
September 2016 | Volume 7 | Article 1631

PersPective
published: 27 September 2016
doi: 10.3389/fpsyt.2016.00163

Frontiers in Psychiatry | www.frontiersin.org

Edited by: 
Kim T. Mueser,  

Boston University, USA

Reviewed by: 
Mark Dust,  

Claremont Graduate University, USA  
Henry W. Chase,  

University of Pittsburgh, USA

*Correspondence:
Joe Z. Tsien  

jtsien@augusta.edu

Specialty section: 
This article was submitted 

to Psychopathology,  
a section of the journal  
Frontiers in Psychiatry

Received: 22 July 2016
Accepted: 14 September 2016
Published: 27 September 2016

Citation: 
Lee JC, Wang LP and Tsien JZ 

(2016) Dopamine Rebound-Excitation 
Theory: Putting Brakes on PTSD.  

Front. Psychiatry 7:163.  
doi: 10.3389/fpsyt.2016.00163

Dopamine rebound-excitation 
theory: Putting Brakes on PtsD
Jason C. Lee1, Lei Philip Wang1,2 and Joe Z. Tsien1*

1 Department of Neurology, Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta University, Augusta, 
GA, USA, 2 Department of Psychiatry, Medical College of Georgia, Augusta University, Augusta, GA, USA

It is not uncommon for humans or animals to experience traumatic events in their life-
times. However, the majority of individuals are resilient to long-term detrimental changes 
turning into anxiety and depression, such as post-traumatic stress disorder (PTSD). 
What underlying neural mechanism accounts for individual variability in stress resilience? 
Hyperactivity in fear circuits, such as the amygdalar system, is well-known to be the 
major pathophysiological basis for PTSD, much like a “stuck accelerator.” Interestingly, 
increasing evidence demonstrates that dopamine (DA) – traditionally known for its 
role in motivation, reward prediction, and addiction – is also crucial in regulating fear 
learning and anxiety. Yet, how dopaminergic (DAergic) neurons control stress resilience 
is unclear, especially given that DAergic neurons have multiple subtypes with distinct 
temporal dynamics. Here, we propose the Rebound-Excitation Theory, which posits 
that DAergic neurons’ rebound-excitation at the termination of fearful experiences serves 
as an important “brake” by providing intrinsic safety-signals to fear-processing neural 
circuits in a spatially and temporally controlled manner. We discuss how DAergic neu-
ron rebound-excitation may be regulated by genetics and experiences, and how such 
physiological properties may be used as a brain-activity biomarker to predict and confer 
individual resilience to stress and anxiety.
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In describing emotions as natural selection traits, Darwin observed that fear is universal across 
multiple species (1). Despite its biological importance, fear can become dysregulated, such that 
an otherwise harmless situation or neutral cue can later trigger an unreasonable and exaggerated 
fearful response, resulting in psychiatric disorders, such as anxiety disorders, panic attacks, and 
post-traumatic stress disorders (PTSD) (2). PTSD patients exhibit avoidance behaviors, hypervigi-
lance, and sleep disturbance. They also experience persistent negative mood and flashbacks about 
the traumatic event (3). Investigation into the fear circuit has revealed that PTSD could arise due 
to enhanced fear-learning or fear-sensitization (4, 5), reduced or delayed fear extinction (6, 7), or 
impaired safety-learning processes (8–10). One key criterion for PTSD diagnosis is the exposure to 
a traumatic or stressful event. However, it is well-known that only a small percentage of individuals 
develop PTSD following trauma or stressors (11). What are the neural mechanisms responsible for 
the inter-individual variability in stress resilience?

Indeed, the interest in stress resilience has increased in recent years. Several genetic studies have 
identified potential molecular contributors to stress resilience involving neural circuits, such as the 
serotoninergic circuit and hypothalamic–pituitary–adrenal axis (12–17). Interestingly, resilience 
and susceptibility to a stressor, such as using social defeat protocols in rodents, have also been 
attributed to the mesolimbic dopamine (DA) circuit (18). However, how dopaminergic (DAergic) 
neural activities on a network level contribute to resilience or susceptibility remains unclear. Here, 
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we wish to propose the Rebound-Excitation Theory, which posits 
that the DAergic neuromodulatory circuit generates spatially and 
temporally precise safety signals upon the termination of fearful 
stimuli, which act as important innate brakes on fear signals in 
the brain. Importantly, this intrinsic rebound-excitation signal 
can be modified by repeated exposure to aversive experiences, 
as well as by associative safety-signal learning via pairing with 
conditioned stimulus (CS, such as a neutral tone), via NMDA 
receptors on DAergic neurons.

