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Abstract: We investigate the phase transitions and the properties of the topological insulator in
InGaN/GaN and InN/InGaN double quantum wells grown along the [0001] direction. We apply a
realistic model based on the nonlinear theory of elasticity and piezoelectricity and the eight-band k·p
method with relativistic and nonrelativistic linear-wave-vector terms. In this approach, the effective
spin–orbit interaction in InN is negative, which represents the worst-case scenario for obtaining the
topological insulator in InGaN-based structures. Despite this rigorous assumption, we demonstrate
that the topological insulator can occur in InGaN/GaN and InN/InGaN double quantum wells
when the widths of individual quantum wells are two and three monolayers (MLs), and three and
three MLs. In these structures, when the interwell barrier is sufficiently thin, we can observe the
topological phase transition from the normal insulator to the topological insulator via the Weyl
semimetal, and the nontopological phase transition from the topological insulator to the nonlocal
topological semimetal. We find that in InGaN/GaN double quantum wells, the bulk energy gap in
the topological insulator phase is much smaller for the structures with both quantum well widths of
3 MLs than in the case when the quantum well widths are two and three MLs, whereas in InN/InGaN
double quantum wells, the opposite is true. In InN/InGaN structures with both quantum wells being
three MLs and a two ML interwell barrier, the bulk energy gap for the topological insulator can reach
about 1.2 meV. We also show that the topological insulator phase rapidly deteriorates with increasing
width of the interwell barrier due to a decrease in the bulk energy gap and reduction in the window
of In content between the normal insulator and the nonlocal topological semimetal. For InN/InGaN
double quantum wells with the width of the interwell barrier above five or six MLs, the topological
insulator phase does not appear. In these structures, we find two novel phase transitions, namely
the nontopological phase transition from the normal insulator to the nonlocal normal semimetal
and the topological phase transition from the nonlocal normal semimetal to the nonlocal topological
semimetal via the buried Weyl semimetal. These results can guide future investigations towards
achieving a topological insulator in InGaN-based nanostructures.

Keywords: topological phase transition; topological insulators; group-III nitrides; double
quantum wells

1. Introduction

Topological insulators (TIs) are a new class of materials that are characterized by an
energy gap in the bulk electronic band structure and metallic states at the boundaries [1].
Closing of the band gap by the surface or edge states is caused by the nontrivial topology
of the bulk states, originating from an inversion in the order of the valence and conduction
bands at time-reversal-invariant wave vectors in the Brillouin zone [2]. This band inversion
changes the Z2 topological invariant and causes the topological phase transition (TPT)
between the normal insulator (NI) and the TI [2]. In 2D TIs, the band structure corresponds
to the quantum spin Hall effect (QSHE), in which 1D gapless edge states are inside the bulk
2D sub-band spectrum [1,2]. The QSHE has been realized in topological 2D crystals and
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nanostructures [3–9]. In the case of 2D nanostructures, the TI phase has been only experi-
mentally confirmed in two quantum well (QW) material systems, namely in HgTe/CdTe
and InAs/GaSb/AlSb QWs [7,9]. In HgTe/CdTe QWs, the TI occurs due to the inverted
band structure of HgTe, caused by the strong spin–orbit interaction (SOI), which leads to
the inversion of the lowest conduction sub-band (CB) and the highest heavy-hole sub-band
(HH) in structures with the QW width above a critical value of 6.4 nm [6,7]. Increasing the
QW width above 12 nm leads to the nontopological phase transition (NTPT) from the TI
to the nonlocal topological semimetal (NTSM), which arises from nonlocal overlapping
between the sub-bands [10,11]. The TI phase in InAs/GaSb/AlSb QWs originates from the
fact that the valence band (VB) of GaSb is 150 meV higher than the CB in InAs and the TPT
can be achieved by varying the widths of the InAs and GaSb layers [8,9].

