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Abstract
Sertoli cells contribute to the formation of the blood-testis barrier (BTB), which is necessary for normal spermatogenesis. 
Recently, microRNAs (miRNAs) have emerged as posttranscriptional regulatory elements in BTB function during spermato-
genesis. Our previous study has shown that miR-181c or miR-181d (miR-181c/d) is highly expressed in testes from boars at 
60 days old compared with at 180 days old. Herein, we found that overexpression of miR-181c/d via miR-181c/d mimics in 
murine Sertoli cells (SCs) or through injecting miR-181c/d-overexpressing lentivirus in murine testes perturbs BTB function 
by altering BTB-associated protein distribution at the Sertoli cell–cell interface and F-actin organization, but this in vivo 
perturbation disappears approximately 6 weeks after the final treatment. We also found that miR-181c/d represses Sertoli 
cell proliferation and promotes its apoptosis. Moreover, miR-181c/d regulates Sertoli cell survival and barrier function by 
targeting platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (Pafah1b1) gene. Furthermore, miR-181c/d sup-
presses PAFAH1B1 expression, reduces the complex of PAFAH1B1 with IQ motif-containing GTPase activating protein 1, 
and inhibits CDC42/PAK1/LIMK1/Cofilin pathway which is required for F-actin stabilization. In total, our results reveal the 
regulatory axis of miR-181c/d-Pafah1b1 in cell survival and barrier function of Sertoli cells and provide additional insights 
into miRNA functions in mammalian spermatogenesis.
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Abbreviations
BTB  Blood-testis barrier
SC  Sertoli cell
ST  Swine testicular

PAFAH1B1  Platelet-activating factor acetylhydrolase 1b 
regulatory subunit 1

TEM  Transmission electron microscopy
PBS  Phosphate-buffered saline
DAPI  4’, 6-Diamidino-2-phenylindole
TJ  Tight junction
TER  Trans-epithelial resistance
Na-F  Sodium fluorescein
CCK-8  Cell Counting Kit-8
PCNA  Proliferating cell nuclear antigen
BCL2  B-cell lymphoma 2
BAX  Bcl-2 associated X protein
3’UTR   3’untranslated region
RT-qPCR  Real-time quantitative PCR
ES  Ectoplasmic specialization
CDC42  Cell division control protein 42 homolog
PAK1  P21(RAC1) activated kinase 1
LIMK1  LIM domain kinase 1
IQGAP1  IQ motif-containing GTPase activating 
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Introduction

Sertoli cells provide structural support and nourishment 
to germ cells during mammalian spermatogenesis [1]. 
Spermatogenesis efficiency is determined by the Sertoli 
cell number which depends on the proliferative capacity 
of immature Sertoli cells [2, 3]. In addition, the blood-
testis barrier (BTB, also known as the Sertoli cell bar-
rier) is constituted by the basal ectoplasmic specialization 
(ES) and several junction proteins between adjacent Ser-
toli cells and physically divides the seminiferous tubules 
into basal and apical compartments [4]. BTB maintains a 
proper microenvironment for controlling the development 
and maturation of germ cells during spermatogenesis [5], 
thus disruption of BTB often leads to germ cell loss and 
male infertility [6].

MicroRNAs (miRNAs) are a class of small non-coding 
RNAs with vital roles in cell survival, differentiation, and 
blood-tissue barrier [7–9]. Our previous miRNA microar-
ray data showed that miR-181c or miR-181d (miR-181c/d) 
is highly expressed in testes from sexually immature boars 
at 60 days old compared with sexually mature boars at 
180 days old [10]. At sexually immature stage, Sertoli 
cells have proliferative capacity and the BTB is not yet 
fully formed; at the sexually mature stage, Sertoli cells 
no longer undergo cell proliferation and have formed a 
blood-testis barrier [11–14]. The miR-181c is found to 
disturb the blood–brain barrier and F-actin organization in 
brain blood vessel endothelial cells by downregulating its 
target gene 3-phosphoinositide-dependent protein kinase-1 
[15]. On the other hand, miR-181c promotes apoptosis and 
inhibits proliferation of HCV-infected hepatocytes [16]. 
Analogously, miR-181d suppresses cell proliferation and 
metastasis of gastric cancer via the PI3K/AKT signaling 
pathway [17]. Recently, increasing attention has been paid 
to the role of miRNAs in male infertility, especially in 
male germ cell development and differentiation [18, 19]. 
However, whether these miRNAs control BTB function 
and further regulate mammalian spermatogenesis remains 
largely uninvestigated.

Platelet-activating factor acetylhydrolase 1B subunit 
1 (PAFAH1B1) (also known as Lissencephaly-1 (LIS1)) 
contains an N-terminal Lish domain and seven WD40 
repeats at the C-terminal [20, 21]. Immunohistochemical 
staining of mouse testicular tissues showed PAFAH1B1 
is localized in spermatogenic cells and Sertoli cells [22], 
and single-cell RNA-sequencing data effectively validates 
that PAFAH1B1 is expressed in germ cells, Sertoli cells, 
Leydig cells, and other cells of pig [23] and mouse [24] 
testis. Deletion of Pafah1b1 in mice results in the failure 
of spermatids to form acrosomes and germ cell apoptosis 
[25, 26]. Studies also provide evidence for the roles of 

Pafah1b1 in cholangiocarcinoma cell proliferation [27] 
and germinal center B cell apoptosis [28]. Additionally, 
the absence of Pafah1b1 leads to F-actin cytoskeleton re-
organization by downregulating Cdc42/Rac1 activities in 
neurons [29].

To investigate the function of miR-181c/d in male fertil-
ity, we established a Sertoli cell barrier in vitro to mimic 
BTB function in vivo and injected LV-miR-181c/d into 
mouse testes to overexpress miR-181c/d levels in the testes. 
Furthermore, we revealed the regulatory mechanism of the 
miR-181c/d-Pafah1b1 gene on Sertoli cell survival and bar-
rier function in mice. These results add to our understanding 
of miR-181c/d in mammalian spermatogenesis.

Materials and methods

Mice

Male Kunming mice were purchased from the experimen-
tal animal center of Huazhong Agricultural University 
and housed in a controlled environment (temperature of 
22 ± 2 °C, relative humidity of 50–60%, light/dark cycle of 
12 h/12 h) with free access to food and water. All the animal 
procedures were approved by the Institutional Animal Care 
and Use Committee of Huazhong Agricultural University.

