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ABSTRACT: Changes in adenosine triphosphate (ATP) and peroxynitrite (ONOO−) concentrations have been correlated in a
number of diseases including ischemia-reperfusion injury and drug-induced liver injury. Herein, we report the development of a
fluorescent probe ATP-LW, which enables the simultaneous detection of ONOO− and ATP. ONOO− selectively oxidizes the
boronate pinacol ester of ATP-LW to afford the fluorescent 4-hydroxy-1,8-naphthalimide product NA-OH (λex = 450 nm, λem = 562
nm or λex = 488 nm, λem = 568 nm). In contrast, the binding of ATP to ATP-LW induces the spirolactam ring opening of rhodamine
to afford a highly emissive product (λex = 520 nm, λem = 587 nm). Due to the differences in emission between the ONOO− and ATP
products, ATP-LW allows ONOO− levels to be monitored in the green channel (λex = 488 nm, λem = 500−575 nm) and ATP
concentrations in the red channel (λex = 514 nm, λem = 575−650 nm). The use of ATP-LW as a combined ONOO− and ATP probe
was demonstrated using hepatocytes (HL-7702 cells) in cellular imaging experiments. Treatment of HL-7702 cells with oligomycin
A (an inhibitor of ATP synthase) resulted in a reduction of signal intensity in the red channel and an increase in that of the green
channel as expected for a reduction in ATP concentrations. Similar fluorescence changes were seen in the presence of SIN-1 (an
exogenous ONOO− donor).

■ INTRODUCTION

Adenosine-5′-triphosphate (ATP) has been referred to as the
“molecular currency”.1,2 ATP concentrations range between 1
and 10 mM, with a 1000:1 ratio between ATP and adenosine
diphosphate (ADP) typically prevailing.3 ATP aids the
regulation of important cellular functions, including cellular
movement,4 neurotransmission,5 and ion channel function.6

Disruption to ATP homeostasis is linked to a number of
diseases, including ischemia, Parkinson’s disease, and hypo-
glycemia.7 The cause of this disruption is often ascribed to
oxidative stress, which involves the production of highly
reactive oxygen species (ROS) and reactive nitrogen species
(RNS).8,9 In particular, peroxynitrite (ONOO−)10 is an RNS
that is known to inhibit ATP production by oxidatively
deactivating mitochondrial ATP synthase.11 Correlations

between ATP and ONOO− concentrations have been
observed in a number of pathological events.12−14 Therefore,
the development of a chemical tool that allows the real-time
monitoring of these species simultaneously in vitro and in vivo
would be highly desirable.
Fluorescence imaging has emerged as an attractive

technology for the real-time and noninvasive detection of
biomarkers in cellular and animal-based applications. Pre-
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viously, several single-analyte fluorescent probes have been
reported for the selective imaging of ONOO−.15−17 Moreover,
fluorescent probes for the selective detection and visualization
of ATP have been developed.18 However, to our knowledge no
fluorescent probes capable of the simultaneous and independ-
ent imaging of ONOO− and ATP have been reported. If
available, such systems would allow the presumed close
relationship between these two critical species to be monitored
in real time. Herein, we report the construction of ATP-LW, a
single fluorescent probe that enables the simultaneous
detection of ONOO− and ATP. Initial solution data
established excellent water solubility, sensitivity, and high
selectivity for ONOO− and ATP using their respective
detection emission profiles. As a preliminary proof-of-concept
study for cellular applications, changes in ATP and ONOO−

associated with acetaminophen (APAP) were evaluated. This
model was chosen due to the importance of preclinical tools
for drug development in the screening of drug-induced liver
injury (DILI) associated with drugs like APAP.19−21

Furthermore, this model was selected because APAP can
result in a depletion of ATP and an increase in the levels of
ONOO− (Scheme S1).22,23 We believe ATP-LW could prove
popular as a fluorescent tool in fundamental and clinical

research. For example, the Sessler group has been developing
type-II immunogenic cell death (ICD) inducers, where the
ICD agent results in ROS-mediated ER stress and subsequent
ATP release. We anticipate that ATP-LW will facilitate the
rapid identification of type-II ICD inducers.24 It is important
to note that we first disclosed our probe ATP-LW as a
ChemRxiv preprint;25 however, we felt that the associated
journal contribution (i.e., this article) would be substantially
improved with the addition of biological experiments.
Unfortunately, the Covid-19 pandemic severely hindered our
research progress, and in the time between the ChemRxiv
preprint and the present submission, the group of Tian et al.
reported a somewhat similar structure for the simultaneous
detection of ATP and H2O2.

