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Abstract
1. For birds, maintaining an optimal nest temperature is critical for early- life growth 

and development. Temperatures deviating from this optimum can affect nestling 
growth and fledging success with potential consequences on survival and life-
time reproductive success. It is therefore particularly important to understand 
these effects in relation to projected temperature changes associated with climate 
change.

2. Targets set by the 2015 Paris Agreement aim to limit temperature increases to 
2°C, and, with this in mind, we carried out an experiment in 2017 and 2018 where 
we applied a treatment that increased Great Tit Parus major nest temperature 
by approximately this magnitude (achieving an increase of 1.6°C, relative to the 
control) during the period from hatching to fledging to estimate how small tem-
perature differences might affect nestling body size and weight at fledging and 
fledging success.

3. We recorded hatching and fledging success and measured skeletal size (tarsus 
length) and body mass at days 5, 7, 10, and 15 posthatch in nestlings from two 
groups of nest boxes: control and heated (+1.6°C).

4. Our results show that nestlings in heated nest boxes were 1.6% smaller in skeletal 
size at fledging than those in the cooler control nests, indicating lower growth 
rates in heated boxes, and that their weight was, in addition, 3.3% lower.

5. These results suggest that even fairly small changes in temperature can influence 
phenotype and postfledging survival in cavity- nesting birds. This has the potential 
to affect the population dynamics of these birds in the face of ongoing climatic 
change, as individuals of reduced size in colder winters may suffer from decreased 
fitness.
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1  | INTRODUC TION

Environmental conditions during early development are well 
known to play an important role in shaping an organism's pheno-
type (Naguib et al., 2011), because these early conditions can have 
long- lasting cross- generational effects (Monaghan, 2007; Naguib 
et al., 2011). Several authors have addressed the influence of tem-
perature in early development and have found effects on short-  and 
long- term phenotypic expression, such as survival, growth, and size 
(Andrews et al., 2000; Bourne et al., 2020; Shine et al., 1997; Van 
Damme et al., 1992).

Body size is one of the most important phenotypic traits be-
cause it is a well- known determinant of survival and breeding suc-
cess of wild animals. Of crucial importance, therefore, is the body 
size achieved at independence or sexual maturity. In general, smaller 
individuals will fare less well and have lower lifetime reproductive 
success than those of a larger size (Bolton, 1991; Cox et al., 2014; 
Garnett, 1981; Sullivan, 1989).

One adaptation to temperature regimes is the reduction of body 
size, as small body sizes will increase the surface- area- to- volume 
ratio, and thereby exacerbate heat loss (Teplitsky et al., 2008). Yom- 
Tov (2001) tackled phenotypic plasticity in a long- term study (1950– 
1999) in several bird species and showed that some of them, such 
as the House Sparrow Passer domesticus, reduced both their aver-
age body mass and tarsus length as average ambient temperature 
increased, and these changes were likely due to phenotypic plas-
ticity rather than selection (microevolutionary change) (Teplitsky 
et al., 2008). Although such observational approaches are powerful, 
they cannot easily disentangle the role of temperature from other 
potential drivers that may also be correlated with temperature such 
as food availability (Burguer et al., 2012; Vedder et al., 2013).

Future climate scenarios include changes to local temperature 
regimes, and therefore, a timely question is: If temperature does in-
fluence adult body size, how exactly is this mediated? The effects of 
these temperature changes may be perceived in the early stages of 
the bird's life, where the thermal environment of the nest plays an 
important role in determining the energetic investment of the young 
(Rodríguez & Barba, 2016a). Here, we use an experimental approach 
using a population in artificial nest boxes where we can easily moni-
tor our study species. Specifically, we aim to quantify the role of tem-
perature during a critical stage of the altricial Great Tit Parus major 
development— the nestling period (i.e., between hatching and fledg-
ing). Upon hatching, the chicks are naked, weighing approximately 
1.5 g (Orell, 1983). They then grow rapidly, reaching their adult size 
and weighing around 16.0 g when they fledge (Orell, 1983).

