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Abstract

Objective: Gestational diabetes mellitus (GDM) is common worldwide and seriously 
threatens maternal and infant health. The expression of non-coding (ncRNA) is tissue-
specific and highly stable in eukaryotic cells and the circulatory system, which can act as 
an early molecular marker of GDM.
Methods: The differential expression of lncRNA and mRNA in the peripheral blood of 
patients with GDM (experimental group) and healthy pregnant women (control group) 
was analysed via lncRNA gene chip. Employing biological function clustering and KEGG 
signalling pathway analysis, we selected the mRNAs and lncRNAs closely related to the 
insulin signalling pathway of GDM to analyse the possible regulatory mechanism in the 
pathogenesis of GDM. The sequencing results were further verified via quantitative  
PCR (Q-PCR).
Results: LncRNA microarray analysis revealed 7498 genes (3592 upregulated,  
3906 downregulated) differentially expressed in the GDM group and healthy pregnant 
women control group, including 1098 differentially expressed lncRNAs (609 upregulated,  
489 downregulated). According to the regulatory pathway of the lncRNA mRNA network,  
6 lncRNAs and 4 mRNAs were found to play a significant role in insulin resistance.
Conclusions: The lncRNAs ERMP1, TSPAN32 and MRPL38 form a co-expression network 
with TPH1, which is mainly involved in the tryptophan metabolism pathway and in the 
development of GDM. Moreover, lncRNA RPL13P5 forms a co-expression network with 
the TSC2 gene via the PI3K-AKT and insulin signalling pathways, which are involved in the 
process of insulin resistance in GDM.

Introduction

The burgeoning epidemic of gestational diabetes mellitus 
(GDM) threatens maternal and infant health. GDM is 
characterized by glucose intolerance, which causes poorly 
controlled diabetes during pregnancy. Insulin resistance 
is an early determinant of declining β-cell function (1); 
however, the differential expression of genes underlying 
these phenomena is not fully understood. Differences in 
genetic background likely explain these differences in gene 
expression (2, 3). After a critical point, insufficient insulin 
secretion and increased insulin requirements could lead to 

consequent hyperglycaemia in GDM (4). Although routine 
examination (via fasting or postprandial blood glucose) 
can be fast-evolving, this is rarely effective in making an 
accurate and timely diagnosis. A combination of one or 
more molecular markers is urgently needed to monitor 
insulin resistance in its early stages (5).

During pregnancy, glucose is a primary source of 
foetal energy. As the pregnancy progresses, a foetus’ need 
for glucose gradually increases. Therefore, this increase in 
maternal glucose consumption puts the mother in a state 
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of ‘accelerated hunger’. Regulatory mechanisms, such as 
lipodieresis and glyconeogenesis, are needed by the mother 
to elevate foetal blood sugar during hypoalimentation 
or a reduction in blood sugar. During the first trimester 
of pregnancy, only slight changes in blood sugar and 
insulin sensitivity are observed, whereas insulin secretion 
is higher and anabolic processes are prioritized, allowing 
for the storage of more fat and energy. In late pregnancy, 
the i.v. glucose tolerance test shows that insulin in the 
first and second secretory phases increases three-fold after 
stimulation possibly to compensate for insulin resistance 
and decreased sensitivity.

In DNA-templated organic synthesis, only 2% of 
the genome is transcribed into proteins, whereas the 
remaining 98% are called ncRNA (6). Conversely, lncRNAs 
are a collection of long noncoding exons (>200 nt). In 
the past, very few tools were available for large-scale 
sequencing of lncRNA (7). Thus, lncRNA was once seen 
as irrelevant ‘transcription noise,’ but it has since been 
widely implicated in regulating many of the genes that are 
responsible for metabolic processes. It does so by adjusting 
related protein-coding genes through a variety of ways at 
different levels; lncRNA and DNA bases can be inserted 
within three base pairs, thus influencing the expression of 
target genes (8).