26 Pointedly, Merck recognized
the potential of ATP-LW and has made it commercially
available.27 However, details regarding the scope, utility, and
even mode of use have yet to appear in a peer-reviewed forum.
This report is designed to address this deficiency and to
highlight the utility of what is now a commercially available
fluorescent ONOO− and ATP probe, ATP-LW.
At this point it is worth discussing the selectivity of boronate

ester-based probes toward ONOO− and H2O2. Since the
seminal report by Sikora et al., numerous research groups,

Scheme 1. Chemical Structure of ATP-LW and Its Fluorescence “Turn On” Mechanism in the Presence of ONOO−, ATP, and
ONOO−/ATPa)

aThe addition of ONOO− leads to formation of compound NA-OH, with a maximum emission at 562 nm when excited at 450 nm and a maximum
at 568 nm when excited at 488 nm in PBS buffer solution (10 mM, v/v, EtOH/H2O = 1/99, pH = 7.40). The presence of ATP affords the product
Rh-Bpin, with a maximum emission at 587 nm when excited at 520 nm in PBS buffer solution (10 mM, v/v, EtOH/H2O = 1/99, pH = 7.40).
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including our own, have determined that boronate ester-based
fluorescent probes have a preferential reactivity toward
ONOO−.28−30 As such, it is now universally accepted that
ONOO− reacts several orders of magnitude faster than
hydrogen peroxide (microseconds vs hours).31 In addition an
observed lack of response toward ONOO− may indicate
degradation of the fluorescent reporter by the highly reactive
ONOO−.20

In recent years, multianalyte fluorescent probes have
garnered attention owing to their enhanced precision for the
study in question.32,33 These systems overcome the problems
of using several independent fluorescent probes when seeking
to understand the relationship between more than one
biological species.31 Efforts from our group and others have
led to the development of multianalyte fluorescent probes.31

For example, we reported AND-logic gate-like dual-analyte
fluorescence scaffolds that permit the detection of ONOO−

and a second analyte.34−38 However, we believe that systems
able to detect more than one analyte independently using
different emission channels will prove particularly advanta-
geous;20 this is because, in principle, dual-channel emission
should enable the concurrent evaluation of each individual

species, whereas AND-logic systems only provide information
on the synergy of the two species.
In this work, we have used a rhodamine lactam/1,8-

naphthalimide hybrid structure as a scaffold to create the dual-
analyte fluorescent probe ATP-LW (Scheme 1).39 ATP-LW
was synthesized over three steps (Scheme S2). The first step of
the synthesis involves a Miyaura borylation reaction, which
forms intermediate NA-Bpin. Diethylenetriamine was then
added to a solution of rhodamine B in methanol. This reaction
afforded intermediate Rh-AM as a light orange solid.
Condensation between NA-Bpin and Rh-AM in ethanol then
afforded ATP-LW. The chemical structure of ATP-LW was
fully characterized using 1H NMR and 13C NMR spectroscopy,
as well as high-resolution mass spectrometry.

■ RESULTS AND DISCUSSION

In initial studies, the changes in the UV−vis absorption
spectral features of ATP-LW in the presence of ONOO− and
ATP were investigated in aqueous media (PBS buffer, 10 mM,
v/v, EtOH/H2O = 1/99, pH = 7.40). The addition of
ONOO− produced a new absorption peak at 445 nm, which is