DA circUit DiversitY AND 
cOMPLeXitY

DAergic neurons are well-known to subserve a wide range of bio-
logical functions, such as learning and memory (19), motivation 
(20, 21), reward prediction error (22, 23), salience and valence (24, 
25), addiction (26, 27), and wanting (28, 29). Recently, a growing 
body of evidence suggests that DA may also play a crucial role 
in regulating fear memory and behaviors (30–34). Micro-dialysis 
and fast-scan cyclic voltammetry studies have also shown that 
DA concentrations change in DAergic projection areas, such as 
the nucleus accumbens (NAc), in response to aversive stimuli (32, 
35). Moreover, in vivo electrophysiological studies in rodents and 
monkeys have also reported heterogeneous DAergic responses 
to aversive events (24, 36–43). However, understanding how 
DAergic neurons subserve fear processing is proving to be a 
difficult task. For instance, DAergic neurons exhibit both tonic 
and burst type firing modes (44–46), both of which exert distinct 
DA release profiles that act on separate DA receptor populations 
(47). Moreover, DAergic neurons are diverse in nature and can 
be classified by multiple criteria, such as anatomical locations 
(48), input-projections (49–52), distinct response dynamics to 
rewards, and aversive stimuli (25, 43, 53). Adding more dimen-
sions to the circuit complexity, DAergic firing exhibits temporal 
and spatial dynamics that must also be taken into consideration. 
For example, multi-phasic temporal dynamics in DAergic neurons 
have been reported in studies using unexpected (unconditioned) 
aversive stimuli (40, 53). Consistent with such complex dynamics, 
we recently described computational classifications of DAergic 
subtypes based on their distinct inter-spike-interval dynamics 
(54). Such classifications were further verified by optogenetic 
methods (54). In addition, downstream targets receiving DAergic 
projections can send feedback projections to modulate DA 
activities (55–57). Likewise, local controls of DAergic activities 
by GABAergic neurons can further add to the complexity of DA 
signal regulation (58–60).

reBOUND-eXcitAtiON tHeOrY

In order to understand the role that DAergic neurons play in 
processing traumatic experiences, the aforementioned DA circuit 
complexity necessitates the need to systematically compare and 
contrast how distinct subpopulations of DAergic neurons respond 
to emotionally traumatizing events. Emerging evidence clearly 
suggests that DAergic neurons readily respond to aversive stimuli, 
including air-puffs to the eyelids of monkeys, or administering 
bitter tastant quinine in awake rats or tail pinches or foot-shocks 

to anesthetized rats. However, how the same DAergic neurons 
respond to a variety of fearful stimuli has rarely been investigated. 
Thus, the tuning properties of distinct DAergic neuron subtypes 
remain unclear. Moreover, anesthetized states examined in some 
of the literature could alter the hedonic state of the stimuli and thus 
the neural responsivities (61, 62). Furthermore, while negative 
stimuli – such as air-puffs to the eye or administration of quinine 
to the mouth, or tail pinch under anesthetized state – are aversive 
in nature, they are not appropriate as PTSD-inducing models.

To specifically examine how DAergic neurons respond to 
traumatic fear in real-life events, we used laboratory versions 
of fearful unconditioned stimuli (US) (such as an earthquake, 
free fall, or foot-shocks) that induce profound fear memory and 
rapid cardiac responses in freely behaving mice (63). Combined 
with pharmacological and optogenetic methods, chronic in vivo 
recordings of VTA DAergic neural activities in freely behaving 
mice have shown two major types of DAergic neuron responses: 
fear-inhibited and fear-excited DAergic neurons (40). Notably, 
we observed that many aversive-inhibited DAergic neurons show 
phasic rebound-excitation responses at the offset of unexpected 
aversive stimuli (40) (Figure 1). This unique response pattern to 
fearful US has lent us the idea that offset phasic rebound-excita-
tion of this particular sub-population of DAergic neurons may 
act as a critical safety signal to encode the termination of a fearful 
event. The signal strength of this phasic DA release, time-locked 
to the termination of fearful events, will exert immediate as well 
as long-term changes in downstream targets, thereby setting up 
the different thresholds for each individual’s resilience to stress 
and anxiety.

