1, 122.1, 115.9, 96.7, 66.6, 49.2, 41.0, 30.4, 25.7, 19.4.

4-((6-methyl-2-((4-(phenylamino)phenyl)amino)pyrimidin-4-yl)amino)butan-1-ol (Ad3). Dark blue solid;
m.p. 222–224 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 10.08 (s, 1H), 8.99 (s, 1H), 8.23 (s, 1H), 7.41 (d,
J = 6.3 Hz, 2H), 7.15 (t, J = 7.2 Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 7.5 Hz, 2H), 6.73 (t, J = 6.9 Hz,
1H), 5.99 (s, 1H), 4.50 (s, 1H), 3.38 (t, J = 5.8 Hz, 2H), 3.30 (brs, 2H), 2.16 (s, 3H), 1.53 (quint., J = 6.3 Hz,
2H), 1.43 (quint., J = 6.9 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 163.0, 153.3, 152.4, 144.2, 140.2,
130.2, 129.6, 122.3, 119.7, 117.9, 116.6, 96.8, 60.8, 41.1, 30.4, 25.7, 19.2.

4-((6-methyl-2-((4-phenoxyphenyl)amino)pyrimidin-4-yl)amino)butan-1-ol (Ad4). White solid; m.p. 156–158
◦C; 1H-NMR (500 MHz, DMSO-d6) δ 10.41 (s, 1H), 9.10 (s, 1H), 7.56 (d, J = 8.6 Hz, 2H), 7.34 (t, J = 8.0
Hz, 2H), 7.07 (d, J = 7.2 Hz, 2H), 7.01 (d, J = 8.6 Hz, 2H), 6.95 (t, J = 7.5 Hz, 1H), 6.02 (s, 1H), 4.43 (s, 1H),
3.35 (t, J = 6.6 Hz, 2H), 3.30 (q, J = 6.6 Hz, 2H), 2.21 (s, 3H), 1.53 (quint., J = 7.3 Hz, 2H), 1.41 (quint., J =

6.9 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 163.0, 157.5, 153.1, 153.0, 151.9, 133.4, 130.5, 123.7, 122.8,
119.9, 118.6, 97.2, 60.8, 41.2, 30.4, 25.6, 18.9.

4-((2-((4-(4-chlorophenoxy)phenyl)amino)-6-methylpyrimidin-4-yl)amino)butan-1-ol (Ad5). Gray solid; m.p.
142–144 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 10.42 (s, 1H), 9.08 (s, 1H), 7.57 (d, J = 9.2 Hz, 2H), 7.37
(d, J = 8.6 Hz, 2H), 7.04 (d, J = 8.6 Hz, 2H), 6.98 (d, J = 8.6 Hz, 2H), 6.02 (s, 1H), 4.43 (s, 1H), 3.34 (t,
J = 6.3 Hz, 2H), 3.32 (q, J = 6.3 Hz, 2H), 2.21 (s, 3H), 1.53 (quint., J = 7.3 Hz, 2H), 1.41 (quint., J = 6.9 Hz,
2H); 13C-NMR (125 MHz, DMSO-d6) δ 163.0, 156.6, 152.9, 152.7, 151.9, 133.8, 130.3, 127.4, 122.9, 120.2,
120.2, 97.3, 60.8, 41.2, 30.4, 25.6, 18.9.

4-((6-methyl-2-((4-(p-tolyloxy)phenyl)amino)pyrimidin-4-yl)amino)butan-1-ol (Ad6). White solid; m.p.
122–124 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 10.32 (s, 1H), 9.03 (s, 1H), 7.52 (d, J = 8.1 Hz, 2H),
7.14 (t, J = 7.5 Hz, 2H), 6.96 (d, J = 8.0 Hz, 2H), 6.86 (d, J = 7.5 Hz, 2H), 6.00 (s, 1H), 4.42 (s, 1H), 3.34-3.32
(m, 4H), 2.24 (s, 3H), 2.21 (s, 3H), 1.53 (quint., J = 6.9 Hz, 2H), 1.41 (m, 2H); 13C-NMR (125 MHz,
DMSO-d6) δ 163.0, 155.0, 153.9, 152.9, 151.9, 133.0, 130.9, 123.0, 119.3, 118.9, 97.2, 60.8, 41.2, 30.3, 25.6,
20.7, 18.8.