Figure 1. Changes in the fluorescence emission intensity of ATP-LW (15 μM) seen upon the addition of ONOO− (from 0 to 16 μM) in modified
PBS buffer (10 mM, v/v, EtOH/H2O = 1/99, pH = 7.40) after 1 min. (a) Sample excited at 450 (bandwidth 8) nm; (b) sample excited at 520
(bandwidth 8) nm. Inset: Enlarged views of the spectra in (b). Changes in the fluorescence emission intensity of ATP-LW (15 μM) seen upon the
addition of ATP (from 0 to 15 mM) in modified PBS buffer solution (10 mM, v/v, EtOH/H2O = 1/99, pH = 7.40) after 100 min. (c) Sample
excited at 520 (bandwidth 8) nm; (d) sample excited at 450 (bandwidth 8) nm. Inset: Enlarged views of the spectra in (d).
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consistent with the known intramolecular charge transfer
(ICT) process seen in 4-hydroxy-1,8-naphthalimide products
(Figure S1).40 Similarly, the addition of ATP to ATP-LW
resulted in an increase in the absorption intensity at 553 nm.
This was taken as evidence for the ATP-induced opening of
the spirolactam ring on the rhodamine fluorophore (Figure
S2).18 ATP-LW was initially nonfluorescent, presumably as the
result of quenching by the boronic ester on the 1,8-
naphthalimide unit, and the ring-closed form of rhodamine
being inherently nonfluorescent. Upon the addition of
ONOO− (0−16 μM), an increase in the fluorescence intensity
at 562 nm/568 nm was observed upon excitation at 450/488
nm (Figure 1a, Figures S7−S10). A minimal fluorescence
increase was observed for light excitation at 520 nm upon the
addition of ONOO− (0−16 μM) (Figure 1b). The formation
of a 4-hydroxy-1,8-naphthalimide product upon treatment of
ATP-LW with ONOO− was confirmed by LC-MS analysis
(Scheme S3, Figures S24 and S25). A 488 nm excitation
wavelength was used for the measurements in aqueous solution
since it was the excitation wavelength for cellular imaging
experiments (green channel, λem = 500−575 nm, λex = 488
nm).
Subsequently we evaluated the ability of ATP-LW to detect

ATP. A large increase in fluorescence intensity at 587 nm
(>80-fold, see Figure 1c and Figure S4) was observed
following the addition of ATP (0−15 mM) to an aqueous
solution of ATP-LW when the samples were excited at 520 nm.
However, the addition of ATP (0−15 mM) to ATP-LW
resulted in only a small increase in the fluorescence intensity
upon excitation at either 450 (Figure 1d) or 488 nm (Figure
S6). The disparity in emission and excitation profiles seen for
ATP and ONOO− provides support for the notion that ATP-
LW may be used to detect separately, albeit contempora-
neously, these two important analytes.
We then explored the fluorescence response of ATP-LW in

the presence of both ONOO− and ATP. It was found that the
peak at 589 nm for ATP-LW retained sensitivity to changes in
the ATP concentration even after the addition of ONOO− (16
μM) when excitation was effected at 520 nm (Figure S13).
Conversely, the emission peaks at 562 nm (Figure S14) or 569
nm (Figure S15) were seen to change as a function of the
ONOO− concentration, but were only slightly influenced by
the presence or absence of ATP (15 mM). These results were
taken as a further indication that ATP-LW may be used to
detect ONOO− and ATP independently, on the condition that
two different excitation wavelengths are used (Scheme 1). We
appreciate that the two emission peaks for ATP-LW are not
well separated. As such, it is difficult to ascertain whether
Förster resonance energy transfer (FRET) is occurring
between the naphthalimide and rhodamine that make up
ATP-LW.39 However, on the basis of density functional
theoretical analysis we believe that FRET does not occur to a
significant extent between the two fluorophores present in
ATP-LW (Figure S22).
We then evaluated the selectivity of the probe ATP-LW

toward a variety of potential biologically relevant interferents
(Figures 2 and 3). Other ROS, such as H2O2 and HOCl, led to
no change in the fluorescence intensity of ATP-LW under
conditions identical to those used to study ONOO− and ATP
(Figure 2). However, exposure of ATP-LW to ADP (10 mM)
led to an enhancement in the fluorescence intensity (Figure 3).
Since the concentration of ATP is around 1000-fold higher
than ADP in cells,3 as noted above, it seems highly unlikely

that this cross reactivity will preclude the use of ATP-LW for
the effective detection of ATP in cells.
Exposure to ONOO− resulted in a statistically significant

fluorescence increase that was instantaneous on the laboratory
time scale (Figure S16), while the reaction of ATP-LW and
ATP required approximately 100 min to reach saturation
(Figure S17). We next confirmed that ATP-LW exhibits good
stability over a pH range from 3 to 11 (Figures S11 and S12).
The fluorescence emission of a test solution formed by treating
ATP-LW with ONOO− was found to decrease at lower pH, a
finding that could reflect the known decomposition of
ONOO− in acidic media (Figure S11).41 The fluorescence
intensity at 587 nm was also found to decrease at higher pH