Cell culture and transfection

Primary murine SCs were isolated and purified from 18- to 
21-day-old mouse testes [30]. Murine SCs were cultured 
in DMEM/F12 (11320033, Gibco) supplemented with 10% 
fetal bovine serum (10099141C, Gibco), bovine insulin 
(5 μg/mL), human transferrin (5 μg/mL), and epidermal 
growth factor (2.5 ng/mL). The swine testicular (ST) cells 
(ATCC Cat# CRL-1746, RRID: CVCL_2204) that have 
been identified as immature Sertoli cells [31] were pur-
chased from the Cell Bank of Wuhan University (Wuhan, 
China). The porcine ST cells were cultured in DMEM/High 
Glucose medium (SH30022.01, HyClone) supplemented 
with 10% fetal bovine serum (10099141C, Gibco) at 37 °C 
with 5%  CO2.

The full-length Pafah1b1  cDNAs of mouse 
(NM_013625.4) and pig (NM_214250.1) were cloned into 
pcDNA3.1 vector using Trelief™ SoSoo Cloning Kit (TSV-
S2, Tsingke Biotechnology). The miRNAs and siRNAs 
were designed and synthesized by GenePharma (Shanghai, 
China). The plasmids, miRNAs, or siRNAs were transfected 
into cells using Lipofectamine™ 3000 (L3000015, Invit-
rogen) or RNAiMAX (13778030, Invitrogen) transfection 
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reagent. The oligo sequence information is listed in Sup-
plementary Table 1.

Intratesticular injection with lentivirus 
of miR‑181c/d

Murine miR-181c/d precursor sequences (mmu-mir-181c/d 
in Supplementary Table 1) were cloned into lentiviral vec-
tors (LV) that contain green fluorescence protein ZsGreen 
(Hanbio, Shanghai, China). For in vivo experiments, sexu-
ally immature male mice at age of 16 days were randomly 
divided into three groups (n = 12). Mice in Groups I, II, and 
III were injected intratesticularly with miR-181c overexpres-
sion lentivirus (abbreviated as “LV-miR-181c”), miR-181d 
overexpression lentivirus (abbreviated as “LV-miR-181d”), 
control lentivirus (abbreviated as “LV-control”), respec-
tively. Mice were anesthetized with 5% chloral hydrate 
(0.5 ml/100 g body weight). The scrotum was shaved, and 
then washed with antiseptic soap and wiped with ethanol. 
At age of 16 and 30 days, mice were injected with lentiviral 
solution. Each testis was located and held in position by one 
person while another person injected the lentiviral solution 
through the skin and into the testes (10 μL and 20 μL per 
testis) using a 30-gauge needle as described previously [32, 
33]. Two weeks after the final injection, the mice were sac-
rificed by cervical dislocation.

Indexes and histology of testis and epididymis

Murine testes and epididymides were isolated and weighted 
(n = 5). Testes and caput epididymides were fixed with 4% 
paraformaldehyde for 24 h, dehydrated for paraffin embed-
ding, and transversely sectioned (5 μm thickness). Paraffin 
sections were stained using haematoxylin and eosin. Finally, 
the slides were observed under a light microscope (Olympus 
BX53, Japan).

Sperm count and morphological analysis

Sperms were isolated from cauda epididymis and suspended 
in 500 μL of TYH medium (M2050, Easycheck) for 30 min 
at 37 °C. The sperm counts were calculated using a cell 
counting plate. For sperm morphological analyses, cauda 
epididymal sperms were spread onto glass slides and stained 
with Giemsa (n = 5).

Transmission electron microscopy (TEM)

The freshly isolated testes (n = 3) and murine SCs were 
immersed and transferred into fresh TEM fixative solution 
at 4 °C. And then the samples were fixed with 1%  OsO4 in 
phosphate-buffered saline (PBS). After removing  OsO4, the 
samples were washed three times with PBS. The ultrathin 

sections were mounted on copper grids and then double 
stained with 2% uranium acetate saturated alcohol solution 
and 2.6% lead citrate. The samples were examined with 
an 80 kV Transmission Electron Microscope (HT7800, 
Hitachi, Japan).

Biotin tracer studies

The integrity of BTB was tested using a biotin tracer, as 
previously described [34]. Briefly, 2 weeks after the final 
administration, mice were anesthetized with 5% chloral 
hydrate (0.5 mL/100 g body weight) (n = 3). Thirty micro-
liters of EZ-Link Sulfo-NHS-LC-Biotin solution (10 mg/
mL in PBS) were injected into the testicular interstitium. 
After 30 min, the mice were euthanized. The testes were 
collected, embedded in Tissue-Tek O. C. T Compound 
(Sakura Finetek, Japan), and frozen at − 80 °C until use. 
Frozen sections (6 μm thickness) were fixed with 4% para-
formaldehyde for 15 min and incubated with Streptavidin-
FITC (S3762, Sigma–Aldrich). The cell nuclei were stained 
with 4’, 6-diamidino-2-phenylindole (DAPI) (D9542, 
Sigma–Aldrich). Fluorescence images were visualized using 
an epifluorescence microscope (Olympus BX53, Japan). 
 CdCl2 is known to induce BTB disruption [35], and mice 
injected intraperitoneally with  CdCl2 (1 mg/kg) continuously 
for three days were used as positive controls. Randomly 
selected fields from each testis tissue section were evaluated. 
To semi-quantify the extent of BTB damage, we measured 
the distance traveled by biotin in the tubule  (DBiotin) and 
the radius of the same tubule  (DRadius). For an oval-shaped 
tubule, the radius is the average of the shortest and the long-
est distance of the tubule. The extent of the BTB damage can 
be expressed in percentage as: E = [DBiotin/DRadius] × 100% 
[36]. The relative distance of fluorescence distribution was 
quantified using Image J software.

Immunofluorescence and F‑actin staining

Immunofluorescence staining was performed as previ-
ously described [37, 38]. Briefly, frozen sections of testes 
(n = 3) or freshly isolated murine SCs cultured on cov-
erslips were fixed with 4% paraformaldehyde for 15 min 
and then washed with PBS. The samples were incubated 
with primary antibodies and secondary antibodies. Cell 
nuclei were stained with DAPI. The following antibodies 
were used: Ki67 (A2094, ABclonal; 1:100), N-cadherin 
(33-3900, Invitrogen; 1:100), Occludin (71–1500, Invitro-
gen; 1:100), PAFAH1B1 (sc-374586, Santa Cruz; 1:100), 
PLZF (sc-28319, Santa Cruz; 1:100), ZO-1 (61-7300, Inv-
itrogen; 1:100), β-catenin (71-2700, Invitrogen; 1:100), 
WT1 (ab89901, Abcam; 1:50), FITC Goat Anti-Mouse 
IgG (F0257, Sigma; 1:200), FITC Goat Anti-Rabbit 
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IgG (F0382, Sigma; 1:200), CY3 Goat Anti-Rabbit IgG 
(SA00009-2, Proteintech; 1:200), and CY3 Goat Anti-
Mouse IgG (SA00009-1, Proteintech; 1:200). Randomly 
selected fields from each testis tissue section were evalu-
ated. The relative distance of fluorescence distribution was 
quantified using Image J software.

