
 International Journal of 

Molecular Sciences

Review

Ionizing Radiation-Induced Epigenetic Modifications
and Their Relevance to Radiation Protection

Mauro Belli 1 and Maria Antonella Tabocchini 2,*
1 Independent Researcher, formerly: Istituto Superiore di Sanità, 00161 Rome, Italy; mau.belli1@gmail.com
2 National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità,

Viale Regima Elena 299, 00161 Rome, Italy
* Correspondence: antonella.tabocchini@iss.it

Received: 26 July 2020; Accepted: 17 August 2020; Published: 20 August 2020
����������
�������

Abstract: The present system of radiation protection assumes that exposure at low doses and/or low
dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of
epidemiological data and radiobiological models. The latter imply that radiation induces deleterious
effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is
challenged by the observation of radiation-induced epigenetic effects (changes in gene expression
without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive
responses, that in turn can be controlled by gene expression networks. Here, we review important
aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could
be, involved, focusing on the possible implications to the low dose issue in radiation protection.
We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational
(hereditary) effects. We conclude that more realistic models of radiation-induced cancer should
include epigenetic contribution, particularly in the initiation and progression phases, while the impact
on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute
about possible “beneficial” effects at low dose and/or low dose-rate exposures, including those given
by the natural background radiation.

Keywords: ionizing radiation; radiation biology; radiation protection; health effects; epigenetics; low
dose radiation; DNA methylation; non-targeted effects

1. Introduction

There is increasing interest in assessing the robustness of the present system of radiation protection
at low doses and/or low dose-rates, typical of those exposures encountered in the workplace, in the
environment and in diagnostic medicine (also irradiation of normal tissues in radiotherapy may fall in
this type of exposure).

Quantitative evaluation of health risks at these levels of exposure is currently obtained by a
combination of epidemiological and radiobiological data and models. Even though no comprehensive
and “universal” model of radiation action on living systems, i.e., a model capable of describing
all aspects at the different scale involved (molecular, cellular, tissue, organ, organisms), has been
developed yet, nevertheless, radiobiology research, after just over a century of existence, has provided
a wealth of information on biological response to ionizing radiation. Some important general notions
are currently used by international bodies, such as the United Nations Scientific Committee on the
Effects of Atomic Radiation (UNSCEAR) and the International Commission on Radiological Protection
(ICRP), to extrapolate to low doses and low dose rates the health risk derived from epidemiological
data at higher acute doses. These notions are essentially the harmful mutagenic potential of ionizing
radiation and its linear dose-dependence at low levels of exposure [1,2]. In particular, the fundamental
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role of radiation-induced DNA damage in the induction of mutations and chromosome aberrations
is currently assumed to provide a framework for the analysis of risks at low radiation doses and
low dose-rate exposures [2,3]. Additionally, for the induction of cancer and heritable disease at low
doses/low dose-rates, the use of a linear relationship between increments of dose and increased risk is
considered a scientifically plausible assumption, even if uncertainties regarding this judgement are
recognized [1,2,4,5].

However, non-linear radiobiological responses that can be relevant at low level exposures have
been observed for many years, such as the so-called “non-targeted effects” (NTEs), and the (radio)
adaptive response (AR). Moreover, it is now well established that ionizing radiation, besides genetic
mutations, may also cause epigenetic alterations. In effect, epigenetic events are known to regulate
gene activity and expression not only during development and differentiation, but also in response to
environmental stimuli, such as ionizing radiation [6,7]. Interestingly, there is evidence that NTEs and
AR are inter-related and even more interesting is the possibility that epigenetic mechanisms may have
a role in them.

Evidence that such biological phenomena do not fit the classical paradigm of radiobiology,
on which the internationally agreed system of radiation protection is currently based [1], has led to
much discussion on if and how this paradigm should be modified [8–10].

Some excellent reviews have been reported on the historical and methodological aspects of
radiobiology paradigm evolution [11] and on the effects of ionizing radiation on DNA methylation [12].
The present review encompasses many important aspects of the biological response to ionizing
radiation in which epigenetic mechanisms are shown to be, or could likely be, involved with a focus
on the possible implications in health risk assessment at low doses, a key issue in radiation protection.

2. The Role of Radiation Biology in Radiation Protection

2.1. The Current Paradigm of Radiation Biology

Ionizing radiation is capable of inducing a wide spectrum of DNA alterations, such as: base damage,
sugar damage, single strand breaks (SSBs), double strand breaks (DSBs), DNA–DNA and DNA–protein
cross-links. Clustered DNA lesions (defined as two or more lesions within one or two helical
turns of DNA), such as complex DSBs and non-DSB clustered lesions [13] are considered to be
the most biologically relevant form of radiation-induced DNA damage [14–18]. They are expected
to be less readily repaired as compared to other radiation-induced damage and to endogenous or
metabolism-related cellular damage. Indeed, ionizing radiation is uniquely very efficient at inducing
clustered DNA lesions [19]. At low doses, even the passage of a single particle can produce clustered
DNA lesions [15,17,20].

The frequency and degree of clustering of DNA damage depend on radiation quality [21].
There is evidence that clustered DNA damage, such as multiple DSB as well as non-DSB lesions close
together [22] is the most challenging to repair and that the proportion of clustered damage increases
with Linear Energy Transfer (LET), reaching ~70% or more for high-LET radiation (see the review
in [23]).

High-LET charged particles typically induce complex chromosome aberrations [24,25] (defined as
those aberrations involving three or more breaks in two or more chromosomes [26], although they can
also be observed less frequently after exposure to γ-rays. In particular, high-LET heavy ions induce a
high fraction of complex-type exchanges, and possibly unique chromosome rearrangements [27,28].

Un-repaired or mis-repaired DNA lesions cause changes in the DNA sequence, i.e., (genetic)
mutations, that in turn are considered as the main event leading to deleterious biological effects,
resulting, even at low doses, in an increase in both the probability of developing cancers and the rates
of hereditary diseases naturally occurring in the population [2].

The association of genetic mutation to detrimental effects dates back to 1926 with Muller’s
discovery of mutagenic effects of X-rays or γ-rays on the fruit fly Drosophila melanogaster, although they
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were observed after high doses [29]. Muller, who for this discovery was awarded the 1946 Nobel Prize
in medicine and physiology, became convinced that the vast majority of mutations were deleterious
and consequently that exposure to radiation should be strictly controlled.

Indeed, it is now generally assumed that a vast majority of mutations are neutral or detrimental,
as in many cases gene mutation is a process which burdens the population with a load of harmful
genes. On the other hand, mutations may occur that, despite their rarity, increase the fitness of
the biological system. However, considering the low likelihood of these favorable mutation events,
radiation-induced mutations in humans, even at low doses, are generally assumed to be detrimental
for radiation protection purposes [30].

A schematic and rationalized picture of the radiobiological knowledge for radiation protection
purposes can be summarized by the following statements, forming what is sometimes referred to as
the “conventional paradigm of radiobiology” [8], still considered as an useful reference framework:

(i) The DNA damage in directly exposed cells is the main event for biological effects;
(ii) the DNA damage occurs during, or very shortly after, irradiation of the nuclei in targeted cells;
(iii) the potential for biological consequences can be expressed within one or two cell generations;
(iv) at low doses, the biological effect is in direct proportion to the energy deposited in nuclear DNA.

The present internationally agreed system for radiation protection has used this paradigm,
although with many simplifications and assumptions [1]. It forms the rational basis for assuming a
linear relationship between risk and dose in radiation protection, known as the “Linear No-Threshold”
(LNT) assumption.

2.2. Challenges to the Current Paradigm

Awareness is presently growing that a number of observations challenges the conventional
paradigm, based on the target theory of radiation-induced effects. The most relevant are the occurrence
of: (i) radiation induced epigenetic effects, i.e., changes in gene expression, for example through
alteration of DNA and chromatin organization without altering DNA sequence; (ii) non-linear responses,
such as non-targeted effects, i.e., effects observed in cells not directly traversed by radiation (bystander
effects, BE) or occurring in the genome of the progeny of irradiated or bystander cells (genomic
instability, GI), and (radio)adaptive responses (AR); all these NTEs can be described as the expression
of inter- or intra-cellular signaling and are deemed to be particularly relevant to cell response to
low doses.