Information on molecules that regulate gene 
expression allows for gene expression ranking. These 
molecules are ubiquitous at the epigenetic, transcriptional 
and post-transcriptional processes. For example, lncRNAs 
take part in almost all physiological and pathophysiological 
processes in an organism (9, 10, 11); they exhibit a 
tissue-specific expression and are stable when expressed 
in eukaryotic cells. Thus, they can be used as an early 
molecular marker of GDM.

The expression of lncRNA is stable in the blood (12), 
urine (13) and other body fluids and is even resistant to 
digestion by RNA enzymes (14). This characteristic allows 
it to be a non-invasive disease marker. Many lncRNAs with 
low expression levels are mainly located in the nucleus, and 
their sequence conservation has high specificity. Recent 
reports on lncRNAs associated with local gene regulation 
further support this view. In many cases, it is suggested 
that the regulatory locus controlling the expression of 
transcription or the DNA elements within the lncRNA have 
more activity (15). However, we found very few studies that 
have identified an association between insulin resistance 
in GDM and lncRNAs via high-throughput methods (i.e. 
microarray and RNA-seq).

In this study, lncRNA is monitored at the early stage 
of insulin resistance in GDM to explore the effects of the 

changes in susceptibility genes for diabetes and their 
expression. In our study, elevated glucose levels of oral 
glucose tolerance test (OGTT) were used as a diagnostic 
procedure for GDM. Plasma samples from women with 
and without GDM were collected, and a global genome 
microarray analysis revealed differentially expressed 
lncRNAs. In addition, a functional analysis of the altered 
molecular pathways was conducted. The potential 
functions of differentially expressed lncRNAs can  
be predicted.

Materials and methods

Study population

This research flow chart is summarized in Fig. 1. Case-
control studies were conducted at the Inner Mongolia 
Autonomous Region People’s Hospital, Hohhot, China, 
from 8 October 2019 to 15 March 2020. Plasma samples 
were obtained from pregnant women both with and 
without GDM at 24–40 weeks, We measured the BMI, 
fasting plasma glucose (FPG) level, 1 h glucose load, 2 h  
glucose load, fasting insulin level, c-peptide level and 
glycosylated haemoglobin level. In addition, a homeostatic 
model assessment for insulin resistance (HOMA-IR) was 
conducted. GDM was diagnosed according to the 2019 
American Diabetes Association (ADA) criteria (16). All 
patients underwent an oral 75 g glucose tolerance test at 
24–28 weeks with overnight fasting for 10 h. Plasma glucose 
test measurement was performed at 1 and 2 h after oral 
75 g glucose tolerance. A GDM diagnosis was made when 
the plasma glucose values exceeded any of the defined 
thresholds (fasting: 92 mg/dL (5.1 mmol/L); 1 h: 180 mg/dL  
(10.0 mmol/L); and 2 h: 153 mg/dL (8.5 mmol/L)). 
Patients with complications of diabetes mellitus, chronic 
hypertension, multiple pregnancies, pre-eclampsia, 
obesity (BMI ≥ 30 (1)), and inflammatory diseases were 
excluded. This study was approved by the Institutional 
Ethics Committee of the Inner Mongolia Autonomous 
Region People’s Hospital.

Microarray data, screening and functional analysis 
of differentially expressed genes

The transcriptome profiles were selected from the venous 
plasma sample (n = 6, three from GDM and three from 
control individuals). Venous vacuum blood collection 
(whole blood RNA tube, PAXgene blood collection) was 
performed to extract 2 mL of peripheral blood from the 
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patients. The total RNA from each sample was subjected 
to the NEB# E7335L, NEB# E6310L and NEB# E7760L 
Ultra Directional RNA Library Prep Kit (NEB, USA). 
Welch’s t-test was adopted for the analysis of microarray 
data and the identification of statistical specifications for 
significance. The differential expression of lncRNA and 
mRNA was screened for greater changes. A P-value of ≤ 0.05 
was considered statistically significant. The sequences 
of the clustered transcriptome assembly were compared 
with public databases. Gene ontology (GO) analysis was 
conducted for differentially expressed genes. The signalling 
pathways of these proteins and the functional categories of 
the unigenes were analysed using the KEGG database. The 
overall design of the four-plex experiments is illustrated 
in Fig. 1. Details of the procedures can be found in the 
supplementary materials.