Figure 2. Selectivity bar chart for probe ATP-LW (15 μM) in PBS
buffer solution (10 mM, v/v, EtOH/H2O = 1/99, pH = 7.40) with
ONOO− (16 μM) or other ROS. (1) ONOO−; (2) H2O2 (100 μM);
(3) probe ATP-LW alone; (4) HOCl (100 μM); (5) ROO• (200
μM); (6) •OH (100 μM); (7) O2

•− (100 μM); (8) 1O2 (100 μM);
(9) APAP (20 mM); λex/em= 450 (bandwidth 8) nm/562 nm. Time
points were taken at 1 min (black bars), 10 min (red bars), and 30
min (blue bars).

Figure 3. Selectivity bar chart of ATP-LW (15 μM) in PBS buffer
solution (10 mM, v/v, EtOH/H2O = 1/99, pH = 7.40) upon
treatment with ATP (15 mM) or other potential interferents. (1)
Probe ATP-LW alone; (2) ATP (15 mM); (3) adenosine
diphosphate (ADP, 10 mM); (4) uridine 5′-triphosphate, trisodium
salt (UTP trisodium salt 10 mM); (5) guanosine 5′-triphosphate,
disodium salt (GTP disodium salt, 10 mM); (6) cytidine 5′-
triphosphate disodium salt (CTP disodium salt, 10 mM); (7) cysteine
(1 mM); (8) glutathione (1 mM); (9) homocysteine (1 mM); (10)
KCl (6 mM); (11) CaCl2 (2 mM); (12) MgCl2 (1 mM); (13) CuCl2
(100 μM); (14) ZnCl2 (100 μM); (15) NaCl (100 mM); (16) APAP
(20 mM); λex/em = 520 (bandwidth 8) nm/587 nm. Time points were
taken at 30 min (black bars), 60 min (red bars), and 100 min (blue
bars).
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Figure 4. One-photon confocal imaging of ONOO− and ATP levels in hepatocytes treated with SIN-1 or SIN-1/uric acid. (a) One-photon
fluorescence images of HL-7702 cells recorded after the addition of SIN-1 (1 mM, 1 h) and uric acid (500 μM, 1 h) with monitoring over the green
(ONOO−) and red (ATP) channels. Control group: Cells were stained with probe ATP-LW (20 μM) for 20 min. SIN-1 group: Cells were
incubated with SIN-1 (1 mM) for 1 h, then stained with probe ATP-LW (20 μM) for 20 min. UA + SIN-1 group: Cells were pretreated with uric
acid (500 μM) for 1 h and followed by adding SIN-1 (1 mM) for 1 h and then stained with probe ATP-LW (20 μM) for 20 min. Green
fluorescence channel for ONOO−: λex = 488 nm, λem = 500−575 nm. Red fluorescence channel for ATP: λex = 514 nm, λem = 575−650 nm. (b)
Green relative fluorescence intensity output of three groups. (c) Red relative fluorescence intensity output of three groups. Note: The green
fluorescence intensity of the control group is defined as 1.0. The data are expressed as the mean ± SD. Concordant results were obtained from five
independent experiments.

Figure 5. One-photon confocal imaging of ONOO− and ATP levels in hepatocytes treated with omy A or omy A/ATP. (a) One-photon
fluorescence images of HL-7702 cells with the addition of omy A (25 μM, 1 h) and ATP (10 mM, 1 h) for green (ONOO−) and red (ATP)
channels. Control group: Cells were stained with probe ATP-LW (20 μM) for 20 min. Omy A group: Cells were incubated with omy A (25 μM)
for 1 h, then stained with probe ATP-LW (20 μM) for 20 min. Omy A + ATP group: Cells were pretreated with omy A (25 μM) for 1 h followed
by adding ATP (10 mM) for 1 h and then stained with probe ATP-LW (20 μM) for 20 min. Green fluorescence channel for ONOO−: λex = 488
nm, λem = 500−575 nm. Red fluorescence channel for ATP: λex = 514 nm, λem = 575−650 nm. (b) Green relative fluorescence intensity output of
three groups. (c) Red relative fluorescence intensity output of three groups. Note: The green fluorescence intensity of the control group is defined
as 1.0. The data are expressed as the mean ± SD. Concordant results were obtained from five independent experiments.
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(pH > 8), a result ascribed to the hydrolysis of ATP under
basic conditions (Figure S12).42