3. Ionizing Radiation Induces Epigenetic Changes

3.1. The Main Epigenetic Modifications

By the second half of the last century, it was recognized that DNA by itself does not determine all
characteristics of an organism, including the human one. The role emerged of those characteristics
that crucially determine which genes are expressed in each cell type (“epigenetic” traits). The term
“epigenetics” was coined in 1942 but its contemporary usage is quite recent, and for some years it has
been used with variable meanings [31]. The modern definition of epigenetics is “the study of mitotically
and/or meiotically heritable changes in gene function that cannot be explained by changes in DNA
sequence” and the epigenetic trait (epigenome) of an organism is intended as the “stably heritable
phenotype resulting from changes in a chromosome without alterations in the DNA sequence” [32].

Epigenetic events are known to regulate gene activity and expression during development and
differentiation. In particular, epigenetic mechanisms regulate the gene expression in our body’s cells to
create all the different cell types, although they have the same genome. However, they also affect gene
expression in response to environmental stimuli, including ionizing radiation (see the reviews in [6,7,33]).
Epigenetics is thus considered to be a bridge between genotype and phenotype. Genetic mechanisms,
such as mutations, are heritable, but not very susceptible to, or driven by, environmental influence
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(even if mutations can be induced by the environmental radiation, they are relatively rare events).
At the other extreme, there are the metabolic pathways, responsive to environmental changes through
interactions of chemical agents or other stressors with proteins involved in gene expression, that are
not heritable. Epigenetic modifications, instead, are susceptible to environmental change and heritable
at the same time. An interesting aspect is that they can persist after the stressor is removed, but they
can also be reversible [34]. The main epigenetic changes currently considered are DNA methylation,
histone modification, and modulation of non-coding RNAs (ncRNAs) (Figure 1) [35].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 35 
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Figure 1. Epigenetic mechanisms involve different levels of gene expression (transcriptional,
post-transcriptional, and post-translational). Only a small fraction of the human genome (2% or even
less) accounts for protein-coding genes while the majority is associated with non-coding sequences,
notably non-coding RNA genes. Of the non-coding DNA, only the regulatory part, giving rise
to non-coding RNAs, is considered here. Epigenetic mechanisms can involve both protein-coding
and non-coding RNA genes, with interplay between DNA methylation, histone modification and
miRNA expression.

DNA methylation, i.e., the addition of methyl groups to the DNA. In mammals, DNA methylation
is mostly at CpG sites to give 5-methylcytosine (5-mC). These sites are concentrated in specific regions
called CpG islands, i.e., DNA sequences with high level of CpG sites (typically 300–3000 bp with
C + G content > 50%), sometimes located consecutively. In humans, CpG islands occupy about 70% of
human gene promoter regions [36]. In transcriptionally active regions of the genome, GpC islands are
normally hypomethylated, allowing that gene to be expressed. Therefore, the methylation of CpG sites
is a critical factor affecting gene transcription because of its ability to directly silence gene expression.
DNA methylation was one of the first identified and the most widely studied epigenetic alteration [37].
It is now a consolidated notion that hypermethylation of genomic DNA is linked to transcriptional
silencing and hypomethylation to chromosomal instability [38,39]. DNA methylation is considered a
heritable epigenetic mark since methylation modifications that regulate gene expression are usually
heritable in mitotically dividing cells. In contrast, it shows dynamic changes during development
and cell differentiation, even if some methylation patterns may be retained as a form of epigenetic
memory [40]. In mammals, DNA methylation patterns are maintained or established by a family of
enzymes, the DNA methyltransferases (DNMTs), notably DNMT1 (maintenance methylation) and
DNMT3 (de novo methylation), while other proteins can achieve active de-methylation ([38] and
refs therein).
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Histone modifications, including, inter alia, acetylation, methylation, phosphorylation and
ubiquitination. For years, histones were regarded as merely structural proteins, but now they
are recognized to control the organization of chromatin and hence transcriptional responses [41].
Post-translational modifications on histones can change gene transcription by changing DNA
accessibility, but also by recruiting other proteins. Histone acetylation, the first epigenetic modification
shown to be connected with biological activity [42], neutralizes histone positive charges and reduces
its interaction with the negatively charged DNA, thereby inducing chromatin structure relaxation and
a marked increase in gene expression. On the contrary, histone methylation does not alter the charge
of the modified residue and can either repress or activate transcription depending on the methylation
site [43].

Modulation of non-coding RNAs (ncRNAs). Among these RNAs, much attention has been paid
to microRNAs (miRNAs), which are small RNA molecules (usually 21–23 nucleotides) discovered
in 1993 [44]. Countless microRNAs have been discovered and described in the past years [45,46].
They play an important role in animals and plants in regulating gene expression by transiently inhibiting
the translation of a messenger RNA molecule or by inducing its degradation [47,48]. In addition,
long non-coding (lnc) RNA molecules may have an epigenetic role [49], since they bind to the transcripts
in the nucleus as they emerge from the DNA. miRNAs are involved in multiple biological processes,
including cell proliferation, differentiation, and programmed cell death. Since the dysregulation of
these processes is a hallmark of cancer, miRNAs can be viewed as important contributors to the
pathogenesis of cancer, including initiation and progression [50,51]. They are estimated to regulate the
expression of up to 60% of the human protein coding genes [52,53] by means of mRNA degradation or
translational repression, acting through a multitude of interconnecting regulatory pathways [51,54–56].

3.2. Radiation-Induced Changes in DNA Methylation

Early findings obtained at the end of the 1980s indicate that exposure to 60Co γ-radiation causes
a dose-dependent decrease in DNA methylation, in terms of levels of 5-mC, in several cultured cell
lines [57]. Since then, considerably amount of research carried out both in vitro and in vivo showed
that X- or γ-rays can change the DNA methylation pattern (see the reviews in [12] and [58]).

Studies on cultured human cells showed that low-LET radiation induces DNA hypomethylation
that displayed different profiles in radioresistant and radiosensitive cultured human cells [59,60].
Animal studies, in particular on rodent models, indicated that low-LET radiation induces global
DNA hypomethylation that is not ubiquitous among different tissues and cells [61], that occurs in a
dose-dependent, sex-, and tissue-specific manner [62,63], and that can be persistent [64,65].

Overall, these data indicate that low-LET radiation exposure results in global DNA
hypomethylation. However, it is important to identify whether or not hypomethylation is uniformly
distributed throughout the genome, and whether there is also specific locus hypermethylation, which is
known to be associated with inactive chromatin state and in most cases with repressed gene expression
activity [66–68]. It should be considered that the majority of the eukaryotic genome is composed
of repetitive elements (REs), while only less than 2% is occupied by protein-coding genes [69].
Non-coding REs, in particular the so-called transposable elements (TE), provide a rich source of gene
regulation. Their hypomethylation, especially in the regions called “Long Interspersed Nucleotide
Element 1” (LINE-1), has been observed in virtually all human cancers and is frequently associated with
a poor prognosis [70]. Loss of DNA methylation in the TEs enhances transcriptional activity so that
reactivation of TEs potentially leads to GI [58,71–74], considered as a major hallmark of many cancer
([75] and refs therein). Many lines of evidence clearly demonstrate that alterations in methylation and
expression of TEs are caused by exposure to environmental stressors, many of which are carcinogens
or suspected carcinogens so that it has been proposed that TEs can serve as biomarkers of exposure
to environmental stressors [72]. However, hypermethylation of TEs has also been detected in some
in vitro experiments, suggesting that alterations in the methylation status of TEs is tissue-, dose-,
and radiation quality-dependent (see [72] for a review).
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Specific-gene hypermethylation often involves normally unmethylated CpG islands, and can be
associated with transcriptional silencing of the corresponding gene. If it is a suppressor gene, its loss
of function may be a key event contributing to the oncogenic process [76–79]. In effect, some studies
demonstrated significant DNA hypermethylation of tumor-suppressor genes in workers exposed
to ionizing radiation [80,81]. Also, gene-specific DNA methylation changes was found in human
breast cancer cells irradiated with X-rays [82]. Interestingly, this differential methylation changes
correlate with already known biological responses to radiation, such as those on cell cycle, DNA repair,
and apoptosis.

3.3. Radiation-Induced Histone Modifications

Cell exposure to ionizing radiation results in a wide variety of histone modifications. A well-known
radiation-induced histone modification is phosphorylation of histone H2AX, which is crucially
important for the repair of DNA double strand breaks and for the maintenance of genome stability.
Phosphorylation of this histone at serine 139 (γ-H2AX) is an early cellular response to ionizing radiation
and is used as a measure of DSBs [83,84].

In an in vivo murine model, low-dose X-ray irradiation resulted in decreased tri-methylation of
histone H4 in the thymus accompanied by an overall reduction in chromatin compactness, a significant
increase in global DNA hypomethylation as well as an accumulation of DNA damage, and was
associated to a reduced expression of DNMTs [85]. Similar histone modifications were found in human
breast cancers [86]. These findings demonstrate that radiation-induced changes in DNA methylation
and histone modifications result in overall GI (see [43] for a review).