For F-actin staining, testis sections (n = 3) or murine SCs 
were incubated with Alexa Fluor 594 phalloidin (A12381, 
Invitrogen) or Alexa Fluor 488 phalloidin (A12379, Invit-
rogen). Cell nuclei were stained with DAPI. Fluorescence 
images were visualized using an epifluorescence microscope 
(Olympus BX53, Japan) or a confocal laser scanning micro-
scope (Zeiss LSM 800, Carl Zeiss Imaging, Germany).

Assessment of the permeability of the Sertoli cell 
barrier in vitro

Murine SCs were plated on Matrigel-coated Millicell bicam-
eral units (diameter, 12 mm; pore size, 0.45 μm; effective 
surface area, 0.33  cm2, Millipore Corp) in 24-well plates 
containing 0.5 mL F12/DMEM. The permeability of the Ser-
toli cell barrier can be assessed in vitro by quantifying the 
trans-epithelial resistance (TER) with the Millicell ERS sys-
tem (Millipore Corp) [39]. TER value was measured at three 
different areas in each bicameral culture. TER values of 
each sample were calculated as  TERsample (Ω  cm2) = (Rsample 
– Rblank) (Ω) × effective membrane area  (cm2).

The permeability of the Sertoli cell barrier was also 
assessed in vitro using sodium fluorescein (Na-F) [40]. 
The Na-F concentration in the basal chamber of the control 
group before treatment was arbitrarily set as 100% for the 
experiment.

Cell Counting Kit‑8 assay

The cell viability was assessed using Cell Counting Kit-8 
(CCK-8; CK04, Dojindo). Ten microliters of CCK-8 reagent 
were added to each well and incubated at 37 °C for 2 h. The 
data of optical density value at 450 nm was measured by a 
microplate reader (Bio-Rad, USA).

Cell apoptosis assays

Cell apoptosis analysis was performed using an Annexin 
V-FITC Apoptosis Detection Kit (AD10, Dojindo) with 
FACS Calibur Flow Cytometry (Beckman Coulter, Brea, 
USA). For testis sections (n = 3), apoptotic cells were 

detected using the TUNEL Apoptosis Assay Kit (C1086, 
Beyotime). The testis sections were incubated with TUNEL 
reaction mixture for 60 min at 37 °C, then washed with PBS. 
Cell nuclei were stained with DAPI. Fluorescence images 
were visualized using an epifluorescence microscope (Olym-
pus BX53, Japan).

Dual‑luciferase reporter assay

The fragments of Pafah1b1 3’ untranslated region (3’ 
UTR) containing the wild-type or mutated miR-181c/d 
binding sites were amplified and cloned into the pmir-
GLO dual-luciferase vector (Promega). Primers used in 
the experiment are listed in Supplementary Table 1. The 
recombinant construct plasmids were co-transfected with 
miR-181c/d mimics or mimics NC into porcine ST cells 
and murine SCs. Luciferase activity was measured with 
the Dual-Luciferase Reporter Assay System (E1960, 
Promega). Firefly luciferase activity was normalized to 
Renilla luciferase activity for each sample.

Real‑time quantitative PCR (RT‑qPCR)

Total RNA was extracted using the TRIzol™ Reagent 
(15596026, Invitrogen). RT-qPCR analysis was per-
formed using the iTaq™ Universal  SYBR® Green Super-
mix (1725121, Bio-Rad) on a CFX384 Touch™ Real-Time 
PCR Detection System (Bio-Rad, USA). RT-qPCR primers 
are listed in Supplementary Table 1. U6 and β-actin were 
used as internal controls for the miR-181c/d and coding 
genes, respectively. The relative expression of miRNAs or 
genes was calculated using the  2−△△Ct method.

Western blot

Protein samples were transferred to polyvinylidene dif-
luoride membrane (ISEQ00010, Millipore). The blots 
were blocked with 5% nonfat milk for 2 h and then incu-
bated with primary antibodies and secondary antibod-
ies. The Clarity Western ECL Substrate Kit (170-5061, 
Bio-rad) was used to visualize the immunoreactive bands. 
Images were captured with an Image Quant LAS4000 
system (GE Healthcare Life Sciences, Piscataway, NJ, 
USA). β-actin served as a protein loading control. The 
following antibodies were used: BAX (A0207, ABclonal; 
1:1000), BCL2 (60178-1-Ig, 1:3000; Proteintech,), CDC42 
(ab187643, Abcam; 1:20000), Cofilin (A1704, ABclonal; 
1:1000), IQGAP1 (sc-376021, Santa Cruz; 1:500), 
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LIMK1 (ab108507, Abcam; 1:5000), N-cadherin (33-
3900, Invitrogen; 1:500), Occludin (71–1500, Invitrogen; 
1:500), PAK1 (A19608, ABclonal; 1:1000), PAFAH1B1 
(ab109630, Abcam; 1:5000), PCNA (A12427, ABclonal; 
1:1000), p-Cofilin (AP0178, ABclonal; 1:1000), ZO-1 
(61-7300, Invitrogen; 1:500), β-actin (AC028, ABclonal; 
1:100000), β-catenin (71-2700, Invitrogen; 1:500), HRP 
Goat Anti-Mouse IgG (AS003, ABclonal; 1:3000), and 
HRP Goat Anti-Rabbit IgG (AS014, ABclonal; 1:3000).

Co‑immunoprecipitation

Sixty microlitres of Protein G magnetic beads (1614023, 
Bio-Rad) were incubated with antibodies for 2 h at room 
temperature. Then, the protein extracts were added to the 
beads and incubated overnight at 4 °C with rotation. The 
beads were washed with 1 × PBST. The proteins bound to 
the beads were eluted in standard 1 × SDS buffer and heated 
at 90 °C for 10 min. Finally, proteins were electrophoresed 
on 10% SDS–polyacrylamide gels and transferred to polyvi-
nylidene difluoride membrane for the immunoblot analysis. 
IQGAP1 (sc-376021, Santa Cruz; 1:50) and PAFAH1B1 
(sc-374586, Santa Cruz; 1:50) were used as the precipitat-
ing antibodies.