Construction of mRNA–lncRNA 
co-expression network

The mRNA–lncRNA co-expression network was  
constructed based on the result of Pearson’s correlation 
analysis conducted on the differential expressions of 
lncRNAs and mRNAs. The mRNA–lncRNA pairs with 
a significant correlation coefficient were selected. The 
programme plots the fraction of the edges in a network 
graph with connections (edges) between all nodes in the 
network. The stronger the association of neighbouring 

genes or lncRNAs with a gene, the higher the degree and 
the more important the status.

A pathway interaction network named Path-Net is 
constructed based on interaction relationships between 
pathways in the KEGG database. The degree of the pathway 
is used as a criterion for assessing the pathway in Path-Net. 
'Degree' refers to the number of relationships between a 
node on the network and surrounding nodes. The larger 
the degree, the more pathways that interact with it.

Pearson correlation analysis is carried out based on the 
expression differences of lncRNA and mRNA to construct an 
mRNA–lncRNA co-expression network. The differences in 
the co-expression network are used to analyse differences in 
expression regulatory mechanisms of these mRNA/lncRNA 
and identify the core positions of this mRNA/lncRNA in 
the co-expression network. In addition, the functions 
of surrounding mRNAs in the co-expression network are 
used to predict the function of unknown lncRNAs. mRNA–
lncRNA pairs with significant correlation coefficient are 
selected and the expression correlation between mRNA 
and lncRNA is used to construct the co-expression network.

RNA extraction and quantitative polymerase chain 
reaction (Q-PCR)

Q-PCR was adopted to verify the microarray results in 
the GDM group (n = 3) vs control group (n = 3) with 
gene-specific primers. Total RNA was removed from the 

Figure 1
Research flow chart.
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serum that had been stored at −80°C using Trizol. The 
differentially expressed lncRNAs and mRNAs were validated 
in an independent cohort. Q-PCR was performed using the 
ChamQTM SYBR qPCR Master Mix (vazyme Q311-02) and 
monitored using a GeneAmp PCR System 9700. The lncRNA 
with the best diagnostic value was selected as the biomarker.

Statistical analysis of lncRNAs

Data analysis was conducted using the SPSS software 
(version 18.0) (SPSS). All data were expressed as mean ± s.d. 
The expression level of the lncRNAs was calculated using 
the following formula: ΔΔCT = ΔCT (target gene) − ΔCT 
(internal reference gene), where ΔCT is the cycle number 
at which the fluorescence signal crosses the threshold, 
and ΔΔCT is a simplified form of the relative fluorescence 
quantitative calculation formula that compares the 
difference or ratio between the different samples. P-values 
of < 0.05 were considered statistically significant.

Results

Maternal characteristics

A total of 44 cases were included in this study (25 patients 
with GDM and 19 healthy controls). The two pairs 
of peripheral blood samples were aged-matched. Pre-
pregnancy BMI was calculated based on the self-reported 
weight and height before pregnancy, whereas FPG was 
examined on gestational week 36. No significant differences 
were observed between the GDM group and the control 
group. The sample for this data is outlined in Table 1.

Quality of RNA data output

The general data quality requirements for high-traffic sorting 
are as follows: Q30 > 85% indicates satisfactory data quality, 
with higher Q scores associated with a lower probability of 
error. The lncRNA and mRNA data of this sequencing were 
greater than 90%, and the error rate of base sequencing was 
less than 0.02%. The data quality is sufficient for subsequent 
analysis. All available ships were included in the analysis.