Furthermore, it has been shown that chromatin modification by histone acetylation is also crucial
for DNA repair [87], and that chromatin acetylation is involved in several important steps such as
chromatin remodelling and tagging of DSBs, activation of repair regulators, cell cycle regulation,
and apoptosis [88].

3.4. Radiation-Induced Modulation of Non-Coding RNA Expression

Another type of epigenetic radiation-induced modification involves ncRNAs, in particular
miRNAs that have specific roles in the regulation of gene expression. Since their discovery in
1993 [44], miRNAs have emerged as important modulators in many cellular pathways, including cell
proliferation, differentiation, and programmed cell death, and the roles of specific miRNAs have begun
to be elucidated.

A number of studies have examined the general and specific effects of miRNA perturbation in
different cell types exposed to low-LET ionizing radiation (see [89] for a review). miRNAs have been
shown to be involved in the response of irradiated cultured human cells [90]. In particular, it was
shown that ionizing radiation affects miRNA levels in human endothelial cells [91]. Overall, these
studies revealed that the expression levels of several miRNAs change significantly upon irradiation
and indicated a specific role of various miRNAs on cellular radiosensitivity [92]. miRNAs have
also shown to have a fundamental role in several radiation-induced cell signaling events, such as
those involving cell cycle arrest and cell death (reviewed in [93]). Many studies demonstrated that
miRNA expression levels change in response to radiation, and that certain miRNAs alter radiation
sensitivity, suggesting they are good potential targets for enhancing the efficacy of cancer radiation
therapy [89,94–97]. Expression levels of a variety of miRNAs after low-LET ionizing radiation were
reviewed and listed in [98].

3.5. Radiation Quality May Affect Epigenetic Changes

Most research on the impact of radiation exposure on the epigenome has focused on the effects of
low-LET X- or γ-rays. In contrast, few studies have assessed the effects of high-LET radiation on the
epigenome. Increased interest in the mechanisms underlying biological effects of high-LET radiation
was triggered quite recently by the investigation on the health risk posed by the space radiation
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during manned space missions and to the introduction of high-LET radiation into clinical practice
(hadrontherapy). Comparison between epigenetic effects induced by low- and high-LET radiation
was addressed in particular by Morgan’s group [58,90]. It is expected that high-LET radiation has the
potential for unique effects on the epigenome, given the unique characteristics of its track structure.
Indeed, there are now a number of studies showing that exposure to high-LET radiation can result
in lasting changes in the total levels of DNA methylation and in the miRNA expression that may be
different from those induced by equivalent doses of low-LET radiation [58,90,99–102].

Some of these studies focused on the effect of high energy and charge (HZE) particles, such as
high energy Fe-ions (usually 600–1000 MeV/u, LET 180–150 keV/µm), as they are representative of the
most detrimental component of space radiation associated to health risks encountered by astronauts
in deep space [103,104]. Comparison between X-ray and high-LET Fe-ions exposures of cultured
cells showed that Fe-ions elicited more chromosomal damage and cell killing than X-rays do [90].
Global DNA methylation was affected in a different way, as hypermethylation was found in cultured
cells 16–20 doublings after exposure to protons and high-LET Fe-ions in contrast to hypomethylation
for cells exposed to X-rays [58,101]. Global DNA hypermethylation was also confirmed after exposure
to Fe-ions in a mouse model [100]. Interestingly, high energy protons of relatively low-LET gave an
effect similar to that caused by high-LET Fe-ions, suggesting that epigenetic responses to radiation
may be based on radiation quality rather than LET [58].

A possible explanation for the difference between sparsely and densely ionizing radiation comes
from the possible difference in oxidative stress [58] or from the observations [102] that stable DNA
methylation can result at the sites of DNA break repair [105], likely produced with higher yield by
densely ionizing radiation.

However, after exposure to high-LET Fe-ions, TE hypomethylation was detected in the same
cultured cells that displayed global hypermethylation [58]. In vivo experiments performed on mouse
models irradiated with Fe-ions showed a complex picture: hypo- or hyper-methylation in TEs depended
on the organ analyzed and on the observation time (see [12] for a review). It was also clarified that DNA
hypermethylation of LINE-1 elements found in the lungs of mice irradiated with Fe-ions depended on
their evolutionary age [106].

Presently, little information is available on the effect of high-LET radiation on methylation at specific
genes. In vitro experiments showed hyper- or hypo-methylation or no changes at promoters of specific
loci that are used as biomarkers for the early detection of carcinogenesis [12,58,90,99]. The observed
differences are likely related to differences in cell types, doses/dose rates, time of observation, or assay
used. In a mouse model irradiated with Fe-ions, an increase in 5-mC content was reported that,
however, was not associated with increased DNA methylation in a panel of tumor-suppressor genes
frequently hypermethylated and inactivated in lung cancer [100]. Some information has come from
human data on exposed workers (as reviewed in [12]). Significant DNA hypermethylation of the
cyclin-dependent kinase CDKN2A, and of the DNA methyltransferase MGMT genes was found in
the sputum of uranium miners exposed to radon [80]. This analysis was also proposed to predict
lung cancer. Another study found high levels of p16 hypermethylation in lung adenocarcinomas from
plutonium-exposed workers at the Russian nuclear plant MAYAK [107]. However, these results should
be regarded as qualitative, since it is not easy to quantify the high-LET exposure in these cases.

Dependence on radiation quality was also found for effects on miRNA expression. In cultured
cells, Fe-ions irradiation caused a lower incidence of alteration of miRNA expression levels than X-rays
do [90], a quite surprising result given the higher effectiveness of Fe-ions for chromosomal damage
and cell killing. Irradiation with high energy protons, γ-rays, or Fe-ions in mouse blood resulted in a
radiation type- and dose-specific modifications of a panel of 31 miRNAs [108], so that the extent of
miRNA expression signatures derived from mouse blood was proposed as a biomarker for exposure to
high-energy protons [109].
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4. Basic Mechanisms of Radiation-Induced Epigenetic Changes

It is well known that ionizing radiation can cause DNA lesions by direct deposition of energy in
the DNA as well as by the indirect action of reactive chemical species formed near the DNA [15,110]
and that the spectrum of lesions depends on radiation quality [17,18]. Indirect DNA damage from
water free radicals is the most frequent mechanism for low-LET radiation, while direct DNA damage
is predominant for high-LET radiation [111,112]. These radicals are formed through the radiolysis of
water, the hydroxyl radicals being considered the most damaging among them. In aerobic conditions,
these free radicals are converted to reactive oxygen species (ROS) that include free radicals as well as
non-free radicals. Organic radicals are also formed, giving rise to peroxyl radicals (strong oxidizing
species) and hydroperoxydes (see e.g., [113]). Ionizing radiation can also generate reactive nitrogen
species (RNS) through the upregulation of several enzymes, including inducible nitric oxide synthase.
Nitric oxide reacts with superoxide radical, generating peroxynitrite, a strong oxidant radical [43].
The yield and spatial distribution of ROS and RNS are strongly modulated by radiation quality as a
consequence of the specific track structure of each quality [113]. ROS and RNS can attack DNA resulting
in several alterations, including DNA breaks, base damage and destruction of sugars. These lesions,
if unrepaired or mis-repaired, may lead to genetic mutations in surviving cells. In this context,
particularly relevant are the DNA clustered lesions [22], since they appear to be “highly resistant” to
faithful repair (see the review in [23]).

The mechanisms by which ROS are generated by ionizing radiation were studied in some detail
in fibroblasts, where it was shown that ROS can be directly generated by radiation exposure and
indirectly through the damage of mitochondria. This leads to the activation of the signaling pathway,
which sustains an increase in ROS levels by increasing oxidase expression, thereby setting up a cycle of
high oxidative stress, i.e., excess of ROS/RNS not compensated by the scavenging mechanisms of the
cell [114].

Besides the mutagenic action of ROS and RNS, there is also evidence that oxidative stress
has a fundamental role in epigenetic modifications [115–117]. Oxidative stress can modify the
epigenome by multiple mechanisms, the most important of which involve oxidation of DNA bases
and/or mitochondria-mediated changes, with the main target being the CpG sites, especially in the
CpG islands.