4-((4-((4-isopropoxyphenyl)amino)-6-methylpyrimidin-2-yl)amino)butan-1-ol (Bd1). Purple solid; m.p.
153–155 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 10.74 (s, 1H), 7.92 (s, 1H), 7.58 (brs, 2H), 6.88 (d,
J = 8.6 Hz, 2H), 6.10 (s, 1H), 4.54 (heptet, J = 6.1 Hz, 2H), 4.45 (s, 1H), 3.38 (t, J = 6.3 Hz, 2H), 3.32 (q,
J = 6.3 Hz, 2H), 2.21 (s, 3H), 1.55 (quint., J = 7.3 Hz, 2H), 1.43 (quint., J = 7.0 Hz, 2H), 1.21 (d, J = 5.7 Hz,
6H); 13C-NMR (125 MHz, DMSO-d6) δ 161.0, 154.8, 152.6, 131.3, 127.1, 123.3, 116.2, 96.6, 69.9, 60.8, 41.2,
30.2, 25.9, 22.3, 18.9.
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4-((4-methyl-6-((4-morpholinophenyl)amino)pyrimidin-2-yl)amino)butan-1-ol (Bd2). Pink solid; m.p. 208–210 ◦C;
1H-NMR (500 MHz, DMSO-d6) δ 10.77 (s, 1H), 7.94 (s, 1H), 7.57 (brs, 2H), 6.90 (d, J = 9.2 Hz, 2H),
6.11 (s, 1H), 4.47 (s, 1H), 3.68 (t, J = 4.6 Hz, 4H), 3.37 (t, J = 6.3 Hz, 2H), 3.32 (q, J = 6.1 Hz, 2H), 3.03
(t, J = 4.3 Hz, 2H), 2.20 (s, 3H), 1.53 (quint., J = 7.2 Hz, 2H), 1.43 (quint., J = 6.9 Hz, 2H); 13C-NMR
(125 MHz, DMSO-d6) δ 160.7, 154.9, 152.2, 148.5, 130.5, 122.5, 115.6, 96.7, 66.5, 60.5, 49.0, 41.1, 30.2,
25.9, 18.9.

4-((4-methyl-6-((4-(phenylamino)phenyl)amino)pyrimidin-2-yl)amino)butan-1-ol (Bd3). Dark blue solid; m.p.
192–194 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 10.77 (s, 1H), 8.25 (s, 1H), 7.93 (brs, 2H), 7.17 (t, J = 7.4 Hz,
2H), 7.05 (d, J = 8.6 Hz, 2H), 7.02 (d, J = 8.0 Hz, 2H), 6.76 (t, J = 7.2 Hz, 1H), 6.13 (s, 1H), 4.47 (s, 1H),
3.38 (t, J = 6.0 Hz, 2H), 3.32 (q, J = 5.8 Hz, 2H), 2.21 (s, 3H), 1.55 (quint., J = 7.0 Hz, 2H), 1.44 (quint.,
J = 6.7 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 160.7, 154.8, 152.2, 143.9, 140.6, 130.8, 129.6, 122.8,
120.0, 117.4, 116.9, 96.8, 60.8, 41.2, 30.3, 25.9, 18.8.

4-((4-methyl-6-((4-phenoxyphenyl)amino)pyrimidin-2-yl)amino)butan-1-ol (Bd4). White solid; m.p. 140–142 ◦C;
1H-NMR (500 MHz, DMSO-d6) δ 9.12 (s, 1H), 7.70 (d, J = 9.2 Hz, 2H), 7.31 (t, J = 8.0 Hz, 2H), 7.04 (t,
J = 7.4 Hz, 1H), 6.93 (d, J = 8.6 Hz, 2H), 6.92 (d, J = 8.0 Hz, 2H), 6.71 (brs, 1H), 5.82 (s, 1H), 4.36 (brs,
1H), 3.37 (t, J = 6.6 Hz, 2H), 3.21 (q, J = 6.7 Hz, 2H), 2.06 (s, 1H), 1.51 (quint., J = 7.2 Hz, 2H), 1.42
(quint., J = 7.0 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 164.5, 161.9, 161.5, 158.2 150.7, 137.3, 130.4,
123.2, 121.4, 120.0, 118.0, 94.7, 61.1, 41.2, 30.6, 26.5, 23.8.