We hypothesize that an experimentally increased nest tempera-
ture could result in a reduced adult skeletal size. Support for this 
hypothesis would demonstrate the important role of phenotypic 
plasticity rather than viability selection in determining body size 
variation within species. In investigating body size, we focus primar-
ily on skeletal size (tarsus length) rather than body mass because 
measurements of the latter are particularly sensitive to food intake 
variability (Rising & Somers, 1989) and will consequently be more 

weakly related to growth and development processes compared 
with more robust measures.

2  | MATERIAL AND METHODS

2.1 | Study area

We conducted this study from February to June in 2017 and 2018 
on a Great Tit population breeding in two areas of mixed temper-
ate woodland in northern Europe around University of Southern 
Denmark's (SDU) Odense campus (55.372°N, 10.424°E). These 
woodlands are composed mainly of Sycamore Acer pseudoplatanus, 
Common Ash Fraxinus excelsior, and Wych Elm Ulmus glabra and are 
lightly managed by selective logging practices that remove trees that 
endanger safety of walkers.

2.2 | Nest boxes and experimental treatment

In 2013, 100 nest boxes were deployed as part of the SDU Bird 
Project aimed to monitor the Great Tit's population biology in the 
area. These nest boxes are made of pine, with 2 cm thick walls and 
the entrance hole located 18 cm above the bottom of the box. They 
have a rectangular shape with a volume of approximately 6.5 L 
(23.5 cm height and a 14 × 19.6 cm base; Appendix S1, Figure S1). As 
a maintenance procedure, and according to Lambrechts et al. (2010), 
the nest boxes are cleaned before the beginning of each nest-
ing season (by the end of February) to remove winter nests from 
other birds or mammals and to reduce the potential ectoparasite 
load (Goodenough et al., 2011). Following the recommendations of 
Lambrechts et al. (2010) for a better occupancy, the nest boxes are 
secured against the tree trunks with wire ~1.5 m above the ground. 
For this study, we ensured that every nest box faced southeast. 
This is important because previous studies have revealed an ef-
fect of orientation on various measures including occupancy, nest-
ling body mass, and microhabitat (Goodenough et al., 2008, 2011; 
Goodenough & Stallwood, 2012). By facing all the nest boxes in 
the same orientation, the confounding effects of orientation were 
reduced.

Before the breeding season began, we prepared all of the nest 
boxes to allow artificial heating of their chambers, aiming to in-
crease temperatures within the nest box by approximately 2°C 
(Appendix S1, Figure S1). We used this target treatment temperature 
increase because it is just beyond the target of a 1.5°C global in-
crease set by the 2015 Paris Agreement (UNFCCC, 2015). We mod-
ified the nest boxes to allow the addition of insulation (polystyrene) 
and a heating source (UniHeat 72- hr chemical heat packs) under the 
nest cup. This modification consisted of a cut 6 cm above the base 
acting as a removable door, where we inserted a piece of polysty-
rene with a thickness of 2 cm. This avoided direct contact with the 
nest itself, reducing the stress on the individual birds occupying the 
nest box and preventing them from leaving the nest during the visits. 
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The placement of the polystyrene insulation left a chamber below 
the nest where we placed the heat packs. Over this material, we 
placed a water- resistant piece of wood with a thickness of 3 mm to 
protect the polystyrene from weathering. There was about 1 cm be-
tween the heat pack and the insulation layer, so the heat pack could 
function properly, due to its need for oxygen to start the chemical 
reaction (by oxidizing iron powder).