Among the mechanisms leading to global DNA de-methylation/hypomethylation, an important
one is the oxidation of 5 mC to 5-hydroxymethylcytosine (5 hmC), which serves as an intermediate in
active DNA demethylation [118,119]. In addition, oxidation of guanine to 8-Oxo-2′-deoxyguanosine
(8-oxo-dG) can create mismatches via pairing with A, thus leading to G > T transversion. In addition,
8-oxo-dG can also affect dC methylation by interfering with the ability of DNA to function as a substrate
for the DNMTs, inhibiting DNA methylation at nearby C bases [120]. A complete understanding of the
effect of 8-oxo-dG is still a matter of study, since it may alter gene expression in multiple ways [121].

Mitochondria also appear to have an important role in radiation-induced global DNA
hypomethylation. Dysfunction of mitochondria can affect epigenetic regulation [122]. Mitochondria
constitute a major intracellular source of reactive species, as they generate almost 90% of the total
number of cellular ROS [123]. High intra-mitochondrial ROS level can damage the mitochondrial DNA,
causing global DNA hypomethylation, by decreasing the activity of DNMTs and these changes are
transmitted to the progeny of the irradiated cells [124]. These observations suggest that mitochondrial
dysfunction can cause oxidative DNA damage and contributes to an altered epigenetic landscape to
perpetuate radiation-induced instability [125].

In addition to hypomethylation, ROS can also induce site-specific hypermethylation by different
mechanisms, such as catalysis of DNA methylation or upregulation of DNMTs levels, thereby leading
to gene silencing [126] (Figure 2).
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Figure 2. Simplified representation of the role of reactive oxygen species (ROS) and reactive nitrogen
species (RNS) in the epigenetic response (DNA methylation) to ionizing radiation. Ionizing radiation can
cause DNA lesions by direct deposition of energy in the DNA as well as by the indirect action of reactive
chemical species formed near the DNA. Indirect DNA damage arises from free radicals formed through
the radiolysis of water molecules. In aerobic conditions, these free radicals are converted to reactive
oxygen species (ROS). Ionizing radiation can also generate reactive nitrogen species (RNS) through
the upregulation of several enzymes. The yield and spatial distribution of ROS and RNS are strongly
modulated by radiation quality because of the specific track structure of each quality [113]. ROS and
RNS can attack DNA, resulting in several alterations that, if unrepaired or mis-repaired, may lead
to genetic mutations in surviving cells. In addition, they can drive various epigenetic modifications
through several mechanisms. It was demonstrated, especially in fibroblasts [114], that ROS can be
directly generated by radiation exposure and indirectly through the radiation damage of mitochondria,
leading to the activation of signaling pathways, which in turn sustains an increase in ROS levels.
Oxidative stress results when excess of ROS/RNS are not compensated by the scavenging mechanisms of
the cell. DNA hypomethylation can be achieved by oxidation of guanine to 8-OHdG that inhibits DNA
methylation at nearby cytosine bases, and by hydroxylation of 5 mC to 5 hmC that causes active DNA
demethylation processes. ROS can also induce site-specific DNA hypermethylation by up-regulation
of expression of DNMTs or by acting as catalysts of DNA methylation [126]. Oxidative stress can
influence the epigenetic landscape of the cell on other levels, such as by histone modifications and
miRNA expression (not shown here).

Oxidative stress also contributes to epigenetic changes by altering the action of ncRNAs,
in particular miRNA. However, the interactions between ROS metabolism and miRNA levels appear
to be complex. There is evidence that miRNAs are critical regulators of the cellular stress response and
thus are responsive to ROS, some of them being themselves able to regulate ROS levels ([127], and refs
therein). Analysis of ROS-mediated miRNA expression patterns revealed that the gene locations for
epigenetic changes correspond to fragile sites known to be targets of oxidative damage [43].

It is important to note that research on radiation-induced epigenetic mechanisms was initially
addressed to DNA methylation as a process capable of modulating gene expression by changing
chromatin organization, and subsequently integrated with the roles of histone modifications and
changes in miRNA expression as they would act independently. However, there is accumulating
evidence of interactions between these different types of epigenetic changes.

Histone modifications can regulate the DNA methylation [128,129]. DNA methylation and histone
methylation are tied together in a reinforcing loop [130–134]. Cross-talks between DNA methylation
and histone modification were shown at specific gene loci and are present in eukaryotic organisms,
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although they vary widely, in fungi, plants and animals [135]. DNA methylation can also be regulated
by miRNAs targeting DNMTs or critical methylation-related proteins, whereas DNA methylation
regulates miRNA expression via hypermethylation or hypomethylation of the promoter-associated
CpG islands, thereby achieving a sort of mutual regulation [136,137].

In summary, it appears that radiation-induced oxidative stress is an important player in shaping
the epigenetic landscape of the entire genome [127], that is a result of a cross-link between DNA
methylation, histone modification and ncRNA (in particular miRNA) expression [137,138].

Interestingly, it appears that the production of oxidizing species that are responsible for inducing
DNA damage via indirect effects can also have a role in the damage repair processes via epigenetic
changes that enable DNA accessibility to repair enzymes. For example, this can be accomplished
through histone modification or replacing canonical histones with histone variants, thereby inducing
the needed changes in chromatin structure and dynamics [139].

5. Epigenetic Changes Have a Role in Radiation-Induced NTE and AR

In the last three decades, a wealth of investigations have been carried out on NTE, namely
BE and GI, discovered between the end of 1980 and the beginning of the 1990s [140–146], and on
radiation-induced AR, discovered even earlier [147], that are phenomena that do not fit into the
conventional paradigm.

Radiation-induced GI is an encompassing term which is used to describe the acquisition of an
increased rate of alterations within the genome, manifested in the unexposed progeny of irradiated
cells [145,146] (Figure 3). Radiation-induced BE describes the ability of cells affected by radiation to
convey manifestations of damage to other cells not directly targeted [141,148]. Abscopal, or out-of-field,
effects, defined in radiotherapy as radiation-induced effects observed outside the irradiated volume,
are currently considered as a special type of BE [149]. Abscopal effects were seen in rodents, such as
the induction of profound epigenetic dysregulation in spleen tissue after localized cranial radiation
exposure [150], and the increased induction of malignancy in the shielded head (specifically in the
brain) of radio-sensitive mice after exposure of the remainder of the body to X-rays [151].

These phenomena challenge the concepts on which the conventional paradigm of radiation biology
is based and are potentially relevant for radiation risk assessment, especially at low doses [149,152,153].
They have been seen in many in vitro and in vivo experiments, including experiments with blood
samples from irradiated humans [145,146,152].

There is evidence that all these phenomena are inter-related and that they may share some common
mechanistic pathways (see, e.g., [153–155]). For example, the radiation-induced intercellular signaling
cascades, including cytokine production, nitric oxide production and persistent free radical production
have the potential to mediate both GI and BE. Indeed, GI was observed in the progeny of unirradiated
neighbors of irradiated cells [156].

Most NTE have been observed in vitro, but they can also be relevant in vivo, even if the question
remains whether the non-targeted effects demonstrated in vitro can be extrapolated to in vivo situations.
In vitro experiments have provided some important insights into the nature of these effects, but in spite
of extensive research, their mechanisms remain to be completely understood. An intriguing observation
is that, even if NTE and AR have been observed in a variety of cell and tissue types, biological end-points
and radiation qualities [152,157–159], they have not been universally observed [153,160–162].

Epigenetic mechanisms, encompassing DNA methylation, histone modification,
and RNA-associated gene silencing, have been shown to be plausible mediators of the mentioned
effects. These inter-relationships have stimulated much interest, especially for their possible impact in
the risk assessment at low radiation doses and have been the subject of a number of studies [73,90,163].
It is worth noting here that in its latest recommendations, ICRP classifies GI and BE as epigenetic
responses to radiation [1].
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Figure 3. Schematic description of two possible ways for radiation-induced damage propagation in the
progeny of irradiated cells: (A) according to the conventional paradigm of radiobiology, damage is
induced during, or shortly after, irradiation, and clonally propagates to the progeny; (B) by genomic
instability, a non-clonal effects that is observed as new mutations and/or new chromosomal damage in
the unirradiated progeny of the irradiated cell.

Indeed, there are many lines of evidence that epigenetic mechanisms have a potential role in GI.
An early observation was made on micronuclei induction in cultured cells irradiated with different
fluences of alpha-particles, indicating that the target for GI is larger than the cell nucleus [164]. It was
shown that GI can occur without the need for genetic alterations as an initiating or perpetuating
factor [165,166]. Cells irradiated with low to medium doses exhibited a much larger proportion of GI
than mutations from targeted effects, suggesting that instability might arise, rather than from a genetic
mutation, through epigenetic mechanisms [152].