4-((4-((4-(4-chlorophenoxy)phenyl)amino)-6-methylpyrimidin-2-yl)amino)butan-1-ol (Bd5). White solid; m.p.
164–166 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 10.41 (s, 1H), 9.10 (s, 1H), 7.56 (d, J = 8.6 Hz, 2H), 7.34 (t,
J = 8.0 Hz, 2H), 7.07 (d, J = 7.2 Hz, 2H), 7.01 (d, J = 8.6 Hz, 2H), 6.95 (t, J = 7.5 Hz, 1H), 6.02 (s, 1H), 4.43
(s, 1H), 3.35 (t, J = 6.6 Hz, 2H), 3.30 (q, J = 6.6 Hz, 2H), 2.21 (s, 3H), 1.53 (quint., J = 7.3 Hz, 2H), 1.41
(quint., J = 6.9 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 163.0, 157.5, 153.1, 153.0, 151.9, 133.4, 130.5,
123.7, 122.8, 119.9, 118.6, 97.2, 60.8, 41.2, 30.4, 25.6, 18.9.

4-((4-methyl-6-((4-(p-tolyloxy)phenyl)amino)pyrimidin-2-yl)amino)butan-1-ol (Bd6). White solid; 1H-NMR
(500 MHz, DMSO-d6) δ 9.22 (s, 1H), 7.69 (d, J = 9.2 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 6.89 (d, J = 9.2 Hz,
2H), 6.82 (d, J = 8.6 Hz, 2H), 6.74 (s, 1H), 5.84 (s, 1H), 4.34 (brs, 1H), 3.38 (t, J = 6.3 Hz, 2H), 3.23 (q, J =

6.7 Hz, 2H), 2.21 (s, 3H), 2.07 (s, 3H), 1.52 (quint., J = 7.2 Hz, 2H), 1.43 (quint., J = 7.0 Hz, 2H); 13C-NMR
(125 MHz, DMSO-d6) δ 163.8, 161.5, 155.7, 151.5, 136.8, 132.3, 130.7, 121.5, 119.5, 118.3, 94.7, 61.2, 41.2,
30.6, 26.5, 23.2, 20.7.

5-((2-((4-isopropoxyphenyl)amino)-6-methylpyrimidin-4-yl)amino)pentan-1-oll (Ae1). Gray solid; 1H-NMR
(500 MHz, DMSO-d6) δ 8.71 (s, 1H), 7.61 (dt, J = 8.6, 3.5 Hz, 2H), 7.03 (s, 1H), 6.74 (dt, J = 9.2, 3.5 Hz,
2H), 5.70 (s, 1H), 4.44 (heptet, J = 6.0 Hz, 1H), 4.34 (s, 1H), 3.35–3.32 (m, 4H), 2.05 (s, 3H), 1.49 (quint.,
J = 7.3 Hz, 2H), 1.41 (quint., J = 7.0 Hz, 2H), 1.31 (quint., J = 7.2 Hz, 2H), 1.19 (d, J = 6.3 Hz, 2H); 13C-NMR
(125 MHz, DMSO-d6) δ 163.6, 159.7, 152.0, 135.1, 120.4, 116.2, 69.9, 61.2, 40.5, 32.8, 29.5, 23.7, 22.4.