Bioinformatic analysis

The potential binding sites of miR-181c/d within Pafah1b1 
3’ UTR were predicted by Targetscan (http:// www. targe 
tscan. org/) online software. The three-dimensional struc-
ture of PAFAH1B1 and IQGAP1 proteins was predicted 
by I-TASSER (https:// zhang group. org//I- TASSER/). The 
protein–protein interaction was performed by the ZDOCK 
server (https:// zdock. umass med. edu/).

Statistical analysis

All data are presented as the mean ± standard deviation (SD). 
At least three independent experiments were performed and 
quantified. A two-tailed Student’s t-test was used for com-
parison between two groups. p < 0.05 was considered statis-
tically significant.

Results

miR‑181c/d delivery in murine testes increases 
Sertoli cell apoptosis and perturbs BTB function

The miR-181c/d were significantly upregulated in 60 d por-
cine testes compared to 180 d porcine testes (Supplementary 
Fig. 1a), consistent with the microarray data [10]. And in 
mice, we also examined the expression of miR-181c/d in 
testicular tissues at different developmental stages and found 
that the expression of miR-181c/d was higher in younger 
mice compared with older mice (Supplementary Fig. 1b). 
To explore the role of miR-181c/d in testicular develop-
ment and spermatogenesis in mammals, we successfully 
overexpressed miR-181c/d by direct intratesticular injec-
tion of lentivirus-delivered miR-181c/d (LV-miR-181c/d) 
in mice (Supplementary Figs. 1c-f). LV-miR-181c/d treated 
mice showed similarities in testis size and testis weight/
body weight ratio with the LV-control mice (Supplemen-
tary Fig. 1 g, h). Additionally, we evaluated the quality of 
sperms collected from the cauda epididymides of LV-control 
and LV-miR-181c/d treated mice. Although sperm count 
was not statistically different (Supplementary Fig. 1i), the 
abnormal sperm rate (including abnormal sperm head and 
tail rate) increased in LV-miR-181c/d mice (Supplementary 
Fig. 1j–l). Haematoxylin and eosin-stained sections showed 
no histological abnormalities in the testis or epididymis from 
the LV-control and LV-miR-181c/d mice (Supplementary 
Fig. 1 m). In addition, we analyzed cell proliferation and 
apoptosis in the testes by Ki67 and TUNEL staining, respec-
tively. Compared with the LV-control testes, the LV-miR-
181c/d murine testes had no alteration in cell proliferation 
(Supplementary Fig. 1n, o) but had a significant increase in 
cell apoptosis (Supplementary Fig. 1p, q). Furthermore, we 
found that the number of TUNEL and WT1 double-positive 
Sertoli cells increased (Supplementary Fig. 1p, r), but the 
number of undifferentiated spermatogonia (PLZF-positive 
cells) remained essentially unchanged (data not shown) in 
the testes of the LV-miR-181c/d treated group. These find-
ings indicate that LV-miR-181c/d administration in testes 
increases the abnormal sperm rate and Sertoli cell apoptosis.

http://www.targetscan.org/
http://www.targetscan.org/
https://zhanggroup.org//I-TASSER/
https://zdock.umassmed.edu/
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The increase in abnormal sperm rate may be a conse-
quence of a disrupted BTB structure [30, 41, 42]. There-
fore, we detected whether miR-181c/d could affect the 
BTB function in vivo. Firstly, the distribution of tight 
junction (TJ) proteins (e.g., ZO-1, Occludin) and basal ES 
proteins (e.g., N-cadherin, β-catenin) at the BTB was per-
turbed in seminiferous tubules of LV-miR-181c/d treated 
mice (Fig. 1a, b). However, LV-miR-181c/d treatment 
failed to induce any remarkable changes in the expression 
level of multiple BTB-associated proteins (Fig. 1c, d). Fur-
thermore, F-actin staining revealed that LV-miR-181c/d 
disturbed F-actin organization across the seminiferous 
epithelium (Fig. 1e). Results of LV-miR-181c/d-delivered 
testis ultrastructure examined by TEM showed there were 
intercellular spaces between adjacent murine SC contact 
at the BTB, coupled with TJ structure fractures (Fig. 1f). 
As indicated in Fig. 1g, h, LV-miR-181c/d administration 
in testes effectively disturbed BTB integrity, making bio-
tin tracer penetrate the seminiferous tubules. This phe-
notype was similar to those in mice treated with  CdCl2 
(1 mg/kg) (Fig. 1g, h), which is well-known to induce 
BTB disruption [39]. Surprisingly, at 6 weeks post the 
final administration, the expression levels of miR-181c/d 
(data not shown) and the localization of BTB-associated 
proteins (Supplementary Fig. 2a, b) were virtually indis-
tinguishable between the LV-control mice and the LV-
miR-181c/d mice. Moreover, the damaged BTB integrity 
and the sperm quality were restored in LV-miR-181c/d 

mice (Supplementary Fig. 2c–e). The above results sug-
gest that the in vivo LV-miR-181c/d treatment results in 
short-term BTB dysfunction in mice.

miR‑181c/d disturbs the Sertoli cell barrier 
by altering F‑actin organization in vitro

Primary murine SCs cultured in vitro for 2–3 days can 
establish a functional TJ permeability barrier that mim-
ics the BTB in vivo [43]. Overexpression of miR-181c/d 
in murine SCs resulted in a decreased TER value and an 
increased Na-F permeability (Fig. 2a–c), indicating miR-
181c/d disturbs the Sertoli cell barrier integrity. Further-
more, even though the levels of TJ proteins and basal ES 
proteins remained unchanged (Fig. 2d, e), the distribu-
tions of TJ proteins and basal ES proteins at the Sertoli 
cell–cell interface were disturbed in miR-181c/d mimics 
treated murine SCs (Fig. 2f, g). According to the TEM 
results, overexpression of miR-181c/d led to several breaks 
and vacuoles at cell–cell contact (Fig. 2h), consistent with 
in vivo findings shown in Fig. 1f. These results indicate 
that miR-181c/d disturbs the Sertoli cell barrier, which 
may be mediated by changing the distribution of BTB-
associated proteins at the Sertoli cell–cell interface. Since 
the actin-based cytoskeletons in Sertoli cells can support 
the attachment sites of TJ proteins and basal ES proteins 
[44], we then examined F-actin organization in murine 
SCs. As shown in Fig. 2i, F-actin was well-arranged and 
evenly distributed in the cytoplasm of control cells, but it 
was irregularly arranged, crossed, and no longer evenly 
distributed in the cytoplasm of murine SCs transfected 
with miR-181c/d mimics. These changes in F-actin organi-
zation thus contribute to altering the localization of TJ 
proteins and basal ES proteins, destabilizing cell junctions 
at the Sertoli cell–cell interface, and ultimately perturbing 
the Sertoli cell barrier.