All the above observations give support to the idea that epigenetic alterations could be a
mechanism of GI induction [167]. Indeed, experimental evidence points to a causal relationship
between GI in the exposed animals and the radiation-induced global DNA hypomethylation (see
the review in [168]). The fundamental role of DNA methylation in the transmission of GI is clearly
demonstrated in embryonic stem cells since the disruption of specific DNMT genes completely
eliminates the transmission of GI. Interestingly, this inactivation also protects neighboring cells from
indirect induction of GI [169].

A recent review highlighted the link between radiation-induced ROS, DNA hypomethylation and
GI and/or AR [170]. Moreover, it has been reported that mitochondrial-derived reactive species can not
only cause oxidative DNA damage but also directly affect aberrant changes in 5 mC levels, suggesting
a link between radiation-induced genomic instability, epigenetic mechanisms and mitochondrial
dysfunction [125].

There is some evidence that, besides DNA methylation, miRNA may also have a role in
radiation-induced BE and GI. Concerning BE, an experiment conducted in vivo showed that partial
exposure of a mouse body induced a significant upregulation of a specific miRNA in distant
lead-shielded liver tissue [150]. Various bystander end-points, such as apoptosis, cell cycle deregulation,
and DNA hypomethylation, are shown to be mediated by the altered expression of miRNAs, even if they
do not appear to be the primary bystander signaling molecules in the formation of bystander-induced
DNA strand breaks [163]. Concerning GI, upregulation of miRNAs was found in directly exposed
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male mice, leading to hypomethylation of the exposed animals as well as of their unexposed offspring,
demonstrating the possibility that they may play a role in the transgenerational epigenetic inheritance
of GI [171].

Information about the possible role of epigenetic mechanisms in the AR to ionizing radiation
is scarce. AR can be regarded as a quite general phenomenon of biological response as it has been
observed in cells, tissues and organisms using various indicators of biological damage after exposure to
ionizing radiation and to other stressors. Although in the literature there are a plethora of descriptions
about the adapting conditions, and DNA repair and antioxidative mechanisms are among the best
described pathways involved in it, the mechanisms underlying AR remain poorly understood [172].
Both intracellular and intercellular signaling (the latter being mainly related to BE) can account
for the occurrence of AR. Enhanced efficiency of DSB repair through homologous recombination
and a significant increase in gene expression of antioxidant enzymes appear to play a predominant
role in the adaptive response (see the review in [9]). An interesting AR model has been developed
accordingly [173].

However, the processes by which increasing in DNA repair efficiency and in antioxidant levels
would be accomplished by exposure to the priming dose are not clear. It has been proposed that,
in order to adapt the gene expression program to the stress situation, and to achieve proper functioning
of DNA repair processes, epigenetic processes are involved, notably transient protein acetylation [88].
Furthermore, data on endothelial cells suggest that the radiation-induced changes in miRNAs expression
modulate the intrinsic radiosensitivity of these cells in subsequent irradiations [91]. A recent review
pointed to the radiation-induced oxidative stress as the source of various processes connected to
AR [170], which is consistent with the occurrence of epigenetic mechanisms.

6. Epigenetics in Radiation Risk Assessment

6.1. Radiation-Induced Cancer

There is large consensus on the fact that cancer, in general, is a disease that results from both genetic
and epigenetic changes and several studies pointed to the description of cancer as due to a dysregulated
epigenome allowing cellular growth advantage at the expense of the host, with mechanisms involving
both genetic mutations and epigenetic modification4s [174,175]. This notion applies not only to solid
cancers but also to leukemia, in particular to myeloid leukemia [176]. Dramatic changes in DNA
methylation are common in cancer and are considered as an early event in many of them [177,178].
DNA methylation changes appear to be even more frequent events than genetic mutations [179,180].
The global loss of DNA methylation at CpG dinucleotides was the first epigenetic abnormality identified
in cancer cells [177,181]. Loss of genome-wide methylation, especially in repetitive elements [77],
promotes GI, considered as a major hallmark of cancer [182,183]. For its part, gene hypermethylation,
often involving normally unmethylated CpG islands, can be associated with their transcriptional
silencing and, if they are suppressor genes, their loss of function may be a key event contributing to the
oncogenic process [78,79]. For example, the silencing of the BRCA1 gene by promoter hypermethylation
occurs in primary breast and ovarian carcinomas, supporting a role for this tumor suppressor gene in
sporadic breast and ovarian tumorigenesis [184]. It has been evaluated that more than 300 genes and
gene products are epigenetically altered in various human cancers [185] and a meta-analysis of the
altered genes in colorectal cancer reinforces their involvement in tumorigenesis [186].

Additionally, in radiation-induced cancers, a role for tumor suppressor gene hypermethylation has
been demonstrated. Silencing of suppressor genes was detected in murine models of radiation-induced
lymphoma, in lung tumors of rats induced by exposure to Pu-239, and in human lung adenocarcinoma
occurring in workers of the Russian MAYAK plutonium plant ([33,81] and references therein).
Interestingly, a study focused on lung carcinoma in radiation-exposed MAYAK workers compared to
non-worker controls showed that methylation at one gene (coding for a tumor suppressor protein)
occurred more often in carcinomas found in exposed workers than in non-worker controls, with a
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dose-dependent prevalence [107]. Aberrant hypermethylation was observed in an appreciable
fraction of patients with renal cell carcinomas living in radiocontaminated areas after the Chernobyl
accident [187]. Significant DNA hypermethylation of tumor suppressor genes was detected in workers
exposed to radon in uranium mines, even without detectable cancers [80].

The findings described above indicate that radiation exposure, although normally thought to be
pathogenic through DNA damage such as deletions and point mutations [188], may also elevate the
cancer risk through epigenetic alteration, resulting in GI increase and/or specific silencing of tumor
suppressor genes.

While research in cancer epigenetics was initially focused on DNA methylation abnormalities,
particularly on CpG island promoter methylation [189], other players have eventually emerged, a not
unexpected result given that probably about 40% of human genes do not contain CpG islands in their
promoters [190]. Indeed, besides aberrant DNA methylation, which is one of the most well studied
epigenetic changes in cancer cells, it was found that histone modifications and chromatin remodeling
are also involved in cancer [191,192].

Next-generation sequencing revealed that more than 50% of human cancers harbor mutations
in enzymes that are involved in chromatin organization. [193]. Importantly, aberrant activity of
histone-modifying factors may promote cancer development by mis-regulating chromatin structure
and activity [194], as frequently found in human leukemias [195].

In recent years, there has been tremendous and growing interest in investigating the role of
dysregulation of ncRNAs, notably miRNAs, in normal cellular functions as well as in disease processes.
Indeed, less than 2% of the entire human genome encodes proteins, while the majority of it (at least
75%) encodes ncRNAs [69]. There is now emerging evidence that these RNAs are involved in the
development and progression of leukemia and cancer [196–198].

Alterations in miRNA expression may occur following exposure to several stress-inducing
anticancer agents including ionizing radiation, etoposide, and hydrogen peroxide (H2O2).
Dysregulation of a family of miRNA was found in Ptch1 ± mice that are highly susceptible to
radiation-induced medulloblastoma [199].

These findings are consistent with the general notion that typically, miRNAs involved in
radiation tumorigenesis are dysregulated, and this dysregulation is believed to alter the expression
of protein-coding mRNA, thereby favoring uncontrolled tumor cell growth, in some cases by
decreasing tumor suppressor expression [200]. miRNA-related epigenetic changes have been
proposed to be the “missing link” between radiation exposure, radiation-induced genomic instability,
and radiation-induced carcinogenesis [90].

It should be noted that most of the investigations focusing on the relationship between
radiation-induced cancer and miRNA changes were obtained using rodent models, while relatively
fewer studies have been performed on human cancers. An interesting finding of one of these few
is the upregulation of a specific miRNA in breast cancer tissue samples derived from Chernobyl
radiation-exposed female clean-up workers [201].

While the occurrence is well established of a relationship between radiation-induced cancers and
epigenetic changes, the question can be posed whether these changes are the cause of cell transformation,
or rather the consequence of it. Indeed, it is now accepted that epigenetic abnormalities along with
genetic alterations are involved in the initiation and progression of cancer [189,202]. For example, it was
found that in rat mammary cells, the frequency of initiation (the first step in oncogenesis) induced by
γ-rays was much higher than specific locus mutations [203–205], and that the observed frequency of
radiation-induced GI is considerably higher than that observed for gene mutations at a similar dose,
suggesting that the latter is highly unlikely to be the initiating mechanism for GI [145,146,188].