5-((6-methyl-2-((4-morpholinophenyl)amino)pyrimidin-4-yl)amino)pentan-1-ol (Ae2). Gray solid; m.p.
148–150 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 8.71 (s, 1H), 7.58 (d, J = 8.6 Hz, 2H), 7.09 (s, 1H),
6.80 (d, J = 9.2 Hz, 2H), 5.70 (s, 1H), 4.34 (brs, 1H), 3.68 (t, J = 4.6 Hz, 4H), 3.35 (brs, 2H), 3.23 (brs,
2H), 2.96 (t, J = 4.6 Hz, 4H), 2.06 (s, 3H), 1.49 (quint., J = 7.2 Hz, 2H), 1.41 (quint., J = 7.0 Hz, 2H), 1.30
(quint., J = 7.3 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 163.6, 159.5, 146.0, 134.3, 120.2, 116.1, 95.8,
66.7, 61.2, 49.9, 40.3, 32.8, 29.5, 23.7, 23.4.

5-((6-methyl-2-((4-(phenylamino)phenyl)amino)pyrimidin-4-yl)amino)pentan-1-ol (Ae3). Dark gray solid;
m.p. 238–240 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 9.32 (s, 1H), 8.02 (s, 2H), 7.53 (s, 2H), 7.13 (s, 2H),
6.97-6.95 (m, 4H), 6.68 (s, 1H), 5.83 (s, 1H), 4.39 (brs, 1H), 3.34–3.25 (m 4H), 2.11 (s, 3H), 1.50 (s, 2H),
1.30 (2H), 1.19 (s, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 163.4, 157.4, 145.0, 137.6, 133.5, 129.5, 124.7,
120.7, 119.0, 118.8, 115.8, 96.0, 61.1, 40.9, 32.7, 29.2, 23.6, 21.6.

5-((6-methyl-2-((4-phenoxyphenyl)amino)pyrimidin-4-yl)amino)pentan-1-ol (Ae4). White solid; 1H-NMR
(500 MHz, DMSO-d6) δ 8.94 (s, 1H), 7.79 (dt, J = 9.2, 2.6 Hz, 2H), 7.29 (t, J = 8.0 Hz, 2H), 7.04 (brs, 1H),
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7.00 (t, J = 7.2 Hz, 1H), 6.90-6.88 (m, 4H), 5.75 (s, 1H), 4.34 (brs, 1H), 3.35 (t, J = 6.3 Hz, 2H), 3.24 (brs,
2H), 2.08 (s, 3H), 1.50 (quint., J = 7.5 Hz, 2H), 1.40 (quint., J = 7.0 Hz, 2H), 1.31 (quint., J = 7.3 Hz, 2H);
13C-NMR (125 MHz, DMSO-d6) δ 163.7, 159.9, 158.6, 149.6, 138.3, 130.3, 122.9, 120.2, 120.0, 117.7, 96.3,
61.2, 49.0, 40.7, 32.8, 29.4, 23.7, 23.7.

5-((2-((4-(4-chlorophenoxy)phenyl)amino)-6-methylpyrimidin-4-yl)amino)pentan-1-ol (Ae5). Gray solid; m.p.
146–148 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 8.94 (s, 1H), 7.81 (d, J = 9.2 Hz, 2H), 7.32 (dt, J = 8.6,
2.6 Hz, 2H), 6.98 (s, 1H), 6.90 (d, J = 9.2 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 5.74 (s, 1H), 4.34 (brs, 1H), 4.35
(t, J = 6.3 Hz, 2H), 3.24 (brs, 2H), 2.07 (s, 3H), 1.50 (quint., J = 7.3 Hz, 2H), 1.40 (quint., J = 6.9 Hz, 2H),
1.31 (quint., J = 7.3 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 163.7, 160.0, 157.6, 149.1, 138.8, 130.1,
126.5, 120.2, 120.1, 119.2, 96.0, 61.2, 49.0, 40.7, 32.8, 29.5, 23.8, 23.7.