2.3 | Nest temperature and ambient weather

To document temperatures in the heated and control nest boxes, we 
used wire to securely anchor DS1921G Thermochron iButton tem-
perature data loggers (Maxim Integrated, accuracy ± 0.5°C) immedi-
ately adjacent to the nest material cup of a subset of our nest boxes 
(2017, n = 14; 2018, n = 24, divided equally among heated and control 
treatment groups). The position of the iButton ensured that it was 
close to, but not touching, the nestlings (Appendix S1, Figure S2). We 
set the data loggers to record temperature every 5– 10 min during 
the study period (13th– 27th May 2017; 22nd– 27th May 2018). To 
record ambient weather conditions, we obtained maximum and min-
imum daily temperatures from a nearby (5.46 km distance) weather 
station in Aarslev (55.317°N, 10.433°E). We obtained the data via 
the Global Surface Summary of the Day (GSOD) data provided by 
the US National Centers for Environmental Information (NCEI).

2.4 | Monitoring of reproductive success and 
chick growth

From the beginning of March, we visited every nest box at least once 
per week until the beginning of April, when the survey frequency 
increased to every 2 or 3 days. This allowed us to estimate accurately 
the date of laying of the first egg, the first day of incubation, and 
the final clutch size, assuming that one egg was laid per day (Encabo 
et al., 2001). When incubation started (hereafter referred to as incu-
bation day 1), we stopped the daily visits until incubation day 10, to 
reduce disturbance to the parents.

We determined the exact hatching date (hereafter referred to 
as hatching day 0) by daily inspections from day 11 after the be-
ginning of incubation. On hatching day 1, we placed the first heat 
pack in the nest box, and we continued the nest visits every second 
day until 13 days posthatching, in order to replace the heat packs 
in the nest boxes under the heating treatment and to ensure an 
equal amount of disturbance to the control boxes. We placed used 
(nonactive) heat packs in the heating chamber of the control nest 
boxes. Unlike Álvarez and Barba (2014), we decided to replace the 
heat packs every 2 days and not three because, according to our 
earlier pilot study, the heat packs showed a marked decrease in their 
heat production capability after 48 hr. We alternately assigned each 
box to the “heated” or “control” group, depending on their hatching 
date and location in the forest. This stratified approach ensured that 
we avoided bias in temperature differences between groups due to 

measurements on different developing periods, or habitat factors 
such as nest density.

We ringed each nestling using an individually numbered metal 
ring between days 7 and 10 depending on the developmental status 
of the nestling (very small chicks were not ringed until they had a 
tarsus length of approximately 15 mm in length). We identified each 
nestling from day 5 until they were ringed by marking them on the 
skin of their vent and lower wing, and bill, with a nontoxic marker 
pen (Sharpies). We recorded the number and identity of nestlings 
alive on days 5, 7, 10, and 15 after hatching, and measured their 
tarsus length with a digital calliper (RS Pro; accuracy ± 0.01 mm) in 
order to obtain information on adult size of nestlings, measured as 
tarsus length at day 15 (Noordwijk, 2012), and weighted them with 
an electronic balance (accuracy ± 0.1 g). On day 20, we visited each 
nest box to confirm fledging and to measure fledging success, and 
we identified and counted dead individuals. For this experiment, we 
only used nestlings from first broods.

Our method allowed us to estimate the date of hatching of the 
first egg and the length of the incubation period. In addition, we 
recorded a suite of nest- specific breeding parameters: clutch size, 
number of hatched, and fledged nestlings (and consequently prob-
abilities of hatching and fledging). We obtained data from 30 nest 
boxes in 2017 (17 control, 13 heated) and 36 nest boxes in 2018 
(17 control, 19 heated). The differences in sample sizes among 
treatments and years were due to varying occupancy of the mod-
ified boxes by other birds' species present in the area (i.e., Blue Tit 
Cyanistes caeruleus; Marsh Tit Poecile palustris; Eurasian Nuthatch 
Sitta europaea).