It has also been suggested that a crucial role in such steps is played by epigenetically disrupted
stem/progenitor cells [205], a hypothesis consistent with the importance that is now given to cancer
stem cells in cancer development and perpetuation [206].
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Epigenetic considerations also affect individual susceptibility to radiation-induced cancer.
Assessment of individual variability in cancer risk is a key area to address for radiation protection. It is
recognized that differences in radiation sensitivity between individuals, or groups, may relate to gender,
age at exposure, state of health, genetic and epigenetic make-up, lifestyle, and age attained [207].

6.2. Transgenerational Effects

The heritable change in gene expression that is induced by a previous stimulus, such as ionizing
radiation, is often described as epigenetic memory. Epigenetic memory is a sort of “footprint” that
maintains gene expression states through cell generations without changes in DNA sequence and in
the absence of the initial stimulus. Epigenetic memory can be considered over different time scales:
cellular and transcriptional memory (mitotically heritable) and transgenerational memory (meiotically
heritable) (see, e.g., [208]). In this paper, “transgenerational epigenetic effects” are intended as those
effects which arise in the offspring of the irradiated organism and that are not due to the inheritance of
DNA mutations through the parental germline, according to the current use in radiation protection
issues [209]. Epigenetic variation induced by environmental factors contributes to the phenotypic
plasticity and adaptive capacity of various species. The molecular basis of cellular memory is a
fascinating topic that has been addressed during the last few decades [40].

In many cases, epigenetic changes have been proven to be stable and can lead to transgenerational
heritable changes. In plants and in some animals, such as nematodes, transgenerational epigenetic
inheritance is well-documented and relatively common [210]. Many examples have been reported for
transgenerational epigenetic effects in which environmental exposures, including ionizing radiation,
lead to heritable phenotypic changes that pass through male, female and sometimes both germlines
(reviewed in [211]). In mammals, epigenetic patterns are largely erased and then remodeled during
germ cell development and early embryonic development (epigenetic reprogramming) [212,213].

The first evidence for a radiation-induced transgenerational effect was reported in 1976 by Luning
et al. [214], who showed elevated rates of dominant lethal mutations following intraperitonial injection
of male mice with a plutonium salt solution. Afterwards, animal models demonstrated that effects of
the parental radiation exposure are transmitted through the germline to the progeny of the irradiated
parent [145,146,215].

Radiation-induced transgenerational effects may involve radiation-induced genome instability.
Indeed, in vitro data have shown that ionizing radiation can induce genomic instability that can
manifest in the progeny of the irradiated cells for many divisions [145] and transgenerational induction
of chromosomal instability has also been documented in vivo, notably in irradiated rodents [2,146,216].

Immediately relevant questions are whether the effects are common or rare, and whether they
are long-lasting or transient. Indeed, in several species, transgenerational effects have been detected
in many generations after the parents were exposed to ionizing radiation, (see the review in [168].
Recent results on vertebrates (zebrafish) show that ionizing radiation-related effects in offspring can
be linked to DNA methylation changes, many of which could be associated to pathways involved
in cancers and apoptosis, that partly can persist over generations. It has also been suggested that
monitoring DNA methylation could serve as a biomarker to provide an indication of ancestral exposure
to ionizing radiation [217].

A question especially relevant for radiation protection purposes is whether transgenerational
radiation effects occurs in humans. While animal studies show such effects, their occurrence is
highly controversial in humans. A high risk of leukemia and birth defects has been reported in the
children of fathers who had been exposed to radionuclides in the nuclear reprocessing plants [218]
and an increase in minisatellite mutations was found in offspring of various groups living close to the
Chernobyl site, to nuclear test sites in Kazakhstan and to the Techa-river region [219–221]. However,
these findings were not supported by studies in the children of atomic bomb survivors in Hiroshima
and Nagasaki [222]. A review published in 2013 of these and other available data concluded that
“studies of disease in the offspring of irradiated humans have not so far identified any effects on health,



Int. J. Mol. Sci. 2020, 21, 5993 15 of 34

possibly in part a result of lack of statistical power”, and that transgenerational effects of radiation, if any,
“may be restricted to relatively short times post-exposure, when in humans conception is likely to be
rare” [209]. A subsequent review [223] also considered more recent results from a long-term monitoring
by Russian Federation of the children of residents exposed to radionuclides after the Chernobyl
accident, which showed an increased prevalence of malignant neoplasms, especially childhood cancer,
and other disorders. Based on these findings and on the consideration that the negative results of
gene mutations in Hiroshima and Nagasaki might be caused by erroneous methodology, these authors
concluded that radiation-induced persistent accumulation of genomic instability may cause various
disorders in a further generation in humans [223]. Research has been undertaken using plant and
animal systems to understand the mechanisms governing the epigenetic transgenerational effects in
organisms exposed chronically to low- doses in Chernobyl and in Fukushima areas [224]. The results
so far obtained from laboratory and field studies confirm that DNA methylation might be the key to
transfer the response to ionizing radiation from one generation to the next, but more in depth studies
are needed, involving other epigenetic mechanisms such as histone modifications and microRNAs,
linked to responses at higher levels of biological complexity [225].

If transgenerational effects of radiation were to be demonstrated to apply to humans, it may have
implications in radiation protection when estimating the hereditary risks (i.e., the risk of induction
of genetic diseases expressed in future generations) of ionizing radiation in human populations.
According to the current risk assessment system, they are quantified as the harmful genetic effects
on the descendants of those exposed, resulting from the induction of germline mutations and their
transmission over generations [1]. This implies that mutation induction in directly exposed cells is
regarded as the cause of this risk for humans. Since epidemiological studies have not provided clear
evidence of heritable effects of radiation exposure in humans, current estimates for radiation hereditary
risk are derived from measured germline mutation frequencies in mice [226]. The underlying rationale
is that “experimental studies in plants and animals have demonstrated that radiation can induce
hereditary effects, and humans are unlikely to be an exception in this regard” [227]. However, if the
results of animal and cellular studies on epigenetic transgenerational destabilization of the genome do
apply to human populations, then the hereditary risk could be greater than currently predicted. In this
case, the question remains about the magnitude and significance of such an effect in the perspective of
radiation protection.

6.3. Non Cancer Effects

Manifestations of health effects other than cancer and hereditary diseases have been well known
after medium/high doses of ionizing radiation. Within months of Roentgen’s discovery of X-rays,
severe adverse effects were reported, such as eye and skin injuries. They were historically termed as
“deterministic” effects in contrast to the stochastic cancer and hereditary effects, and later referred to as
“tissue reactions” [228]. In general, tissue reactions to high/moderate doses are thought to arise mainly
as a consequence of cell killing or functional inactivation, but other non-cytotoxic effects, such as
disturbances in molecular cell signaling, also play a crucial role in determining tissue response to
radiation. For radiation protection purposes, it is currently assumed that they show a “practical”
threshold, defined as the dose required to lead to 1% excess incidence [228], at doses that are well
above the levels of exposure typically encountered in the public environment, at work or in diagnostic
medical uses of ionizing radiation. Recent results from epidemiological and experimental studies
indicate possible increased risks for circulatory diseases, cognitive/neurological effects, and cataracts,
not only at high doses but also at doses around 500 mGy and, possibly, even lower. In this section,
we will give a glimpse of the role of epigenetics in radiation-induced cognitive and cardiovascular
effects and cataract.
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6.3.1. Possible Epigenetic Role in Radiation-Induced Cognitive Effects

Clinicians have known for decades that patients subjected to cranial radiotherapy for the control
of brain malignancies develop severe and progressive cognitive deficits (see, e.g., [229]). Indeed,
many studies of childhood cancer survivors (mainly of leukemia) documented cognitive impairment
associated with high-dose (40–50 Gy) cranial irradiation [230]. Quite surprisingly, cognitive impairment
was observed in a Swedish group treated for hemangioma in infancy with much lower doses, expressed
as a ~50% reduction in high school attendance associated with 100 mGy exposure [231]. In utero exposed
Japanese atomic bomb survivor data also suggest cognitive impairment at high dose, but no cognitive
impairment can be demonstrated in the 0–100 mGy dose range [232,233]. However, the obvious
differences in the age-at-exposure values (infancy vs. in utero) make it difficult to draw any meaningful
comparison between the two studies [234].

Investigations showing cognitive/behavioral deficits caused by charged particles (relevant for
protection against space radiation) in rodent models were carried out to understand the possible
limitation to human exploration of our solar system [235,236]. Interestingly, in rats a correlation was
recently found between behavioral changes and epigenomic remodeling in the hippocampus [237] and
between adverse effects on cognition of space relevant irradiation and epigenetic aberrations consisting
in increased levels of the DNA methylating enzymes [238].