miR‑181c/d inhibits Sertoli cell survival in vitro

It has been reported that BTB function disruption may 
be due in part to poor survival of Sertoli cells [45, 46], 
therefore, we examined the effects of miR-181c/d on cell 
survival in two types of Sertoli cells including primary 
murine Sertoli cells (SCs) and commercial swine testicu-
lar (ST) cells (immature Sertoli cells). The results of Ki67 
staining and CCK-8 assay exhibited that overexpression of 
miR-181c/d significantly inhibited Sertoli cell prolifera-
tion (Fig. 3a–c and Supplementary Figs. 3a–c). Further-
more, overexpression of miR-181c/d reduced the levels of 
the proliferation marker proliferating cell nuclear antigen 
(PCNA) and anti-apoptotic B-cell lymphoma 2 (BCL2) but 

Fig. 1  LV-miR-181c/d administration perturbs the BTB function 
in vivo. Mice were analyzed at 2 weeks post the final LV-miR-181c/d 
administration. a Immunofluorescence staining of TJ proteins (ZO-1, 
Occludin) (red) and basal ES proteins (N-cadherin, β-catenin) (red) in 
testes (n = 3). These proteins are tightly localized at the BTB (white 
brackets) or diffusely localized at the BTB (yellow brackets) near the 
basement membrane. Scale bars: 50 μm and 10 μm. b Quantification 
of fluorescence signal distributed at the BTB. c Western blot analysis 
of TJ proteins and basal ES proteins in testes. The quantification of 
protein level is shown in the bar graph (d). e F-actin staining (red) in 
mouse testis sections (n = 3). In LV-miR-181c/d mice, F-actin is no 
longer lined up properly along the BTB (yellow arrowheads) as found 
in the LV-control mice (white arrowheads). Scale bar: 10 μm. f TEM 
ultrastructural analysis of mouse testis (n = 3). Black arrowheads rep-
resent the interface of two SCs; black arrows represent the TJs struc-
ture. In the LV-control mice, white arrowheads represent the normal 
actin bundles. In LV-miR-181c/d mice, white arrowheads represent 
the dissolved actin bundles; asterisks represent the swollen intercel-
lular space between adjacent SCs. Nu, nucleus; SC, Sertoli cell. Scale 
bars: 2.5  μm (i, iii, v), 0.5  μm (ii, iv, vi). g In  vivo BTB integrity 
assay (n = 3).  CdCl2-treated mice were used as positive controls. Dis-
ruption of the BTB is reflected by diffusion distance (white segments) 
of the indicator from the basal lamina (white broken circles) to the 
tubule lumen. Scale bars: 100 and 50  μm. h Histogram illustrating 
results of the BTB integrity assay. Data are presented as mean ± SD 
of at least three independent experiments. *p < 0.05; **p < 0.01; ns, 
not significant
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increased the level of the pro-apoptotic Bcl-2 associated X 
protein (BAX) (Fig. 3d, e and Supplementary Figs. 3d, e). 
Annexin V-FITC/PI and flow cytometry demonstrated that 
miR-181c/d increased the cell apoptotic rate in Sertoli cells 
(Fig. 3f, g and Supplementary Figs. 3f, g). Conversely, sup-
pression of miR-181c/d repressed apoptosis and induced cell 
proliferation in Sertoli cells (Fig. 3a–g and Supplementary 
Fig. 3a–g). Above results demonstrate miR-181c/d increases 
apoptosis and inhibits proliferation in Sertoli cells.

Knockdown of Pafah1b1 disturbs the Sertoli cell 
barrier by changing F‑actin organization in vitro

miRNA exerts its function through regulating its target 
genes, then we predicted the potential target gene of miR-
181c/d using TargetScan online software (Supplementary 
Fig. 4a). The targeted sequences to the seed regions of miR-
181c/d within the Pafah1b1 3’ UTR are conserved across 
species (Supplementary Fig. 4b). Subsequently, overexpres-
sion of miR-181c/d significantly repressed the luciferase 
activity of wild-type Pafah1b1 3’ UTR, but did not affect 
luciferase activity of mutated Pafah1b1 3’ UTR in murine 
SCs (Supplementary Figs. 4c, d) and porcine ST cells (Sup-
plementary Fig. 4e, f). Furthermore, PAFAH1B1 protein 
level but not mRNA level was reduced in miR-181c/d over-
expressed Sertoli cells (Supplementary Figs. 4 g–n) and 
murine testes (Supplementary Fig. 4o). Porcine PAFAH1B1 
transcripts are highly expressed in testes (Supplementary 
Fig. 4p, q). The expression levels of Pafah1b1 in immature 
testes were significantly lower than in mature testes (Sup-
plementary Figs. 4r–t), suggesting Pafah1b1 had an opposite 

expression pattern to that of miR-181c/d in both pigs and 
mice (Supplementary Fig. 1a, b). Considered together, the 
Pafah1b1 gene is one target of miR-181c/d.

Next, we examined whether knockdown of Pafah1b1 
could perturb the Sertoli cell barrier, analogous to the miR-
181c/d mimics treatment. We observed the downregulated 
TER value (Fig. 4a) and the increased Na-F permeability 
(Fig. 4b) in murine SCs transfected with Pafah1b1 siRNA. 
Even though the levels of BTB-associated proteins remained 
unchanged (Fig. 4c, d), the localization of TJ proteins and 
basal ES proteins became disorganized in Pafah1b1 siRNA 
transfected murine SCs (Fig. 4e, f). TEM analysis revealed 
that knockdown of Pafah1b1 led to some fractures and vacu-
oles of TJ structures between adjacent murine SC contact 
(Fig. 4g). Furthermore, phalloidin staining results showed 
Pafah1b1 knockdown disturbed the organization of F-actin 
(Fig. 4h), which was consistent with results in miR-181c/d 
mimics treated murine SCs (Fig. 2i). The above results dem-
onstrate that knockdown of Pafah1b1 leads to alterations 
in F-actin organization, which may be responsible for the 
perturbation of the Sertoli cell barrier.

miR‑181c/d inhibits survival of Sertoli cells 
by targeting Pafah1b1 gene

Given that inhibition of Pafah1b1 had the similar regu-
latory function on the Sertoli cell barrier function with 
miR-181c/d overexpression, we speculated that Pafah1b1 
could also affect Sertoli cell survival. According to Ki67 
staining and CCK-8 assay results, Pafah1b1 silencing sig-
nificantly inhibited Sertoli cell proliferation (Fig. 5a–c and 
Supplementary Figs. 5a–c). In addition, Pafah1b1 silencing 
upregulated BAX expression and downregulated the levels 
of PCNA and BCL2 in Sertoli cells (Fig. 5d, e and Sup-
plementary Figs. 5d, e). The Annexin V-FITC/PI and flow 
cytometry assay demonstrated that knockdown of Pafah1b1 
increased the cell apoptotic rate in Sertoli cells (Figs. 5f, 
g and Supplementary Figs. 5f, g). Conversely, overexpres-
sion of Pafah1b1 increased Sertoli cell proliferation and 
decreased apoptosis (Supplementary Fig. 6a–n), indicating 
that Pafah1b1 promotes proliferation and inhibits apoptosis 
of Sertoli cells.