2.5 | Statistical analyses

To test whether temperature had an effect on the breeding outcome 
and nestling size at day 15, we used GLMs including the treatment 
and the year (and their interaction). Because our heating treatment 
was applied only from the day of hatching onwards, we accounted 
for the potential confounding effect of prehatching variables. These 
prehatching variables, hereafter referred to as breeding parameters, 
which are fundamental in monitoring the breeding process, were 
the duration of incubation (in days), clutch size, and the brood size. 
We first standardized these values by subtracting the mean and di-
viding by the year- specific standard deviation. Then, to determine 
if these potential confounding variables influenced our results, we 
fitted pairs of models with one including the potential confounding 
variable and the other omitting it. We tested the significance of the 
confounding variable using ANOVA to compare models. In addition, 
we controlled for among- nest differences in the timing of reproduc-
tion by adding the day of hatching (again, standardized by subtract-
ing the mean and dividing by the year- specific standard deviation) 
as a covariate.

In summary, we fitted two models to test for treatment differ-
ences in the breeding outcome (hatching and fledging success), and 
two models to test for nestling size and weight at day 15 (tarsus 
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length and body weight). All the statistical analyses were carried 
using the statistical software R version 4.0.1 (R Core Team, 2020).

2.6 | Effects on the breeding outcome

We used hatching and fledging success as measurements of the 
breeding outcome. While the treatment was applied after hatch-
ing, we still decided to include the hatching success in the analysis, 
to further test for (and discard) initial bias. For the different sets of 
models for each of the variables, we followed the previously ex-
plained model comparison approach. For tractability, we conducted 
our analysis at the level of the nest rather than individual chick level. 
In each case, our response variable consisted of two values: number 
of successes (survival) and number of failures (i.e., death), and so our 
models were fitted with a binomial error structure.

2.7 | Post- treatment effects on nestling 
size and weight

In addition to our examination of the breeding outcome, we studied 
the effect of the temperature treatment on nestling size and weight. 
To do this, we graphically examined the brood mean tarsus length 
and body weight of our treatment groups (control and heated) on 
days 5, 7, 10, and 15 posthatching. Although it would have been 
interesting to fit growth- curve models, such as Gompertz or von 
Bertalanffy functions (von Bertalanffy, 1957; Ricklefs, 1967), we did 
not have sufficient data points per individual to model such curves 
reliably. Instead, we chose to examine the size and weight achieved 
at day 15 after hatching, which is when these birds are known to 
reach adult skeletal size (Noordwijk, 2012). As explained above, we 
conducted a model comparison approach using GLMs with Gamma 
error structures.

3  | RESULTS

Our comparison of nest temperature within a subset (n = 38) of 
heated and control nests showed that heated nests were, on aver-
age, 1.63°C warmer than control nests (i.e., around a maximum of 
36.0°C versus 34.3°C during the day and dropping to 29.8°C versus 
27.8°C during the night, see Appendix S1, Figure S3). Ambient air 
temperature tended to be cooler in 2017 than 2018 and increased 
from around 6.6 ± 2.3°C in April to 15.3 ± 1.8°C in June in 2017 and 
from 9.2 ± 3.5°C in April to 16.7 ± 2.3°C in June 2018 (mean ± SD; 
see also Figure 1).

3.1 | Effects on the breeding outcome

Our model comparison showed that the treatment (“heated” vs. 
“control”) did not have a significant effect on breeding outcome in 

either year (2017, 2018), neither did it influence hatching success 
(t5,58 = 101.53, p = 0.47) or the fledging success (t4,59 = 176.60, 
p = 0.80). However, we note that in 2018, the effect of the treatment 
on the fledging success was larger on heated boxes, with slightly 
lower success (Figure 2b).

3.2 | Post- treatment effects on nestling 
size and weight

A visual inspection of the raw data (Figure 3) revealed that growth 
trajectories were broadly similar between years, but that there was 
greater variation in 2017 than in 2018. In addition, there was a clear 
and consistent difference in mean tarsus length in 2017, with the 
heated group being smaller than the control. In contrast, the differ-
ences between treatment groups were more ambiguous in 2018.