6.3.2. Possible Epigenetic Role in Radiation-Induced Cardiovascular Effects

Circulatory disease has been recognized as an important late effect of radiation exposure after the
evidence arising from radiotherapeutic experience and epidemiological studies following nuclear and
other radiation activities [226]. ICRP has classified circulatory disease as a tissue reaction (a generalized
definition of the deterministic effects), with a threshold dose of 0.5 Gy [228]. Several studies addressed
the candidate biological mechanisms for the circulatory disease effects of radiation At radiotherapeutic
doses > 5 Gy, the cell-killing effect on capillaries and endothelial cells plausibly explains effects on the
heart and other parts of the circulatory system [239]. At lower doses (0.5–5 Gy), in humans and in
in vivo and in vitro experiments, many inflammatory markers are upregulated long after exposure
to radiation, while for doses less than about 0.5 Gy, the balance shifts toward anti-inflammatory
effects [240,241]. The involvement of epigenetics, namely demethylation of a gene involved in aging
endothelial cells, has been reported as one of the several events that contribute to the eventual
development of atherosclerotic plaques after a dose of 10 Gy [242]. Changes in DNA methylation
of repetitive elements in the heart tissue have also been observed after the irradiation of mice with
0.1 Gy of protons and 0.5 Gy of 56Fe-ions, which are charged particles relevant to space radiation.
These changes are dynamic and may vary depending on the time after irradiation, going from early
global and repetitive elements-associated DNA hypomethylation to late DNA hypermethylation [243].

6.3.3. Possible Epigenetic Role in Radiation-Induced Cataract

Cataract is a progressive opacification of the crystalline lens of the eye which can determine
a decrease in central vision, and is very common in the elderly [244]. It is due to a cumulative
physiological response to toxic environmental factors leading to an excessive generation of ROS in
the lens epithelium cells and in the superficial lens fiber cells, as well as in the aqueous humor [245].
The main effect of ionizing radiation on the eyes is the onset of posterior cortical and subcapsular
cataracts [246], while there is little evidence that nuclear cataracts are radiation-induced [234].

In 2012, ICRP indicated a value of approximately 500 mGy as the threshold for cataract induction
by low-LET radiation for acute and fractionated/protracted exposure [228]. This is a value lower by a
factor of 10 than that deduced in earlier studies.

Even if it remains unknown exactly how ionizing radiation exposure contributes to
opacification [247], epigenetic mechanisms, mainly DNA methylation, have been shown to play an
important role in the pathophysiology of numerous ocular diseases [248]. For example, a decreased level
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ofα-crystallin expression in age-related nuclear cataract has been shown, linked to the hypermethylation
of the CpG islands in a specific gene promoter [249].

6.4. Epigenetics and the Low Dose/Dose Rate Issue

One of the main issues in radiation protection is the assessment of health risks of exposures to
ionizing radiation at low doses and/or low dose rates, since these are the levels typically encountered
in the workplace, in the environment and in diagnostic medicine, i.e., in exposures with a potential
impact in our everyday life [250–252]. At these levels, the standard epidemiological approaches cannot
give reliable information, so that an integration between epidemiological data and radiobiological
studies is required to solve this issue [253].

The term “low dose” has several different interpretations in different contexts. In terms of
microdosimetry, it is an absorbed dose such that a single cell or nucleus is very unlikely to be traversed
by more than one track, so that the number of affected cells is proportional to the absorbed dose.
Since the definition of “unlikely” is subjective, a conservative definition [254] is based on a mean
number of 0.2 tracks per cell (or per cell nucleus), meaning that less than 2% of the cells will be subject
to traversals by more than one radiation track. This would correspond to a dose of only 0.2 mGy
of low-LET radiation [255]. In radiation protection, it is assumed that a low dose is ≤ 100 mGy for
acute exposure to low-LET radiation [1,2], corresponding to levels above which no firm evidence
exists of increased cancer risks in humans from epidemiological data for sparsely ionizing radiation,
and that a low dose-rate is ≤ 5 mGy per hour [256]. More recently, in the framework of the European
platform on low dose effects, these are assumed as those where there remains substantial uncertainty
on the magnitude of health risk, i.e., ≤100 mGy for low LET radiations when considering cancer risks,
and ≤ 500 mGy when considering non-cancer diseases, and low dose rates are assumed as those
≤ 6 mGy/h [253].

While there is little information about the health effects from chronic exposure to low dose-rate
radiation, radiobiological studies demonstrated that radiation, when delivered at a slow continuous
rate or by fractionation, may have strikingly different effects compared to the same dose delivered
acutely. Many data have been collected showing that the biological responses to high and low doses
of radiation are not only quantitatively, but also qualitatively, different. For example, the cellular
response to DSB induction is substantially different for low compared to high doses, in that low doses
are insufficient to induce an efficient DSB repair in vitro [257,258]. Importantly, differences in gene
expression profiles have been found, and gene expression changes were established as an early indicator
of cellular responses to low-dose radiation in a human myeloid tumor cell line [259]. Subsequently,
many other data were accumulated for a variety of biological systems [260–262], including human
tissue models [263] and human tissue irradiated in vivo, where, however, a considerable individual
variability in radiation response was observed [264].

Biological effects usually classified as “beneficial” have been shown after low doses of irradiation;
not surprisingly, they are often related to epigenetic mechanisms. In vivo mammalian studies have
shown that low doses (up to around 100 mGy) reduce the incidence of spontaneous cancers in mice [265];
other “beneficial” effects, in terms of positive phenotypic changes associated to DNA hypermethylation,
have been observed in the offspring of mice when they were irradiated with low doses during early
gestation [266]. The study suggested that epigenetic alterations may be the memory system that results
in “hormesis” after low doses of ionizing radiation, i.e., in a stimulation that induces a beneficial effect.
There have been accumulated many data on hormesis and AR after low dose exposure both in vitro
and in vivo [251], and there are several lines of evidence that epigenetic mechanisms can be involved
in hormesis-like and life-extending responses in model organisms [267]. It has been shown that chronic
low-dose radiation exposure is a more potent inducer of epigenetic effects than acute exposure [268].
Specific gene modulations were observed as a result of chronic low-LET irradiation of mice at low
doses [269]. A role of DNA hypermethylation was suggested to be involved in adaptive response
induced by chronic low-dose γ-irradiation of human B lymphoblast cells [270].
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Both laboratory and field studies have demonstrated changes in overall DNA methylation in
organisms exposed chronically to ionizing radiation. An interesting conclusion is that, generally,
an elevated chronic level of ionizing radiation induced hypermethylation or methylation pattern
changes which could be taken as a response to induce DNA stability [225].

A peculiar aspect of low dose and low dose-rate exposure is that related to the ionizing radiation
background. Life has evolved on Earth for about 4 billion years in the presence of the natural
background of ionizing radiation, even if it was not always the same as today. Without it, life on Earth
could not have existed or would not exist in the present form.

Today, the annual dose due to natural background on average approaches 1 mSv, with cosmic
contributions slightly less than the terrestrial one [271]. For human organisms, there is also an internal
exposure due to inhalation (mainly radon) and ingestion of naturally occurring radionuclides (K-40
and others) that adds to the mentioned external exposure, so that the total average annual dose is
evaluated to be 2.4 mSv [271]. The Sv is the unit of equivalent dose, only applicable to stochastic effects,
obtained by multiplying the unit of absorbed dose, Gy, by appropriate weighing factors to take into
account the quality of radiation and the type of exposure; in the special case of uniform total-body
exposure to low-LET radiation, 1 Sv = 1 Gy.

Despite the fact that the natural radiation background is presently extremely small, nevertheless
it may be significant enough for living organisms to sense it and respond to it, keeping memory of this
exposure. Changes in cell properties have been shown in bacterial, protozoan and mammalian cells
cultured in low radiation environments such as those offered by underground laboratories [272–278].
Further experiments with a more complex organism, the fruit fly, indicated that reduction in
radiation background significantly affected the fly lifespan and female fertility [279,280]. Overall,
these experiments suggest that very low levels of chronic exposure, such as the natural background, may
trigger defense mechanisms without genetic change, therefore by epigenetic mechanisms [278–280],
an explanation that finds support in the already reviewed epigenetic origins of low-dose radiation
responses, such as AR and NTE.

7. Concluding Remarks and Perspectives

7.1. Epigenetics Is Needed in Radiobiology Paradigms

Epigenetics is one of the fastest-growing areas of biological sciences, moving to the forefront of
biomedical research, and also radiobiology could benefit from knowledge and control of epigenetic
mechanisms. However, the involvement of epigenetic mechanisms in the biological response to
ionizing radiation has not been studied as extensively as in other fields [11].