Our present data suggest miR-181c/d inhibits prolifera-
tion and promotes apoptosis of Sertoli cells and Pafah1b1 is 
a direct target of miR-181c/d. To detect whether miR-181c/d 
regulated Sertoli cell proliferation and apoptosis by targeting 
Pafah1b1 gene, we assessed the proliferative and apoptotic 
phenotypes in Sertoli cells co-transfected with miR-181c/d 
inhibitors and Pafah1b1 siRNA. We found that knockdown 
of Pafah1b1 partially suppressed cell proliferation induced 
by miR-181c/d inhibitors (Fig. 5h–l and Supplementary 

Fig. 2  miR-181c/d overexpression disturbs the Sertoli cell barrier 
in  vitro. Primary murine Sertoli cells (SCs) were transfected with 
mimics NC or miR-181c/d mimics. miR-181c mimics, miR-181d 
mimics, and mimics NC are abbreviated to miR-181c, miR-181d, and 
NC, respectively. a Schematic illustration of the treatment regimen. 
b, c The permeability of the Sertoli cell barrier was assessed in vitro 
by quantifying TER (b) or measuring the permeability of Na-F (c) in 
miR-181c/d mimics treated murine SCs. d Western blot analysis of TJ 
proteins and basal ES proteins in miR-181c/d mimics treated murine 
SCs. The quantification of protein level is shown in the bar graph (e). 
f Immunofluorescence staining of TJ proteins (red) and basal ES pro-
teins (red) in miR-181c/d mimics treated murine SCs. These proteins 
are tightly localized (white brackets) or diffusively localized (yellow 
brackets) at the Sertoli cell–cell interface. Scale bar: 5 μm. g Quan-
tification of fluorescence signal distributed at the cell–cell interface. 
h TEM ultrastructural analysis in miR-181c/d mimics treated murine 
SCs. Intact (white arrowheads) or disrupted (yellow arrowheads) TJ 
structures between adjacent murine SC contact. Scale bar: 1 μm. Nu, 
nucleus; SC, Sertoli cell. i F-actin staining (green) in miR-181c/d 
mimics treated murine SCs. Ordered (white arrows) or disordered 
(yellow arrows) F-actin are indicated. Scale bar: 20  μm. Data are 
presented as mean ± SD of at least three independent experiments. 
*p < 0.05; **p < 0.01; ns, not significant
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Fig. 5 h–l). Accordingly, Pafah1b1 silencing antagonized the 
inhibition effects of miR-181c/d inhibitors on cell apoptosis 
(Fig. 5m, n and Supplementary Fig. 5 m, n). These results 
demonstrate that miR-181c/d affects Sertoli cell proliferation 
and apoptosis by targeting the Pafah1b1 gene.

Pafah1b1 promotes F‑actin organization 
by interacting with IQGAP1

Overexpression of miR-181c/d or inhibition of Pafah1b1 
perturbed F-actin organization (Figs. 1e, 2i, and 4h), partly 
by altering the levels of actin-regulatory proteins that are 
important for F-actin cytoskeleton stability [47]. One of the 
actin-regulatory proteins, the cell division control protein 
42 homolog (CDC42), can activate the p21(RAC1) acti-
vated kinase 1 (PAK1) and LIM domain kinase 1 (LIMK1). 
CDC42/PAK1/LIMK1 pathway leads to phosphorylation 
and inactivation of actin-regulatory protein Cofilin, and thus 
regulates F-actin cytoskeleton dynamics [48, 49]. Here, the 
levels of CDC42, PAK1, LIMK1, and p-Cofilin decreased 
not only in miR-181c/d overexpressed murine SCs (Fig. 6a, 
b) and testes (Fig. 6c, d), but also in Pafah1b1 inhibited 
murine SCs (Fig. 6e, f). And knockdown of miR-181c/d 
increased actin-regulatory proteins expression, whereas 
transfection of Pafah1b1 siRNA or Cdc42 siRNA par-
tially restored the elevated actin-regulatory proteins levels 
(Fig. 6g, h). These results indicate that the inactivation of the 
CDC42/PAK1/LIMK1/Cofilin pathway may be responsible 
for the disturbed F-actin organization in murine SCs over-
expressing miR-181c/d or silencing Pafah1b1.

Previous reports have shown that PAFAH1B1 can pro-
mote CDC42 activation possibly through interacting with 
IQGAP1, thereby regulating F-actin cytoskeleton [50]. We 

then predicted PAFAH1B1 directly interacted with IQGAP1 
using the ZDOCK server (Fig. 6i). Co-immunoprecipitation 
assay in murine SCs further demonstrated the interaction 
between PAFAH1B1 and IQGAP1 (Fig. 6j, k). In addition, 
knockdown of Pafah1b1 or overexpression of miR-181c/d 
reduced the PAFAH1B1-IQGAP1 complex (Fig. 6l, m). 
Therefore, decreased PAFAH1B1-IQGAP1 complex down-
regulates the expression levels of CDC42 and downstream 
actin-regulatory proteins.

Discussion

The abnormal number and/or function of Sertoli cells can 
cause impaired spermatogenesis and male sterility ulti-
mately [51, 52]. Our present results show that overexpres-
sion of miR-181c/d perturbs the Sertoli cell barrier in vitro 
and in vivo, which may be mediated by destabilizing the 
attachment site between BTB-associated proteins and 
F-actin. Meanwhile, miR-181c/d suppresses the prolifera-
tion and induces the apoptosis of Sertoli cells. Mechanically, 
miR-181c/d negatively regulates Pafah1b1 and reduces the 
PAFAH1B1-IQGAP1 complex. The decreased PAFAH1B1-
IQGAP1 complex downregulates the expression levels of 
CDC42, which leads to the alterations in F-actin organiza-
tion by inhibiting CDC42 downstream PAK1, LIMK1, and 
p-Cofilin (Fig. 6n). The results indicate that miR-181c/d 
acts as a key regulator of Sertoli cell survival and barrier 
function, thereby affecting the spermatogenesis process in 
mammals.