The above results prompted us to explore the use of ATP-
LW for imaging live cells. First, we confirmed using an MTT
assay that ATP-LW was non-toxic to HL-7702 cells over
concentrations ranging from 0 to 1 mM with an incubation
time of 24 h (Figure S27). The ability of ATP-LW to image
ONOO− and ATP in living cells was then evaluated using
excitation wavelengths of 488 and 514 nm, respectively. ATP-
LW demonstrated a clear “turn on” response upon the addition
of 3-morpholinosydnonimine hydrochloride (SIN-1, a donor
of ONOO−)43 when monitored using the green channel
(Figure 4a and b). Meanwhile, a 0.61-fold decrease in the red
channel was observed as compared to the control group
(Figure 4c). We then evaluated crosstalk between the two
channels, and as expected, no appreciable fluorescence was
observed in either channel 3 (λex = 488 nm, λem = 575−650
nm) or channel 4 (λex = 514 nm, λem = 520−575 nm) when
HL-7702 cells were treated with ATP-LW and simultaneously
exposed to ATP and SIN-1 (Figure S28). Having confirmed
the absence of crosstalk, fluorescence changes using the
ONOO− scavenger uric acid were evaluated.44 The addition of
uric acid (500 μM) and SIN-1 (1.0 mM) led to a 0.32-fold
decrease in the average green fluorescence intensity and 1.60-
fold enhancement in the average red fluorescence intensity,
when compared with the corresponding SIN-1 group (as
determined by monitoring the green and red channels,
respectively, Figure 4). These results are consistent with
suggestions in the literature that an increase in the ONOO−

concentration can result in depletion of ATP.22

We then set out to evaluate how imbalances in the energy
metabolism instigated by obstructing ATP production can

influence production of ONOO−. Oligomycin A (omy A)
inhibits ATP synthase by blocking its FO unit.45 As shown in
Figure 5, after hepatocytes were incubated with omy A (25
μM) for 1 h, a 38% decrease in the red channel signal relative
to the initial level was seen (Figure 5c). Concurrently, a 1.64-
fold increase in the green channel intensity was seen, as
expected for an increase in the ONOO− levels as compared to
healthy hepatocytes (Figure 5b). The addition of exogenous
ATP (10 mM) yielded a green channel intensity that was 95%
of the control group (Figure 5b), while the intensity of the red
channel increased to almost the same level as the control group
(Figure 5c). While not a proof, these findings support the
conclusion that the addition of exogenous ATP induces
recovery26 and that ROS/RNS production is affected by
mitochondrial damage to ATP synthesis, leading to an increase
of ONOO−. These results are not surprising since it is known
that omy A induces cellular apoptosis via ATP inhibition;46,47

moreover, oxidative stress (i.e., ONOO−) is an associated
factor in apoptosis-related cell death.48 As such, our results
support the conclusion that omy A induces the production of
ONOO− in a cellular environment via ATP inhibition.
ROS and RNS are regarded as biomarkers in DILI and are

thus analytes that have been frequently targeted using
fluorescent probes.19,21 Previous studies confirm that ATP
production is decreased by exposure to APAP.22,49,50 APAP-
induced hepatoxicity was thus chosen as the model to
investigate whether ATP-LW could detect ONOO− and
ATP, since these two species could serve as early diagnostic
biomarkers. Treatment of HL-7702 cells with APAP produced
a marked increase in the fluorescence of the green channel and
a significant decrease in the fluorescence in the red channel
(Figure 6). This finding underscores how upregulation of