In contrast to conventional paradigms, the emerging picture of the cell response to ionizing
radiation speaks in favor of a complex response to a variety of radiation-induced signals with
perturbations at the cellular and supracellular levels, where epigenetic changes have become
increasingly recognized as important aspects besides the genetic ones (Figure 4). Genetic and epigenetic
mechanisms appear to have their common origin in radiation-induced ROS/RNS. This complex response
is also the basis for the observed non-linear phenomena.

Knowledge about the basic radiobiological mechanisms is not only relevant to radiation biology,
but it can also have a great impact on related applied science, notably in radiation protection. Indeed,
it is essential for developing realistic models to guide extrapolations of epidemiological data on exposed
human populations, so as to estimate risks at low doses and low dose-rates for both low- and high-LET
radiation, and also to identify the factors determining individual radiosensitivity/susceptibility.
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Figure 4. Schematic representation of the cell response to ionizing radiation, where alterations in gene
products are due to both genetic and epigenetic mechanisms. These mechanisms share a common
pathway originating from ROS production triggered by water radiolysis but, in addition, genetic
changes can also be induced by DNA damaged via the direct action of radiation. Unbalanced ROS/RNS
production results in oxidative stress with the involvement of mitochondria (not shown here).

7.2. Implications in Radiation-Induced Cancer

The implication of epigenetic effects in radiation-induced cancer has not yet received much
attention in developing mechanistic models of radiation action to be used for radiation protection
purposes. It is interesting to note that, for example, ICRP [3] assumes that cancer development is
best described as a multistep process originating from single cells that have sustained mutations
through DNA damage and that, either directly or following the accumulation of additional mutations
or epigenetic changes, such cells gain growth advantages and progress to a proliferative and ultimately
malignant tumor. However, in partial contrast to this statement, radiation is then judged to act
most commonly by inducing initiating mutations in proto-oncogenes or in tumor suppressor genes,
an assumption that may overlook the contribution from epigenetic mechanisms. Since epigenetic
changes have become increasingly recognized as important factors contributing to cancer development,
models of radiation-induced carcinogenesis should be developed to estimate radiation risk with the
incorporation of both genetic and epigenetic effects.

Moreover, epigenetic mechanisms may also have an impact on individual susceptibility to
radiation-induced cancer. They may determine differences between individuals, or groups, and such
differences, if significant, raise the ethical and policy question as to whether some individuals or groups
are inadequately protected by the present system and regulations [253]. Therefore, research is required
to clarify the role of epigenetic traits in order to settle this issue.

7.3. Implications in Radiation-Induced Hereditary Effects

Do transgenerational epigenetic effects impact human phenotypic variation and disease risk?
To answer this question, it is necessary to resolve the discrepancies between human and animal/cellular
data, so as to reach a consistent picture of this kind of effects. While clarifying this aspect will give
insights about the mechanisms of this mode of inheritance, it is expected to have only a limited impact
on radiation protection.
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Indeed, it must be considered that in the current risk assessment, hereditary risks are only a minor
contribution (about 4%) of the total detriment due to stochastic effects caused by ionizing radiation
exposure, the major contribution being represented by cancer induction in the irradiated person, i.e.,
by somatic effects [1]. Therefore, a possible further contribution of transgenerational genome instability
to the increase in mutation rates in the offspring of irradiated parents is likely not to affect the present
radiation protection practice much, while it could be of great interest for improving our knowledge in
radiation biology.

It is interesting to note that a relatively new problem would be represented by radiation
therapy-related consequences. Although modern cancer radiotherapy has led to increased patient
survival rates, the threat posed to the progeny of radiation-treated parents should be re-evaluated due
to possible transgenerational carcinogenesis.

7.4. Implications in Radiation-Induced Non-Cancer Effects

In spite of the longstanding awareness of non-cancer somatic effects after medium/high doses
of ionizing radiation, their induction after low/moderate doses is a relatively recent issue so that
knowledge on their underlying biological mechanisms is poor [228]. It has been proposed that the
mechanisms relevant to those effects in this range are likely different from those relevant at higher
doses [240,281].

The possibility of a stochastic nature of these effects without dose thresholds raises a wide range
of questions and may have important implications for radiation protection [253]. It is expected that
epigenetic mechanisms are relevant to the future development of mechanistic models of radio-induced
non-cancer diseases and, possibly, to the development of relevant markers in exposed individuals.

7.5. Low-Level Exposures: Detrimental or Beneficial?

In this review, many lines of evidence are described supporting the notion that cellular response to
low dose of radiation are controlled, at least in part, by gene expression networks, and that epigenetic
mechanisms are involved in adaptive response and in hormesis-like responses. While most of this
information has been obtained in in vitro or ex vivo systems, it appears likely that adaptive epigenetic
rearrangements can occur in human organisms, not only during early developmental stages but also
throughout adulthood, improving their functional ability [267]. These effects have been attributed to
the induction of the adaptive-response genes due to a long-lasting epigenetic memory in response to
various kinds of mild stress [282].

While epidemiological data do not provide firm evidence for detrimental health effects below
100 mGy of low-LET radiation, human cellular responses to low doses of radiation that are typical
of certain occupational activities or diagnostic radiography were often shown to harbor lower
levels of chromosomal damage than that occurring spontaneously at the basal level ([283] and refs
therein, [284] and refs therein). These considerations give some support to the assumption, based on
studies with in vitro and animal models, that low-dose radiation has beneficial effects [285] and
to the belief that LNT assumption (which implies proportionality between dose and health risk)
is not valid at low doses or, at least, that it has not been proven to be true [284,286]. However,
translating epigenetic-mediated cellular mechanisms, such as adaptive response, to the level of the
human organism is not straightforward. Whether stimulation of cell defense mechanisms by low-level
exposures is beneficial or deleterious in terms of health effects on human organism is not a trivial
question. Although this stimulation is evocative of a positive reaction, it could not be the case if,
for example, cells damaged by protracted exposures escape apoptosis, a situation that could enhance
tumor promotion by increasing the probability of the survival of cells with accumulating damage
or mutation [260]. Settling this controversy needs deeper insights of those radiobiological genetic
and epigenetic mechanisms that dominate at low doses and at the same time are relevant to health
effects on humans. In particular, there is a large consensus about the need for developing and using
well-validated animal and human cellular/tissue models of radiation carcinogenesis [253].
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Understanding the role of natural radiation background on living organisms is also essential
to complete this scenario, given that it provides the biological background on which the response
to man-made exposures overlap, and that this background shows large geographical variations [2].
It is expected that controlled long-term experiments with various model organisms, conducted in
underground laboratories where conditions with extremely reduced background radiation are realized,
can provide this basic information and, at the same time, can increase our knowledge about the role
played by the natural radiation in life’s evolution.

Clearly, the decision whether the current LNT extrapolation of health risk estimates to low doses
is still appropriate or whether a new paradigm has to be developed to provide more realistic protection
against low radiation doses has significant social and economic implications.

Therefore, it is not surprising that quite often, the controversy is implicitly driven by considerations
that are not strictly scientific but nevertheless can have a great impact on radiation protection practice.
One of these considerations is that the LNT assumption makes the present system quite well manageable
since a given dose can be a direct index of health risk and different doses received by an individual
in different time periods can be summed up to evaluate the overall risk. On the other hand, no real
alternative model based on recent scientific achievements has yet been proposed, likely because of the
complex picture that has emerged for the biological response at low doses. However, these achievements
suggest some general considerations useful in radiation protection practice such as, for example,
that summing up many small doses to get an indication of the total health risk is unreasonable from
the biological point of view, both at the individual and at the population level. This should be taken
into account at least in performing the process called “optimization of the protection”, which is
one of the three fundamental principles of radiation protection, so as to extend to this aspect the
conclusion already expressed by the ICRP that the “collective effective dose is not intended as a tool for
epidemiological studies, and it is inappropriate to use it in risk projections” [1], a reasonable conclusion
when taking into account that the collective dose may be made of a sum of a large number of small
individual doses.
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UNSCEAR United Nations Scientific Committee on the Effects of Atomic Radiation
ICRP International Commission on Radiological Protection
UNEP United Nations Environment Programme
DSB Double strand break
LET Linear energy transfer
LNT Linear No-Threshold
NTE Non-targeted effects
AR Adaptive response
BE Bystander effect
GI Genomic instability
C, G Cytosine, Guanine
CpG 5′—C—phosphate—G—3′

DNMT DNA methyltransferase
ncRNA Non-coding RNA
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lncRNA Long non-coding RNA
miRNA Micro RNA
ROS Reactive oxygen species
RNS Reactive nitrogen species
TE Transposable element
LINE-1 Long interspersed nucleotide element 1
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