5-((6-methyl-2-((4-(p-tolyloxy)phenyl)amino)pyrimidin-4-yl)amino)pentan-1-ol (Ae6). White solid; 1H-NMR
(500 MHz, DMSO-d6) δ 8.90 (s, 1H), 7.78 (dt, J = 9.2, 2.6 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 7.00 (s, 1H),
6.85 (dt, J = 9.2, 2.6 Hz, 2H), 6.79 (dt, J = 8.6, 2.6 Hz, 2H), 5.74 (s, 1H), 4.36 (brs, 1H), 3.36 (t, J = 6.3 Hz,
2H), 3.27 (brs, 2H), 2.20 (s, 3H), 2.07 (s, 3H), 1.50 (quint., J = 7.3 Hz, 2H), 1.41 (quint., J = 6.9 Hz, 2H),
1.31 (quint., J = 7.3 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 163.7, 159.9, 156.2, 150.3, 138.0, 131.9,
130.6, 120.2, 119.5, 117.9, 96.3, 61.2, 49.1, 40.8, 32.8, 29.5, 23.7, 23.7, 20.6.

5-((4-((4-isopropoxyphenyl)amino)-6-methylpyrimidin-2-yl)amino)pentan-1-ol (Be1). Black solid; m.p. 138–140 ◦C;
1H-NMR (500 MHz, DMSO-d6) δ 8.67 (s, 1H), 7.62 (dt, J = 8.6, 2.6 Hz, 2H), 6.96 (s, 1H), 6.73 (dt, J = 9.2,
2.6 Hz, 2H), 5.70 (s, 1H), 4.43 (heptet, J = 5.0 Hz, 1H), 4.35 (t, J = 6.6 Hz, 2H), 3.23 (brs, 2H), 2.05 (s, 1H),
1.49 (quint., J = 7.3 Hz, 2H), 1.42 (quint., J = 7.0 Hz, 2H), 1.31 (quint., J = 7.6 Hz, 2H), 1.18 (d, J = 5.8 Hz,
2H); 13C-NMR (125 MHz, DMSO-d6) δ 163.7, 160.0, 151.9, 135.2, 120.3, 116.2, 95.7, 69.9, 61.2, 49.1, 32.8,
29.5, 23.7, 22.4.

5-((4-methyl-6-((4-morpholinophenyl)amino)pyrimidin-2-yl)amino)pentan-1-ol (Be2). White solid; 1H-NMR
(500 MHz, DMSO-d6) δ 9.07 (s, 1H), 7.49 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 9.2 Hz, 2H), 6.74 (s, 1H), 5.77
(s, 1H), 4.35 (brs, 1H), 3.68 (t, J = 4.6 Hz, 4H), 3.35 (t, J = 6.3 Hz, 2H), 3.20 (q, J = 6.9 Hz, 2H), 2.99
(t, J = 4.6 Hz, 2H), 2.05 (s, 3H), 1.48 (quint., J = 7.3 Hz, 2H), 1.41 (quint., J = 7.0 Hz, 2H), 1.29 (quint.,
J = 7.5 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 161.6, 146.9, 142.9, 142.7, 121.5, 118.0, 116.0, 115.3,
66.8, 66.6, 61.2, 51.1, 49.6, 49.1, 41.3, 32.9, 29.7, 23.6.

2-((4-methyl-6-((4-(phenylamino)phenyl)amino)pyrimidin-2-yl)amino)propan-1-ol (Be3). White solid; 1H-NMR
(500 MHz, DMSO-d6) δ 8.73 (s, 1H), 7.80 (s, 1H), 7.62 (d, J = 9.2 Hz, 2H), 7.11 (t, J = 7.7 Hz, 2H), 6.99 (brs,
1H), 6.93 (dt, J = 8.6, 2.6 Hz, 2H), 6.90 (dd, J = 8.6, 1.2 Hz, 2H), 6.66 (t, J = 7.5 Hz, 1H), 5.70 (s, 1H), 4.33
(t, J = 5.2 Hz, 1H), 3.35 (q, J = 5.9 Hz, 2H), 3.23 (brs, 2H), 2.06 (s, 3H), 1.50 (quint., J = 7.5 Hz, 2H), 1.41
(quint., J = 6.9 Hz, 2H), 1.30 (quint., J = 7.6 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 163.6, 145.5, 136.5,
135.6, 129.5, 120.0, 119.4, 118.6, 115.3, 104.0, 61.2, 32.8, 29.5, 23.7.