The BTB is composed of basal ES and other junctions 
between adjacent SCs and is essential for preleptotene sper-
matocyte transition from the basal to the apical compartment 
[6, 53]. A previous report has shown that deletion of DICER 
in differentiated male germ cells results in the disorganiza-
tion of the cell–cell junctions in the seminiferous epithelium 
[54]. And changes in the distribution of BTB-associated pro-
teins disrupted BTB function [32, 55]. Similarly, a report 
indicates that miRNAs and their target genes can manipulate 
the permeability of blood-tissue barriers [56], by altering 
the distribution of junction proteins, such as ZO-1, Occlu-
din, and Claudin-5 [57]. In this study, we showed that the 
distribution of BTB-associated proteins is altered in miR-
181c/d mimics transfected SCs and LV-miR-181c/d treated 
mice. This alteration may be responsible for the disruption 
of the Sertoli cell barrier/BTB and the increase of abnormal 
spermatozoa rate. Additionally, similar results are observed 
in Pafah1b1 inhibited murine SCs, indicating miR-181c/d 

Fig. 3  miR-181c/d inhibits proliferation and promotes apoptosis of 
murine Sertoli cells. The murine SCs were transfected with mimics 
NC, miR-181c/d mimics, inhibitors NC, or miR-181c/d inhibitors. 
miR-181c inhibitors, miR-181d inhibitors, and inhibitors NC are 
abbreviated to in-miR-181c, in-miR-181d, and in-NC, respectively. 
a Immunofluorescence staining of the cell proliferation marker Ki67 
(red) in miR-181c/d mimics or inhibitors treated murine SCs. Scale 
bar: 100  µm. b Quantification of Ki67-positive cells in miR-181c/d 
mimics or inhibitors treated murine SCs. c CCK-8 assay performed 
in miR-181c/d mimics or inhibitors treated murine SCs. d Western 
blot analysis of PCNA, BAX, and BCL2 in miR-181c/d mimics or 
inhibitors treated murine SCs. The quantification of protein level is 
shown in the bar graph (e). f Annexin V-FITC/PI and flow cytometry 
analysis was used to examine cell apoptotic rate in miR-181c/d mim-
ics or inhibitors treated murine SCs. g Quantification of cell apoptotic 
rate in miR-181c/d mimics or inhibitors treated murine SCs. Data are 
presented as mean ± SD of at least three independent experiments. 
*p < 0.05; **p < 0.01
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regulates the Sertoli cell barrier function possibly via target-
ing Pafah1b1.

F-actin serves as attachment sites for TJ proteins and 
basal ES proteins in the testis [58] and the alteration in 
F-actin organization is critical for BTB assembly [59]. 
On the other hand, the Pafah1b1 gene is related to intra-
cellular regulators of the actin cytoskeleton by complex-
ing with scaffold protein IQGAP1 and activating Cdc42 
gene [50]. Consistent with these reports, we found that 
PAFAH1B1 interacts with IQGAP1, and knockdown of 
Pafah1b1 significantly decreases CDC42 level in murine 
SCs. Conditional deletion of Cdc42 in Sertoli cells leads 
to the disrupted Sertoli cell polarity and the perturbed 
BTB function in adult male mice [60], and inactivation of 
the CDC42 signaling pathway attenuates the endothelial 
barrier function in mouse lungs [61]. Our study demon-
strates that inhibition of Pafah1b1 results in downregula-
tion of CDC42 and its downstream PAK1, LIMK1, and 
p-Cofilin. PAK1 regulates Cofilin phosphorylation and 
affects the actin cytoskeleton by activating LIMK1 [62]. 

Phosphorylated Cofilin can stabilize the actin cytoskeleton 
in migrating neurons [63]. Changes in these proteins might 
lead to improper organization of F-actin in murine SCs, 
which possibly results in the disruption of the Sertoli cell 
barrier function. Furthermore, we found that knockdown 
of miR-181c/d increased actin-regulatory proteins expres-
sion, whereas transfection of Pafah1b1 siRNA or Cdc42 
siRNA partially restored the elevated actin-regulatory pro-
teins levels. Therefore, we reveal a mechanism by which 
miR-181c/d can affect F-actin organization and the Sertoli 
cell barrier function via the Pafah1b1 gene.

Lentiviral vector is a tool for transferring exogenous 
genes into the testes, which assists us to make further inves-
tigation into the spermatogenesis process in mice and rats 
[64, 65]. There are multiple layers of germ cells and tight 
junctions between the Sertoli cells in mature seminiferous 
tubules, while there is only one layer of spermatogonia 
and no tight junctions in the immature testis [66]. In wild-
type mice at age of 15 days, biotin tracer can penetrate the 
seminiferous tubules, indicating that BTB has not yet fully 
formed [34]. Accordingly, immature testes were selected 
for injection, which allow lentiviral vectors enter into the 
seminiferous tubules to infect cells. In addition, the period 
of 2-week treatment was chosen based on previous studies 
[6], to ensure that the lentiviral miRNAs have sufficient time 
to exert the effects in the testis. In our study, LV-miR-181c/d 
administration in testes successfully overexpresses miR-
181c/d in vivo. As expected, the Pafah1b1 gene is down-
regulated and BTB function is perturbed in LV-miR-181c/d 
treated mice. Additionally, LV-miR-181c/d administration 
does not induce any changes in testis size and weight, testis 
and epididymis structure, which may be attributable to the 
complexity of testicular structure or the limited access of 
the LV-miR-181c/d to all tubules. Thus, improved delivery 
methods such as PolyPlus in vivo-jetPEI [67] and adeno-
associated viruses (AAVs) transduction [68] are under 
development. Interestingly, the perturbed BTB and the 
increased abnormal sperm rate in LV-miR-181c/d injected 
testes are restored at 6 weeks post the final administration. 