testiNG tHe reBOUND-eXcitAtiON 
tHeOrY eXPeriMeNtALLY

The Rebound-Excitation Theory predicts that attenuation or 
lack of rebound safety signals following fearful stimuli leads to 
stress susceptibility, whereas strong rebound safety signals confer 
stress resilience. Furthermore, the Rebound-Excitation Theory 
predicts that a rebound safety signal is likely to be evolutionarily 
conserved across multiple species and is subject to modulation 
via experience-dependent synaptic plasticity. One of the most 
powerful ways to study stress resilience is to directly examine 
individual stress response variability following a stressor (64). 
As a result, testing for rebound-excitation in human PTSD vs. 
trauma resilient populations could prove invaluable. However, 
present imaging techniques, such as functional magnetic reso-
nance imaging (fMRI) and EEG, have limited temporal and spa-
tial resolution, which makes rebound-excitation study in humans 
difficult. This may change with development of transformative 
BRAIN technologies in future.

On the other hand, large-scale in  vivo electrophysiological 
recordings in freely behaving laboratory animals now allows single 
neural unit activity to be accessed in real time with high temporal 
and spatial resolution (65). In addition, reliable identification of 
DAergic neuron subtypes can be achieved by using optogenetics 
and computational analysis (54). Therefore, initial efforts to test 
the Rebound-Excitation Theory may be fruitful in animal models. 
Much like that of the human population, a fraction of wild-type 
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FiGUre 1 | representative amygdalar fear circuits (blue) with DA circuit (red) involvement. DA units showing rebound-excitation to two distinct types of 
fearful stimuli: free fall (top) and earthquake (bottom). Rebound-excitation occurs at the termination of fearful stimuli and is proposed to serve as an innate safety 
signal to modulate fear-related learning and behaviors by broadcasting to downstream targets such as the amygdala (Amy), nucleus accumbens (NAc), prefrontal 
cortex (PFC), or hippocampus (Hipp).
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laboratory animals are known to be more susceptible to stressors 
than others (17, 66, 67). Thus, the Rebound-Excitation Theory 
can be initially tested by screening and comparing DA rebound-
excitation in stress-susceptible vs. stress-resilient animals.

Genetic manipulation in laboratory animals that alters 
rebound-excitation safety signals can also be useful. For example, 
we have produced DA neuron-specific NMDA receptor knockout 
(DA-NR1-KO) mice (68) and have shown that the NMDA recep-
tors in DAergic neurons play a critical and specific role in regulat-
ing phasic firing patterns of the DAergic neurons (69). Given the 
reported excessive fear generalization in this mutant model (41), 
this knockout model offers a rare opportunity to examine the 
circuitry dynamics by which DAergic neuron NMDA receptors 
modulate rebound-excitation safety signals and fear behaviors. 
This mouse model can also be used to test whether repeated 
exposure to aversive US may enhance rebound-excitation-based 
safety-signals in normal animals vs. little or no enhancement 
effect on PTSD-sensitive models.

tArGets AND ActiONs OF DAergic 
NeUrON reBOUND-eXcitAtiON

What are the potential mechanisms through which DA rebound-
excitation safety signals alleviate fear and fear overgeneraliza-
tion? In general, this innate safety signal can come from three 
major sources of regulation: (1) the intrinsic DAergic neuron 
properties, such as ion channels and receptor compositions that 

produce rebound phasic firings; (2) downstream targets that 
detect and process DAergic neuron rebound excitation; and (3) 
cortical and subcortical feedback to the DA circuits.