5-((4-methyl-6-((4-phenoxyphenyl)amino)pyrimidin-2-yl)amino)pentan-1-ol (Be4). White solid; 1H-NMR
(500 MHz, DMSO-d6) δ 9.16 (s, 1H), 7.71 (d, J = 9.2 Hz, 2H), 7.30 (t, J = 8.0 Hz, 2H), 7.04 (t, J = 7.2 Hz,
2H), 6.92–6.91 (m, 4H), 6.75 (brs, 1H), 5.82 (s, 1H), 4.32 (s, 1H), 3.33 (t, J = 6.3 Hz, 2H), 3.20 (q, J = 6.9 Hz,
2H), 2.07 (s, 3H), 1.48 (quint., J = 7.3 Hz, 2H), 1.39 (quint., J = 6.9 Hz, 2H), 1.28 (quint., J = 7.5 Hz, 2H);
13C-NMR (125 MHz, DMSO-d6) δ 164.3, 161.9, 161.5, 158.2, 150.8, 137.2, 130.4, 123.2, 121.4, 120.0, 118.1,
94.7, 61.2, 49.1, 41.3, 32.8, 29.6, 23.6.

5-((4-((4-(4-chlorophenoxy)phenyl)amino)-6-methylpyrimidin-2-yl)amino)pentan-1-ol (Be5). White solid;
m.p. 136–138 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 9.16 (s, 1H), 7.73 (d, J = 9.2 Hz, 2H), 7.33 (dt, J = 9.2,
2.9 Hz, 2H), 6.95–6.90 (m, 4H), 6.75 (s, 1H), 5.83 (s, 1H), 4.28 (s, 1H), 3.34 (t, J = 6.3 Hz, 2H), 3.21 (q,
J = 6.7 Hz, 2H), 2.07 (s, 3H), 1.49 (quint., J = 7.3 Hz, 2H), 1.39 (quint., J = 6.9 Hz, 2H), 1.29 (quint.,
J = 7.3 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 164.6, 162.0, 161.5, 157.2, 150.3, 137.7, 130.2, 126.9,
121.3, 120.2, 119.6, 94.9, 61.2, 41.3, 32.9, 29.6, 23.6.
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5-((4-methyl-6-((4-(p-tolyloxy)phenyl)amino)pyrimidin-2-yl)amino)pentan-1-ol (Be6). White solid; 1H-NMR
(500 MHz, DMSO-d6) δ 9.44 (s, 1H), 7.68 (d, J = 9.2 Hz, 2H), 7.11 (d, J = 8.6 Hz, 2H), 6.92 (s, 1H), 6.88
(d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 5.86 (s, 1H), 4.32 (brs, 1H), 3.33 (t, J = 6.3 Hz, 2H), 3.21 (q,
J = 6.7 Hz, 2H), 2.22 (s, 3H), 2.08 (s, 3H), 1.48 (quint., J = 7.5 Hz, 2H), 1.39 (quint., J = 7.1 Hz, 2H), 1.28
(quint., J = 7.8 Hz, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 161.5, 155.6, 151.9, 136.7, 132.4, 130.7, 121.7,
119.3, 118.5, 95.1, 61.2, 41.3, 32.8, 29.5, 23.6, 22.5, 20.7.

3.4. Cell Culture

The A549 cells, human lung adenocarcinoma, and the NCI-H460 cells, human large-cell lung
carcinoma, were obtained from American Type Culture Collection (ATCC, Manassas, VA, USA).
The Fisher rat thyroid (FRT) cells stably expressing YFP-H148Q/I152L/F46L and ANO1 (friendly gifted
from Prof. Wan Namkung, Yonsei University, Incheon, Korea) were cultured in Dulbecco Modified
Eagle Medium (DMEM) and Ham’s F12 medium (1:1 ratio) medium supplemented with 10% fetal
bovine serum (FBS), 100 U/mL penicillin, 100 µg/mL streptomycin, 0.25mg/mL G418 and 0.1 mg/mL
hygromycin B. A549 and NCI-H460 were cultured in RPMI1640 medium containing 10% FBS, 100 U/mL
penicillin and 100 µg/mL streptomycin. Cells were cultured at 37 ◦C in a humidified atmosphere of
5% CO2.