Fig. 4  Inhibition of Pafah1b1 disturbs the Sertoli cell barrier in vitro. 
The murine SCs were transfected with NC siRNA or Pafah1b1 
siRNA. NC siRNA and Pafah1b1 siRNA are abbreviated to si-NC 
and si-paf, respectively. a, b The permeability of the Sertoli cell 
barrier was assessed in  vitro by quantifying TER (a) or measur-
ing the permeability of Na-F (b) in Pafah1b1 siRNA treated murine 
SCs. c Western blot analysis of TJ proteins and basal ES proteins in 
Pafah1b1 siRNA treated murine SCs. The quantification of protein 
level is shown in the bar graph (d). e Immunofluorescence staining 
of TJ proteins (red) and basal ES proteins (red) in Pafah1b1 siRNA 
treated murine SCs. These proteins are tightly localized (white brack-
ets) or diffusively localized (yellow brackets) at the Sertoli cell–cell 
interface. Scale bar: 5  μm. f Quantification of fluorescence signal 
distributed at the cell–cell interface. g TEM ultrastructural analysis 
in Pafah1b1 siRNA treated murine SCs. Intact (white arrowheads) or 
disrupted (yellow arrowheads) TJ structures between adjacent murine 
SC contact. Scale bar: 1 μm. Nu, nucleus; SC, Sertoli cell. h F-actin 
staining (green) in Pafah1b1 siRNA treated murine SCs. Ordered 
(white arrows) or disordered (yellow arrows) F-actin are indicated. 
Scale bar: 20 μm. Data are presented as mean ± SD of at least three 
independent experiments. *p < 0.05; **p < 0.01; ns, not significant
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This recovery may be due to the reduced level of lentiviral-
induced miR-181c/d in testes over time.

Increasing amounts of evidence indicate that miRNAs 
play critical roles in regulating Sertoli cell survival during 
spermatogenesis [69, 70]. The Sertoli cell number in semi-
niferous tubules determines the production of germ cells 
[71]. Dysregulated expression of miR-181 affects cell prolif-
eration and apoptosis in chondrocytes [72] and glioblastoma 
cells [73]. In line with the findings in the above studies, we 
found that overexpression of miR-181c/d suppresses prolif-
eration and promotes apoptosis of Sertoli cells. As previ-
ously noted, the abnormal apoptosis of Sertoli cells disrupts 
the BTB function in murine testis [74]. In addition, miRNAs 
may lead to blood-tissue barrier dysfunction via regulating 
gene expression at transcriptional and post-transcriptional 
levels [75]. Therefore, we believe that miR-181c/d promotes 

the apoptosis of Sertoli cells, which may also affect the for-
mation of the testicular BTB to some extent. On the other 
hand, in mouse neuroepithelial stem cells, Pafah1b1 silenc-
ing reduces proliferation and increases apoptosis [76]. Simi-
larly, knockdown of Pafah1b1 also inhibits proliferation and 
promotes apoptosis of Sertoli cells. Further investigations 
showed that the regulatory effects of miR-181c/d on Sertoli 
cell proliferation and apoptosis are partially mediated by 
the Pafah1b1 gene. Therefore, miR-181c/d regulates pro-
liferation and apoptosis of Sertoli cells through its target 
gene Pafah1b1. Furthermore, mitochondria-dependent cell 
apoptosis pathway is modulated by miR-181 via the Bcl-2 
protein family [77, 78]. miR-181 can target the 3’ UTRs of 
anti-apoptotic Bcl-2 family members such as Mcl-1, Bcl-
2-L11/Bim, and Bcl-2 [78], which triggers apoptosis through 
interacting with pro-apoptotic proteins such as Bax and 
Bak [79]. Likewise, knockdown of Pafah1b1 disrupts the 
dynamic formation of the microtubule network, which leads 
to activate the intrinsic mitochondrial apoptotic pathway [80, 
81]. Here, we showed that miR-181c/d can target and regu-
late PAFAH1B1 and observed that the pro-apoptotic role of 
miR-181c/d on Sertoli cells can be suppressed by Pafah1b1. 
Therefore, we hypothesize that miR-181c/d regulates cell 
apoptosis at least mediated through Pafah1b1.

In conclusion, miR-181c/d regulates Sertoli cell sur-
vival and perturbs the Sertoli cell barrier by targeting the 
Pafah1b1 gene. And this interruption of barrier function 
is achieved by changing the localization pattern of BTB-
associated proteins at the Sertoli cell–cell interface and 
disturbing F-actin organization. Mechanically, the miR-
181c/d-Pafah1b1 axis participates in regulating F-actin 
organization by inactivating CDC42/PAK1/LIMK1/Cofilin 
pathway. These findings may help us to better understand the 
role of miRNAs in mammalian spermatogenesis, and sug-
gest that dysregulated expression of miR-181c/d may be an 
important indicator for male subfertility or infertility. Hence, 
manipulation of miR-181c/d expression in vivo or in vitro 
may contribute to the diagnostic and therapeutic strategies 
for male subfertility or infertility.

Fig. 5  Pafah1b1 knockdown reverses the pro-growth of miR-181c/d 
inhibited murine Sertoli cells. The murine SCs were transfected 
with NC siRNA or Pafah1b1 siRNA. a Immunofluorescence stain-
ing of Ki67 (red) in Pafah1b1 siRNA treated murine SCs. Scale 
bar: 100  µm. b Quantification of Ki67-positive cells in Pafah1b1 
siRNA treated murine SCs. c CCK-8 assay performed in Pafah1b1 
siRNA treated murine SCs. d Western blot analysis of PAFAH1B1, 
PCNA, BAX, and BCL2 in Pafah1b1 siRNA treated murine SCs. 
The quantification of protein level is shown in the bar graph (e). f 
Annexin V-FITC/PI and flow cytometry analysis was used to exam-
ine cell apoptotic rate in Pafah1b1 siRNA treated murine SCs. g 
The quantification of cell apoptotic rate in Pafah1b1 siRNA treated 
murine SCs. Five co-transfection treatments were constructed in 
this experiment, including inhibitors NC + NC siRNA, miR-181c 
inhibitors + NC siRNA, miR-181d inhibitors + NC siRNA, miR-181c 
inhibitors + Pafah1b1 siRNA, and miR-181d inhibitors + Pafah1b1 
siRNA. h-j Ki67 staining (h) and CCK-8 (j) assay were performed 
in murine SCs treated with co-transfections. Quantification of Ki67-
positive murine SCs treated with co-transfections (i). Scale bar: 
100  µm. k Western blot analysis of PAFAH1B1, PCNA, BAX, and 
BCL2 in murine SCs treated with co-transfections. The quantification 
of protein level is shown in the bar graph (l). m Annexin V-FITC/PI 
and flow cytometry analysis was used to examine cell apoptotic rate 
in murine SCs treated with co-transfections. n The quantification of 
cell apoptotic rate in murine SCs treated with co-transfections. Data 
are presented as mean ± SD of at least three independent experiments. 
*p < 0.05; **p < 0.01; ns, not significant
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