Construction of differential expression profiles of 
lncRNA and mRNA in the peripheral blood of 
patients with GDM

To study the differences between the three control 
subjects and three patients with GDM, the two groups 

were compared, and differential gene screening was 
performed to methodically investigate lncRNAs in 
GDM. Transcriptome analysis was conducted to display 
the expression outlines of lncRNAs. To screen the 
differentially expressed genes, |Log2 fold change| > 1.2 and 
P < 0.05 were used. The consequences of the microarray 
analysis established evident differences in the expression 
profiles of lncRNAs and mRNAs between patients 
with GDM and the control subjects. A total of 7498 
differentially expressed mRNAs (3592 upregulated and 
3906 downregulated) and 1098 differentially expressed 
lncRNAs (609 upregulated and 489 downregulated) were 
found in this sequencing (Table 2). The cluster heatmap 
revealed the differential expression of two kinds of RNAs 
in the samples of the three control subjects and three 
patients with GDM. To specify the genes observed via 
differential screening, we conducted cluster analysis 
depending on the signal value of each gene in the sample 
(Fig. 2A, B, C and D).

In Fig. 2A and B, the genes identified on differential 
screening underwent clustering analysis according to 
the signal value of each gene in the samples. The abscissa 
represents the sample names between the groups, whereas 
the ordinate represents the differentially expressed genes. 
Red indicates the high expression of differentially expressed 
genes, whereas green indicates the minimal expression of 
differentially expressed genes in the samples.

In Fig. 2C and D, upregulated genes with different 
multiples greater than 1.2 and P-values of ≤ 0.05 are 
indicated by red dots. Those with a unique multiple less 
than 0.83333 and a P-value of ≤ 0.05 are downregulated 
genes, which are indicated in green. The genes that were 
not significantly different are indicated by grey dots.

The differences were examined based on a P-value 
of < 0.05 and an absolute difference of +/− two-fold (i.e. 
log change > +/− 2.0). A total of 3971 lncRNA–mRNA pairs 
with significant correlations in expression were screened. 
The functions of lncRNA were determined from the known 
functions of mRNA; functional enrichment analysis 
was conducted for significantly correlated mRNAs with 

Table 1 Characteristics of the study participants.

Characteristics
GDM  

(n = 25)
Control group 

(n = 19) P-value

Age, years 31.68 ± 0.7499 30.16 ± 0.8661 0.1907
Pre-pregnancy BMI 23.79 ± 0.6881 21.49 ± 0.7277 0.0287
FBG (mmol/L) 5.739 ± 0.3522 4.286 ± 0.0531 0.0009
1 h 10.82 ± 0.7044 7.154 ± 0.3189 0.0001
2 h 9.264 ± 0.4022 6.079 ± 0.2557 <0.0001
INS (mU/L) 11.41 ± 1.129 6.552 ± 0.5757 0.0012
HOMA-IR 2.62 ± 0.2714 1.246 ± 0.1083 0.0001
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differentially expressed lncRNA. Three GO terms, biological 
process (BP), cellular component (CC) and molecular 
function (MF), were utilized for the analysis using medium 
stringency settings. Biological process (BP) included 369 
genes downregulated and 332 genes upregulated by BP, 
90 downregulated and 65 upregulated by CC and 62 
downregulated and 81 upregulated by MF (Fig. 3A and B). 
The top GO explanations were largely distributed amongst 
the MF, CC and BP subscriptions. Amongst the lncRNA–
mRNA genes differentially sequenced, the top 10 had their 
expression upregulated and downregulated by BP. The 

functions related to selected genes are presented in Fig. 3C 
and D.

To create the KEGG database, Fisher’s exact test and chi-
squared test were adopted to conduct pathway analysis. We 
analysed the significance of the pathway involved in the 
target genes. Pathway enrichment analyses were conducted 
based on the KEGG pathway analysis. Pathways with more 
explanations than anticipated with the differentially 
expressed genes (P < 0.05) are emphasized in Fig. 3E and 
F. Built on the KEGG analysis, 15 downregulated and 18 
upregulated genes were screened.

Table 2 Top differentially expressed mRNAs and lncRNAs.