Obviously, DAergic neurons’ safety signals may directly 
modulate downstream targets’ neural and biochemical activi-
ties. Phasic firing by DAergic neurons can result in robust DA 
release (70,  71), leading to the elevation of DA in a variety 
of neural circuits [i.e., the prefrontal cortex (PFC), striatum, 
amygdala, hippocampus, etc.]. For example, DA is known to 
induce short-lived excitatory responses via D1 receptors in 
downstream neurons (72). The time window in which DA 
mediates structural changes, such as dendritic spine enlarge-
ment is also precise, in the range of seconds or less (0.3–2  s) 
(73). Furthermore, manipulating DAergic firing has been shown 
to produce acute behavioral changes (74, 75). Moreover, DA 
is known to be involved in the induction and maintenance of 
long-term potentiation (LTP) in the amygdala and hippocampus, 
respectively (76, 77). DAergic neurons are well-known to project 
to the PFC, which is important for processing emotional informa-
tion (78). For example, we recently showed that neurons in the 
anterior cingulate cortex exhibited diverse responses in response 
to traumatizing events, such as mild blast events, which mim-
icked the combat experiences of war fighters when witnessing 
an explosion of a road-side bomb (79). Importantly, we showed 
that robust-pattern reverberation occurs frequently in the ACC 
of blast-exposed animals (79). Pattern reverberation is a process 
by which real-time memory patterns and traces are replayed 
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shortly after emotionally charged, episodic events  (80,  81). 
DA rebound-excitation may modulate pattern reverberation of 
fearful memories in downstream targets, such as the ACC and 
hippocampus. Abnormal pattern reverberation due to alteration 
in DA rebound-excitation may manifest as PTSD symptoms, 
such as flashbacks. Effects of DA rebound-excitation on real-time 
memory traces can be examined using large-scale recording 
and decoding methods (80, 82). In  addition, a DA signal may 
modulate adult neurogenesis in the dentate gyrus (83–86), which 
has been linked to stress and depressive behaviors (87, 88), as 
well as to reduced clearance of fear memory traces (89).

Furthermore, changes in rebound-excitation-based intrinsic 
safety signals can likely manifest at multiple circuit levels given 
the DA circuit complexity. For instance, dysregulation from 
upstream DAergic afferent inputs (90) may alter rebound-
excitation safety signals, perhaps by influencing local GABAergic 
control within the VTA. Dysfunction in feedback control from 
cortical and subcortical sites (55–57) may also cause pathologi-
cal alterations in rebound-excitation and fear-related behaviors. 
This can be highly interesting because cortical and subcortical 
inputs to DAergic neurons can serve as an important mechanism 
to create Pavlovian learning paradigms under which associative 
safety-learning can occur. This would enable a set of Pavlovian 
neural substrates – which have been extensively studied under 
Prediction Error theory and temporal difference (TD) models – to 
be recruited to generate CS/US pairing-triggered safety-learning 
signal (which is distinct from the innate rebound-excitation-
mediated safety signals as we described here). Moreover, abnor-
mal expression of DA receptors or mutations in DA receptors’ 
intracellular signal transduction may lead to instances in which 
the rebound-excitation of DAergic neurons is intact but is unable 
to activate downstream targets.

Another possible physiological effect of DA is to regulate neu-
ral network synchronization and oscillation. Neural synchroniza-
tion and oscillation are thought to be an important mechanism 
by which networks of neurons coordinate their activities in a 
temporally meaningful pattern to generate cognition, percep-
tion, and behaviors (91–93). One study examining cortical input 
to the hippocampus and Schaffer-collateral found that DA can 
modulate the excitatory drive onto pyramidal and GABAergic 
interneurons (94). Additionally, therapeutic dosage of DA agonist 
levodopa has been shown to cause the frequency synchronization 
between the globus pallidus and subthalamic nucleus to shift 
from low frequency (<30 Hz) to high frequency (~70 Hz) (95). 
Moreover, recent studies using neuroimaging techniques, such as 
magnetoencephalography (MEG) and functional magnetic reso-
nance imaging (fMRI), have found irregular network synchrony 
and oscillations in PTSD patients (96, 97). Therefore, rebound-
excitation of DAergic neurons on modulating fear circuits should 
be investigated at multiple levels.

reBOUND-eXcitAtiON tHeOrY OFFers 
A NeW APPrOAcH tO stUDY PtsD

The Rebound-Excitation Theory predicts that rebound-excitation 
consistency across multiple fearful experiences may, in part, 
account for inter-individual variability in stress resilience. 

We  have previously observed rebound-excitation to be similar 
between distinct fearful events (40). Therefore, a stress resilience 
index may be constructed by accessing rebound-excitation in 
individual subjects, and such a resilience index may serve as a 
useful predictor in clinical settings to screen individuals that may 
be stress-susceptible. Indeed, we have recently developed fear 
resistance indices in mice based on inter-individual variability in 
cardiac responses [heart rate variability (HRV)] across multiple 
fearful experiences (63). Given that PTSD patients had abnormal 
HRV (98), in the future, it will be of great interest to study the 
correlation between inter-individual variability of rebound-exci-
tation signals and HRV. Such potential correlation may provide a 
mechanistic framework to examine predictive values of HRV in 
the human population.