3.5. Halide Sensitive YFP Imaging

The Fisher rat thyroid (FRT) cells stably expressing YFP-H148Q/I152L/F46L and ANO1 were
plated in 96-well microplates at a density of 20,000 cells per well in DMEM/F12 medium supplemented
with 10% FBS, 100 U/mL penicillin and 100 µg/mL streptomycin for 24 h. The cells were washed twice
with 100 µL of 1× PBS and then test compounds were applied in 100 µL NaCl solution for 20 min.
Additionally, all of the compounds tested in this study were prepared using dimethyl sulfoxide (DMSO),
which is widely used as a solvent in organic synthesis. After incubation, to stimulate ANO1-mediated
I– influx, cells were injected with 100 µL NaI solution including with 200 µM ATP at 1 s, and the
fluorescence was measured once every 0.2 s and continuously measured for 6 s. The inhibitory effect of
the test compound was measured by reduction of YFP fluorescence by I– influx. Assays were done
using SpectraMax i3x multi-microplate reader (Molecular Devices, San Jose, CA, USA) equipped with
488 nm excitation and 520 nm emission filters.

3.6. Cell Proliferation Assay

A549 and NCI-H460 cells were plated in 96-well microplates at a density of 7000 cells per well
for 24 h. Each well was treated with test compounds and incubated at 37 ◦C with 5% CO2 for 48 h.
Proliferation rates were assessed by a reagent WST-1 (Roche, Mannheim, Germany). Briefly, after
removing the cell culture medium, WST-1 solution was added to the 96-well plate and re-incubated for
1 h. The soluble formazan produced by cellular reduction of WST-1 was quantified by measuring the
absorbance at 490 and 690 nm (background) with SpectraMax i3x multi-microplate reader (Molecular
Devices, San Jose, CA, USA).

3.7. Cell Viability Assay

A549 and NCI-H460 cells were plated in 24-well microplates at a density of 10,000 cells per well
for 24 h. Each well was treated with test compounds and incubated at 37 ◦C with 5% CO2 for 48 h.
The cells were fixed and then stained by crystal violet.

3.8. Western Blot Analysis

The compound-treated NCI-H460 cells were cultured on 6-well plates were rinsed twice with PBS
and harvested using a PRO-PREP™ lysis buffer (iNtRON, Seoungnam, Korea) that was supplemented
with phosphatase inhibitor cocktail (Thermo Scientific, Rockford, IL, USA). The proteins were separated
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by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on 8% gel and then
transferred onto polyvinylidene fluoride (PVDF) membranes. The membranes were blocked with
5% skim milk in TBST for 1 h at room temperature. After that, the membranes were incubated with
primary antibodies with 1% bovine serum albumin (BSA) in TBST at 4 ◦C overnight. The following
primary antibodies were used: rabbit anti-ANO1 (1:1000, abcam) and rabbit anti-GAPDH (1:5000,
sc-25778). Then, the membranes were washed 3 times for 10 min each and incubated with secondary
antibodies (1:5000, GeneTex) for 1 h at room temperature. The membrane was then washed three times
with TBST for 10 min and then visualized using the enhanced chemiluminescent (ECL) detection on an
ImageQuantTM LAS-4000 imager (GE Healthcare Bio-Sciences AB, Uppsala, Sweden).

4. Conclusions

In summary, we designed and synthesized a series of novel ANO1 channel blockers with
pyrimidine cores using a two-step combinatorial approach in a simplified manner. HTS of a focused
in-house library using the halide-sensitive YFP imaging technique enabled us to discover the compound
Aa3, which was shown to be a dose-dependent ANO1 channel blocker. The anti-cancer activity of
Aa3 was also confirmed in ANO1 overexpressing NCI-H460 cells. This study could contribute to the
development of treatments for various cancers and diseases, including lung cancer.

Supplementary Materials: The following are available online, Spectral data of 1H-NMR and 13C-NMR.
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