Gene symbol Length Log2 fold change P-value padj Style

lncRNA
AL732372.2 9944 24.33780372 4.68174E−10 4.95613E−07 Up
FAS 12,963 24.29753701 1.45924E−11 2.84816E−08 Up
SUMO3 13,163 21.936314 1.98532E−08 5.85696E−06 Up
NOP53 11,180 21.66537943 2.96336E−08 7.4481E−06 Up
LINC00894 5682 21.23578621 5.53507E−08 1.16621E−05 Up
CDK19 1967 21.23578621 5.53507E−08 1.16621E−05 Up
AC092821.3 22,711 21.23578621 5.53507E−08 1.16621E−05 Up
POLR1D 17,202 21.22407648 5.63745E−08 1.18354E−05 Up
ERCC6 43,335 20.89981794 8.978E−08 1.75508E−05 Up
CBWD3 46,292 20.83406406 9.85969E−08 1.88323E−05 Up
CDKN3 18,489 −22.089849 1.59153E−08 5.07163E−06 Down
FAM102A 9840 −22.09430301 1.58093E−08 5.07163E−06 Down
AL732372.2 15,665 −22.10367387 1.55884E−08 5.04468E−06 Down
ZMYM1 36,464 −22.19318039 1.36248E−08 4.73528E−06 Down
BRI3 3920 −22.21577988 1.31681E−08 4.67303E−06 Down
THUMPD3-AS1 8613 −22.40982355 9.81644E−09 3.82003E−06 Down
LRRC75A-AS1 2910 −22.76180551 5.70527E−09 2.79482E−06 Down
COX20 9399 −22.96916569 4.15816E−09 2.361E−06 Down
CEP162 52,837 −23.38720014 2.16163E−09 1.55185E−06 Down
DNAJC6 117,976 −25.08352346 1.36117E−10 1.7529E−07 Down
mRNA      
ASAP1 349,127 27.29460959 2.819E−12 7.92548E−09 Up
SERF2 17,496 26.83679243 4.46397E−16 3.48513E−12 Up
IFITM1 1714 26.52378758 1.12811E−11 2.42964E−08 Up
HNRNPU 9448 26.14058329 2.21623E−11 4.13198E−08 Up
DIAPH1 104,034 25.80045113 7.14906E−15 4.05923E−11 Up
IKZF1 100,317 25.63427718 5.33118E−11 7.92797E−08 Up
BNIP3L 27,801 25.55028294 6.1571E−11 8.84047E−08 Up
TRRAP 132,150 25.53453387 6.32523E−11 8.97866E−08 Up
SPG11 100,822 25.18641404 1.14317E−10 1.50316E−07 Up
FLNA 26,107 24.84383539 2.03059E−10 2.4868E−07 Up
CYFIP2 127,085 −25.58554936 5.79726E−11 8.51965E−08 Down
NKTR 48,048 −25.86487733 3.58405E−11 5.94006E−08 Down
SERP1 61,177 −25.90150098 3.36355E−11 5.722E−08 Down
EIF4E3 49,828 −25.91873442 3.26444E−11 5.66362E−08 Down
RPS3A 4967 −26.03324779 2.67472E−11 4.84226E−08 Down
HNRNPUL1 41,898 −26.0500817 9.36737E−16 6.15861E−12 Down
SPOCK2 29,998 −26.39218862 1.42471E−11 2.84816E−08 Down
KMT2E 99,895 −27.53008692 1.832E−12 5.44873E−09 Down
RPS27A 3686 −27.54330358 1.788E−12 5.44756E−09 Down
SNORD3A 217 −29.60661663 4.10063E−19 5.12235E−15 Down
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Figure 2
Heatmap and volcano analyses of differentially expressed lncRNAs and mRNAs.