Figure 6. One-photon confocal images of APAP-induced injury and its remediation by NAC in HL-7702 cells. (a) One-photon fluorescence images
of HL-7702 cells with the addition of APAP (15 mM, 2 h) and NAC (2 mM, 2 h) for green (ONOO−) and red (ATP) channels. Control group:
Cells were stained with probe ATP-LW (20 μM) for 20 min. APAP group: Cells were incubated with APAP (15 mM) for 2 h and then stained with
probe ATP-LW (20 μM) for 20 min. APAP + NAC group: Cells were pretreated with NAC (2 mM) for 2 h and then incubated with APAP (15
mM) for 2 h, followed by staining with probe ATP-LW (20 μM) for another 20 min. Green fluorescence channel for ONOO−: λex = 488 nm, λem =
500−575 nm. Red fluorescence channel for ATP: λex = 514 nm, λem = 575−650 nm. (b) Green relative fluorescence intensity output of three
groups. (c) Red relative fluorescence intensity output of three groups. Note: The green fluorescence intensity of the control group is defined as 1.0.
The data are expressed as the mean ± SD. Concordant results were obtained from five independent experiments.
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intracellular ONOO− and depletion of ATP occur after
administration of APAP while serving to illustrate the ability
of our probe to detect concentration changes of these two
biomarkers via one-photon confocal imaging in a DILI cellular
model. This was further confirmed using N-acetyl-L-cysteine
(NAC), which is a precursor for the substrate (L-cysteine) in
the synthesis of reduced glutathione (GSH) and commonly
used for the treatment of APAP overdose.51,52 GSH is capable
of eliminating ONOO−, and as such has been used to help
treat APAP overdoses.53,54 Upon addition of NAC, the
fluorescence intensity in the green channel decreased and
that of the red channel increased (Figure 6). This finding is
thus consistent with the reduction of ONOO− and an increase
in the ATP concentration under these conditions.
Our attention then turned to two-photon imaging55 of

ONOO− and ATP using ATP-LW, with the same cell models
used above. The results (Figure 7) served to confirm the ability
of ATP-LW to image both ONOO− and ATP, using an
excitation of 976 nm for the former and 1028 nm for the latter,
and we extended the emission range for the red channel (i.e.,
575−680 nm).

■ CONCLUSION

In summary, we have developed a novel dual-analyte
fluorescent probe (ATP-LW), which provides a fluorescence
response toward ONOO− and ATP simultaneously by means
of different excitation wavelengths. Probe ATP-LW comprises
two responsive units that are expected to react independently
with ONOO− and ATP, respectively.31 Upon the addition of
ONOO− alone, the 4-hydroxy-1,8-naphthalimide subunit
luminesces (λex = 450 nm, λem = 562 nm or λex = 488 nm,

λem = 568 nm); conversely, when ATP alone is present, the
rhodamine ring opens and luminesces (λex = 520 nm, λem =
587 nm). In order to detect ONOO− and ATP in cellular
milieus with minimal crosstalk, we choose to monitor the
emission over the green channel (λex = 488 nm, λem = 500−575
nm) and red channel (λex = 514 nm, λem = 575−650 nm). It
was found that by using ATP-LW and two different channels it
is possible to monitor concurrently the enhancement of
ONOO− and depletion of ATP during APAP-induced
hepatotoxicity. This monitoring provides support for the
proposed signaling pathways for APAP-induced toxicity
wherein ONOO− increases and ATP depletion are thought
to be responsible for hepatic necrosis.56 We anticipate that
ATP-LW can be extended to image fluctuations of these two
biomarkers in other diseases, such as ischemia-reperfusion
injury.14
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Figure 7. Two-photon fluorescence images of APAP-induced injury with HL-7702 cells. (a) Two-photon fluorescence images of HL-7702 cells
with the addition of APAP (20 mM, 2 h) and NAC (2 mM, 2 h) for green (ONOO−) and red (ATP) channels. Control group: Cells were stained
with probe ATP-LW (20 μM) for 20 min. APAP group: Cells were incubated with APAP (20 mM) for 2 h and then stained with probe ATP-LW
(20 μM) for 20 min. APAP + NAC group: Cells were pretreated with NAC (2 mM) for 2 h and then incubated with APAP (20 mM) for 2 h,
followed by staining with probe ATP-LW (20 μM) for another 20 min. Two-photon green fluorescence channel for ONOO−: λex = 976 nm, λem =
500−575 nm. Two-photon red fluorescence channel for ATP: λex = 1028 nm, λem = 575−680 nm. (b) Green relative fluorescence intensity output
of three groups. (c) Red relative fluorescence intensity output of three groups. Note: The green fluorescence intensity of the control group is
defined as 1.0. The data are expressed as the mean ± SD. Concordant results were obtained from five independent experiments.
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