Moreover, the proposed theory should open new avenues to 
develop novel therapeutic strategies for studying and treating 
PTSD. For instance, DA burst firing has been shown to increase at 
the onset and offset of voluntary exercises (39). Therefore, exercise 
with an appropriate time regimen might be explored as a way to 
improve behavioral therapy. In fact, exercises can enhance neuro-
genesis in the hippocampus (99), a process linked with reducing 
depression (88, 100, 101). It is encouraging that a pilot study in an 
adolescent with PTSD showed that aerobic exercises reduced the 
symptoms of PTSD (102). Rebound-excitation signals can also be 
used as a brain-activity biomarker to screen novel compounds for 
their in vivo drug efficacies in preclinical PTSD research.

In literature, external CS (such as a neutral tone) have been 
used to create Pavlovian association and turning CS into the pre-
dictive safety-learning cues about signaling the absence of fearful 
US in animal models (8, 10, 103–106). This powerful associative 
learning process utilized Pavlovian conditioning paradigms by 
repeated pairing of CS with US. Interestingly, PSTD models and 
patients exhibit impaired ability to suppress fear response even in 
the presence of conditioned safety-learning cues, despite they can 
learn normally in Pavlovian fear conditioning (9). This suggests 
that PTSD deficit was not a result of simple failure in associative 
learning, but rather specific defects in generating innate safety 
signals as well as prediction errors based on extinction or dis-
crimination learning. It further highlights the need to differentiate 
the neural mechanisms underlying conditioned safety-learning 
of external neutral cues vs. the safety signals derived from DA 
rebound excitation. It would be of great interest to examine 
how DAergic neuron rebound excitation signal interacts and 
influences external safety-learning process, or vice  versa, and 
whether such associative dynamics can be further modeled by 
prediction error based on TD learning model (23, 107). Because 
real-life traumatic events rarely occurred by the predictive CS, 
DA rebound-excitation theory now offers a novel approach to 
analyzing innate DA safety signal in response to unpredictable 
US, thereby leading explanation as to how the brain can taper 
down the otherwise excessive neural trace reverberation that 
typically followed upon fear experiences (79–82).

This critical distinction between the proposed rebound-
excitation theory and TD model should and can be tested 
experimentally; for example, DAergic neuron rebound-excitation 
should be observed upon US stimulation alone without repeated 
CS/US pairing. Rebound-excitation signals the termination of the 
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aversive US itself. As a result, variations in stimulus durations can 
be used, together with repeated trials, to further define dynamic 
modulation of its rebound responses, in a similar way that TD 
learning model and prediction error theory have been examined. 
Because repetition of aversive US can lead to varying degrees 
of behavioral habituation or sensitization, we postulate that 
the repeated presentation of US over trials will lead to stronger 
DAergic neuron rebound-excitation signal in PTSD-resilient ani-
mals vs. diminished rebound-excitation in PTSD-prone animals, 
and this process should be dependent on the NMDA receptors 
of the DAergic neurons. It is conceivable that this intrinsic safety 
signal based on DAergic neuron rebound-excitation is advanta-
geous for an organism’s overall survival given the unpredictability 
of aversive stimuli in nature in terms of types, duration, as well as 
intensity. Defects in this innate safety-signal due to genetic muta-
tions in the relevant circuits can make the animals vulnerable to 
PTSD and impair safety-learning in general. Better understanding 
of both the innate safety-signaling mechanisms, gene mutations, 
and Pavlovian condition-based safety-learning mechanisms can 
lead to novel insights to PTSD pathogenesis.

In summary, the proposed Rebound-Excitation Theory speci-
fies that DAergic neurons generate intrinsic safety signals at the 
termination of unconditioned fearful events in a spatially and 
temporally precise manner. Impairment in the production and 
reception of this safety signal constitutes a potentially genetic 
defect in the brake on the fear system. Restoration of this 
rebound-excitation signal may offer a much-needed new avenue 
for developing pharmacological and behavioral therapeutic 
strategies to treat psychiatric disorders.
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