Figure 3
Microarray data, screening and functional analysis of differentially expressed genes.
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The mRNA–lncRNA interaction network

The expressions of mRNA and lncRNA create differences 
between the lncRNA and mRNA express networks. The 
differences in the expressions reflect the differences 
in the regulatory mechanism of gene expression, 
pinpoint the mRNA/lncRNAs expressed in total in 
the core position on the network and allow the total 
peripheral mRNA express network to predict unknown 
lncRNA functions (Fig. 4). In the network, global and 
systematic pathway analysis can be carried out on the 
signal transduction relationships between significant 
pathways in the sample. A network map is used to 
show the interactions between significant pathways.  

In the map, a circle represents a pathway, a line represents 
the relationship between pathways, red means the 
pathways where upregulated genes are located, blue 
means the pathways where downregulated genes are 
located, and yellow means a pathway containing both 
upregulated and downregulated genes.

We conducted an mRNA–lncRNA network analysis and 
created an interactive network covering the interaction 
between the differentially expressed lncRNAs and mRNAs. 
From this sub-network, six lncRNAs and four mRNAs 
were found to play a significant role in insulin resistance 
(Tables 3 and 4). The larger the degree, the more pathways 
that interact with it. We then designed primers to verify 
whether there was a differential expression (Table 5).

Figure 4
The mRNA–lncRNA co-expression network.

Table 3 Partial results of the interaction between genes and lncRNAs.

Gene1 Biotype1 Gene2 Biotype2 Correlation coefficient Relationship

TPH1 Coding ENST00000214893.9_ERMP1 Noncoding 0.992773285 Positive
TPH1 Coding ENST00000479508.5_TSPAN32 Noncoding 0.995332824 Positive
TPH1 Coding ENST00000588620.5_MRPL38 Noncoding 0.996482412 Positive
TSC1 Coding ENST00000632586.1_AC215522.2 Noncoding 0.998152693 Positive
TSC2 Coding ENST00000412023.5_RPL13P5 Noncoding 0.989037361 Positive
IGFBP4 Coding ENST00000523340.1_SLC20A2 Noncoding 0.990553453 Positive
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LncRNA expression patterns were verified 
via Q-PCR

After verification via Q-PCR of the GDM group (n = 3) vs 
control group (n = 3) with gene-specific primers (Table 5),  
we found that the data values (number 1) in the GDM 
group deviated from the other data values. This may be 
related to the less BMI of this person; other experimental 
groups were significantly small at the time of sample 
selection, and their insulin resistance index was also 
small. If we analyse this data together with the other data, 
the accuracy of the experimental results may be affected. 
Thus, we removed this outlier and conducted data  
analysis again.

Q-PCR was performed to compare the expression levels 
of lncRNAs between the GDM group (n = 2) and the control 
group (n = 3). As presented in Fig. 5A, Q-PCR revealed that 
four out of the six lncRNAs had significantly different 
expressions. The expressions of the lncRNAs ERMP1, 
TSPAN32, MRPL38 and RPL13P5 in the GDM group were 
significantly higher than those in the control group 
(P = 0.0486, 0.0096, 0.0371, 0.0075; P < 0.05). Conversely, 
the expressions of lncRNA AC215522.2 and SLC20A2 
were higher in the GDM group than in the control group 
(P = 0.0840, 0.0538). There was no significant difference. 
Figure 5B presents the expression levels of the four mRNAs. 
The expression of mRNAs TSC1 and TSC2 in the GDM 
group was significantly greater than that in the control 
group (P = 0.0014, 0.0086; P < 0.05).

Discussion

Human placental lactogen (hPL) plays a role in promoting 
luteinizing hormone and glycogen synthesis. Prolactin 
(PRL) signalling has been involved in the regulation of 
glucose homeostatic adaptations to pregnancy (17). It 
has numerous biological functions, including lactation 
regulation, morphogenesis, reproduction, metabolism 
and adaptations to physiological stressors. PRL signalling 
regulates glucose metabolism through insulin signalling-
related pathways.

hPL can stimulate insulin-like growth factor (IGF), 
insulin, adrenocortical hormone and pulmonary 
surfactant (PS) and enhance the acquisition of glucose 
and amino acid in the foetus to facilitate its growth and 
development. When glucose supply is insufficient, hPL 
stimulates fat decomposition, free fatty acid increase and 
gluconeogenesis, as well as inhibits the effect of insulin 
on peripheral tissues to increase blood glucose through Ta
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the reduction of its utilization, so as to ensure sufficient 
energy supply to the foetus. In patients with GDM, 
insulin resistance leads to dysglycaemia and decreased  
insulin sensitivity.