We found a significant effect of the treatment on both tar-
sus length (t3,57 = 0.04, p = 0.027) and body weight (t3,57 = 0.04, 
p < 0.001) at day 15. The model's population- level estimates for 
tarsus length, adjusted for day of hatching, were 20.18 mm (95% 
CI = 19.97– 20.39 mm) and 19.87 mm (95% CI = 19.67– 20.08 mm) for 
control and heated groups, respectively: This was a 1.55% differ-
ence in size (Figure 2c). The estimates for the values of body weight 
were 18.02 g (95% CI = 17.02– 19.03 g) and 17.42 g (95% CI = 16.40– 
18.41 g) for control and heated groups, respectively: This was a 
3.34% difference in body weight among treatments (Figure 2d).

F I G U R E  1   Average daily temperature (±1 standard deviation) 
in April– June 2017 and 2018. Red points/bars represent 2017, 
and blue points/bars represent 2018. Weather data obtained from 
a nearby weather station (Aarslev, 5.46 km away) via the Global 
Surface Summary of the Day (GSOD) data provided by the US 
National Centers for Environmental Information (NCEI)
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4  | DISCUSSION

In this study, we carried out a field experiment investigating growth 
patterns in Great Tits and, in particular, the influence that nest 
temperature (and therefore thermoregulatory costs) have on adult 
size. We used tarsus length as our main indicator of adult size, be-
cause this measurement remains constant throughout adult life 
(Garnett, 1981) and is not as influenced by spatio- temporal variation 
in environmental conditions as body weight. Nevertheless, we car-
ried out an additional analysis using body weight which produced 
qualitatively similar results. We found that nestlings from warmer 
nests tend to reach a smaller skeletal size (as measured by tarsus 
length) than those in the cooler nests. Broadly, our study thus sup-
ports previous experimental findings (Rodríguez & Barba, 2016b; 
Rodríguez et al., 2016; Salaberria et al., 2014) and the extensive 
observational work using long- term population data that have also 

found reduced body size with increasing temperature (McNab, 1971; 
Teplitsky et al., 2008; Weeks et al., 2019; Yom- Tov, 2001).

A visual inspection of growth trajectories (Figure 3) shows that 
they followed a similar pattern in both years. However, although 
mean size was consistently smaller in the heated group in 2017 
throughout the growing period, the pattern was more ambiguous in 
2018 with smaller differences between groups and a smaller body 
size in the heated group only after 15 days. Nevertheless, despite 
this ambiguity, our model showed that there was an overall statisti-
cally significant difference after 15 days of the nestling period. It is 
notable that individual variation and the treatment effect were most 
pronounced in 2017 (Figure 2c,d), when the external ambient tem-
peratures were colder (Figure 1). One explanation for this could be 
that, even though the differences in nest temperature were similar 
(~2°C), there may have been larger and more variable differences in 
the microclimate elsewhere in the nest box itself when the ambient 

F I G U R E  2   Results for the model 
prediction for each of the breeding 
outcome variables (a: hatching success; 
b: fledging success), as well as the tarsus 
length (c) and weight (d) at day 15. In red, 
expected results for an individual from 
the “heated” treatment, and in blue for an 
individual of the “control” treatment

F I G U R E  3   Brood mean tarsus length 
(mm) of both treatment groups during the 
two- year period of study. The bold black 
lines indicate overall treatment means, 
while the pale colored lines indicate the 
brood- level means which are shown 
to indicate variation. In both years, the 
average final tarsus size of the individual 
(day 15) is statistically significantly 
reduced in the heated group. Error bars 
on the overall mean points represent 
standard error and are in some cases 
obscured by the points
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temperatures were lower. Another possible explanation could be 
that females had to brood more often and thus reduce the foraging 
provision of the nestlings. However, Álvarez and Barba (2014) did 
not find differences in the size or condition of the nestlings when 
females reduced its presence in the warmer nests. Between- year 
differences in the mean tarsus length throughout the nestling period 
(up to and including day 15) could also be driven by food availability, 
perhaps with greater food availability in 2018 when ambient tem-
peratures were greater (Figures 1– 3).