PRL acts on target cells by activating prolactin 
receptors (PRLRs). In mice, pancreatic PRLR signalling was 
shown to be required for pregnancy-associated changes in 
maternal β cell mass and function. PRLR gene disruption 
in the pancreas resulted in fewer insulin-producing cells, 
which were thus unable to expand appropriately during 
pregnancy, resulting in reduced blood insulin levels and 
maternal glucose intolerance (18). The function of β cell 
mass is resolved by placental lactogen (PL), lactogenic 
hormone and prolactin (19), which they bind to. Aside 
from this pathway, PRLRs can transduce their signal via 
the phosphatidylinositol 3-kinase (PI3K) pathways and 
RAS–RAF–mitogen-activated protein kinase (MAPK) (20). 
A current study has demonstrated that the expressions 
of a large number of genes changed during pregnancy. 
The most significant genes induced during pregnancy 
are Tph1 and Tph2 (21), which encode two isomers of 
tryptophan hydroxylase, the rate-limiting agent for the 
synthesis of serotonin (5-hydroxytryptamine (5-HT)) (22). 
Hydroxylation of tryptophan to 5-hydroxytryptophan 
is catalysed by TPH. The study has demonstrated that β 
cells and serotonergic neurons shared a common gene 
expression programme as well as the ability to synthesize, 
store and secrete serotonin (22). By analysing the lncRNA–
mRNA network, lncRNAs ERMP1, TSPAN32 and MRPL38 

related to TPH were selected for further detailed study. In the 
current study, the expression profiles of lncRNAs ERMP1, 
TSPAN32 and MRPL38 exhibited significant differences 
between the GDM and control groups. The results revealed 
that lncRNAs ERMP1, TSPAN32 and MRPL38 all had pre-
diagnostic values for GDM. 

Pregnancy is accompanied by physiological changes 
in maternal plasma proteins. In normal pregnancy, the 
characterizing maternal plasma proteome is important 
to understand the changes in calculating pregnancy 
outcome. Pregnancy-associated plasma protein-A (PAPP-A) 
is a proteolytic enzyme that was first discovered as a 
placental protein of primates. It was found to increase the 
availability of activated IGF receptors by lysing lecithin. 
The insulin-like growth factor-binding proteins (IGFBPs) 
compete with the insulin-like growth factor receptor (IGFR) 
and are bound to IGFs (23), such as IGFBP4, which play a 
significant role in metabolism and ultimately regulate 

Table 5 Primers for the analysis of mRNA and lncRNA by 
quantitative RT PCR.

Amplification primer name Amplification primer sequence

ERMP1_F GCACTGCACACTGGAATCAT
ERMP1_R ACCCTGCAAACCTTATGTGC
TSPAN32_F ATGCTGGTCACCTGCTTCTT
TSPAN32_R CTGGTACGGGTTCTTCTCCA
MRPL38_F GCCGATTGACTTCTCTGAGG
MRPL38_R GCACTGGAAGAAGGACAAGC
AC215522.2_F AGCAGCACAGTCATCCCTTT
AC215522.2_R CAATTCAGGTGCTGCAGAGA
RPL13P5_F CATGATCCTGAAGCCCAACT
RPL13P5_R GGCACCTTACTATGGGTGGA
SLC20A2_F GGCAACCATTTCCAGGACTA
SLC20A2_R CCTCGATGGAATTGAAGGTG
IGFBP4_F CCCACGAGGACCTCTACATC
IGFBP4_R GGTCCACACACCAGCACTT
TSC1_F CTCCACAGCCAGATCAGACA
TSC1_R ACACCTTGTTGTTGGCCTTC
TSC2_F AGTGGTCATCTCGCAGCTCT
TSC2_R GCCATCACCTTCTCGATGAT
TPH1_F CGTCCTGTGGCTGGTTACTT
TPH1_R ATGGCAGGTATCTGGCTCTG

Figure 5
Q-PCR results showing relative lncRNA and mRNA expressions.
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biological function. IGF bound to IGFBP4 is not bioactive. 
However, the splitting decomposition of IGFBP4 frees up 
bioactive IGF, thus initiating IGF signalling and eventually 
adjusting the biological function of the IGFs. PAPP-A 
enhanced action of local IGF by proteolysis of IGFBP4 has 
been shown in many studies, both in vivo and in vitro (24). 

In this study, we found that the expression of IGFBP4 
was reduced in GDM. Here we generated an mRNA–lncRNA 
network that contains the interactions of IGFBP4 and 
lncRNA SLC20A2. We considered lncRNA SLC20A2 as a 
fresh candidate for lncRNA located in the gene upstream 
region of IGFBP4. After verification via Q-PCR, IGFBP4 and 
lncRNA SLC20A2 had no significant difference. Our study 
showed the association of lncRNAs with GDM and insulin 
resistance. We could not verify that lncRNA SLC20A2, 
as the target gene IGFBP4, plays an important role in  
insulin resistance.

To further investigate the biological functions of 
lncRNA IGFBP4, we selected stanniocalcin-2 (STC2) for 
targeted genetic analyses. Mammalian STC2 is a secreted 
polypeptide widely expressed in developing and adult 
tissues, which we found to potently inhibit the proteolytic 
activity of the growth-promoting PAPP-A. Proteolytic 
inhibition requires covalent binding of STC2 to PAPP-A and 
is mediated by a disulphide bond, which involves the Cys-
120 of STC2. The binding of STC2 prevents PAPP-A cleavage 
of IGFBP4, which is released within the tissues of bioactive 
IGF required for normal growth. In line with this, STC2 
has been shown to efficiently inhibit PAPP-A-mediated IGF 
receptor signalling in vitro and transgenic mice expressed 
a mutated variant of STC2, STC2(C120A), which is unable 
to inhibit PAPP-A. STC2 is a novel proteinase inhibitor and 
a previously unrecognized extracellular component of 
the IGF system (25). This is in contrast to its homologue 
STC1, which can effectively inhibit PAPP-A cleavage of 
IGFBP4. STC1 can effectively inhibit PAPP-A activity 
and IGF signalling in a cell-based assay (26). Moreover,  
it has a high-affinity interaction between protease and 
inhibitor (27).

In this investigation, the expression of STC2 was 
correlated with the upregulation of lncRNAs AC215522.2 
and RPL13P5 in an mRNA–lncRNA network analysis. 
A significant overexpression of lncRNAs AC215522.2 
and RPL13P5 promoted insulin resistance. However, no 
statistically significant difference was observed in the 
Q-PCR of lncRNA AC215522.2, which may be due to the 
small sample size in this experiment.

We were able to identify lncRNAs RPL13P5, ERMP1, 
TSPAN32 and MRPL38 as potential biomarkers for GDM. 

Being a stable and detectable RNA, ncRNA can be used 
to treat diseases by supplementing the expression of 
downregulated ncRNA and inhibiting the overexpression 
of ncRNA. 

However, it should be noted that we are not sure 
if insulin resistance in all subjects is due to pregnancy 
and not obesity; more samples are needed to support 
this conclusion. Current research on ncRNA is not 
comprehensive, and its mechanism is not yet fully 
understood. Most of the studies lack a large sample size. 
Therefore, the clinical use of ncRNA for the prediction, 
diagnosis and prognosis of disease still needs further study 
and testing. Finally, the prognostic implications of our 
findings were not assessed in our study, as that needs long-
term follow-up. We provide a new perspective to elucidate 
the underlying mechanism of insulin resistance in patients 
with GDM and, therefore, this point needs investigation in 
future studies.
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