Our general finding that nestlings from warmer nests fledge at 
a smaller body size than those from cooler nests may be related to 
James' rule (Blackburn et al., 1999), which proposes that body size 
should be larger in individuals living in cooler environments than 
those in warmer environments. The underlying rationale for this is 
that it is beneficial for individuals in colder environments to reduce 
their surface- area- to- volume ratio to ameliorate heat loss (Teplitsky 
et al., 2008). Another explanation may be that nestlings under heat 
stress invest energy in thermoregulation at the expense of growth 
(as found by Andreasson et al., 2018). However, we believe this is un-
likely in our case because our heated treatment was moderate (~2°C) 
compared to the heat shock imposed in their study (i.e., ~8– 10°C 
higher than in our study).

It was perhaps a little surprising that the timing of hatching was 
not associated with tarsus length and body weight, as the relationship 
between hatching date and the availability of food (e.g., insects, espe-
cially caterpillars) is well- established (Caro et al., 2013; Charmantier 
et al., 2008; Schaper et al., 2012; Tinbergen & Boerlijst, 1990; Visser 
et al., 2009). The lack of statistical significance in this particular case 
could be due to insufficient sample size to detect a small effect size 
or due to a stronger effect of temperature in the case of size mea-
surements (tarsus length and body weight).

In addition, we would like to highlight the observation of an ap-
parent reduction in fledging probability in the heated nests com-
pared to the control group (Figure 2b) during 2018. This negative 
effect of heating has been observed in similar experiments, because 
temperatures inside the heated nests can exceed the optimal range 
of 12– 31°C (Rodríguez & Barba, 2016b), causing a detrimental im-
pact on nestling physiology and body condition (Belda et al., 1995; 
Salaberria et al., 2014). However, the temperatures reached in our 
study (~30– 36°C) were somewhat lower than other studies (e.g., 
Andreasson et al., 2018; Rodríguez & Barba, 2016b) where there 
was no observed effect on the nestling survival. Therefore, even 
with higher temperature during 2018, it is unlikely that heat was the 
main driver of the fledging difference in our case. An alternative in-
direct explanation could be that parents reduce their attentiveness 
and feeding rates in heated nests leaving their offspring undernour-
ished, but as we argue before, this seems unlikely because Álvarez 
and Barba (2014) found that feeding behavior did not change signifi-
cantly in heated nests compared to control ones.

In summary, this study shows that an increase in nest tem-
perature of around 2°C during the early development is sufficient 
to produce phenotypic changes in the individual of up to 1.6% in 
skeletal size at fledging and a reduction of 3.3% body weight. 

Although 1.5°C is the threshold agreed in the 2015 Paris Agreement 
(UNFCCC, 2015), other models suggest that global temperature 
surface will rise even more (Hughes, 2000; Kellstedt et al., 2008; 
Wormworth & Sekercioglu, 2011). It is clear that climate change and 
accompanying temperature increases could alter breeding success 
and the phenotypic development of nestlings. Even though cavity 
nests are by nature buffered against weather variation, their micro-
climate is strongly associated with ambient temperatures and they 
are thus not immune from the effects of climate change (Larson 
et al., 2018; Maziarz et al., 2017). These climate- driven changes in 
body size could have further population- level consequences later in 
the season because adult body size is an important predictor of adult 
survival, especially over winter (Rodríguez et al., 2016; Tinbergen & 
Boerlijst, 1990). Thus, a situation where increased spring tempera-
tures leads to smaller body size at fledging (and presumably smaller 
adult size) could lead to reduced overwinter survival, even if winter 
temperatures are unaltered. In Europe, climate change is expected 
to bring both increased spring and summer temperatures, and de-
creased winter temperatures, and this could have an even larger 
negative effect on survival (Kelemen et al., 2009). Whatever the 
future may hold, understanding the relationship between weather 
and breeding success and development is crucial if we are to under-
stand in greater detail the broader consequences of climate change 
on species.
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