The 2D TIs were also proposed in InN/GaN QWs grown along the [0001] direction,
parallel to the c axis of the wurtzite lattice [12]. In these structures, the extremely large built-
in electric field originating from the piezoelectric effect and spontaneous polarization may
invert the ordering of the CB and VB sub-bands according to the quantum confined Stark
effect (QCSE), leading to a polarization-driven TPT [12]. The huge built-in electric field also
induces the Rashba SOI, which significantly influences the bulk energy gap in the TI phase,
ETI

2Dg. Although GaN and InN are technologically important semiconductors, the issue of
the SOI in these materials is still under scientific debate [13]. In InN/GaN topological QWs,
the ETI

2Dg can reach 5 meV when the positive SOI of the order of a few milli-electron volts
is assumed in GaN and InN crystals, or it can be about 1.25 meV when the negative SOI
in InN is considered [12,13]. Although these values of ETI

2Dg are significantly smaller than
that for HgTe/CdTe and InAs/GaSb/AlSb QWs [14–16], they are large enough to allow
for the experimental verification of the QSHE in these structures [17,18]. Unfortunately,
the problem is that to achieve the TPT in InN/GaN QWs, the QW width should be at
least four monolayers (MLs) and the growth of such thick and fully strained structures
is extremely difficult, due to large strain reaching 11%. This problem can be partially
overcome by applying InGaN alloys [13,19,20]. However, in InxGa1−xN/GaN QWs, the
critical thickness for obtaining the TI state increases faster with decreasing In content in the
QWs than the critical thickness for pseudomorphic growth [13,20]. The situation is more
promising in InN/InyGa1−yN QWs, where the critical thickness for obtaining the TI state
increases slower with increasing In content in the barriers than the critical thickness for
the pseudomorphic growth [13]. It was also predicted that in InN/InyGa1−yN QWs with
a barrier In content of less than 0.5, the ETI

2Dg is about 2 meV, assuming a negative SOI in
InN [13]. Despite multiple attempts, the growth of topological InGaN-based QWs remains
a challenge [21–23]. Further research toward obtaining the TI state in group-III nitride
nanostructures is desirable due to numerous future applications of these nanomaterials in
electronics, piezotronics, spintronics, and quantum computing [24–27].

The investigations of the TPT in 2D semiconductor systems have recently been ex-
tended to double QWs (DQWs). In these structures, the TPT depends not only on the
thickness of the individual QWs, but also on the width of the interwell barrier, Lib, which
determines the tunnel-induced hybridization between the QW subbands. In particular, it
was shown that in tunnel-coupled HgTe/CdTe DQWs, the TI phase can be achieved when
the thickness of the individual QWs is significantly smaller than the critical thickness for
obtaining the TI state in single QW structures [28,29]. The picture of phases in HgTe/CdTe
DQWs is richer than in the single QWs. In symmetric HgTe-based DQWs with an inverted
ordering of sub-bands, apart from the NI, TI, and NTSM phases, there is a semimetal
phase that holds similar properties to bilayer graphene (BG) [29]. This BG phase was
experimentally confirmed by local and nonlocal resistance measurements [30].

In this work, we investigated the phase transitions and the properties of the TI phase
in InxGa1−xN/GaN and InN/InyGa1−yN DQWs grown along the [0001] direction (see
Figure 1). We applied a model based on the nonlinear theory of elasticity and piezoelectric-
ity and the eight-band k·p method with relativistic and nonrelativistic linear-wave-vector
terms. In our approach, the effective SOI in InN is negative [31], which represents the
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worst-case scenario for obtaining the TI in InGaN-based structures [13]. Despite this rig-
orous assumption, we demonstrate that the TI phase can occur in InxGa1−xN/GaN and
InN/InyGa1−yN DQWs when the widths of the individual QWs are two and three MLs,
and three and three MLs. In these structures, when the interwell barrier is sufficiently thin,
one can achieve the TPT from the NI to the TI and the NTPT from the TI to the NTSM. We
found that in InxGa1−xN/GaN DQWs, the ETI

2Dg is much smaller for the structures with
both QW widths having three MLs than in the case when the QW widths are two and
three MLs, whereas in InN/InyGa1−yN DQWs, the opposite is true. For InN/InyGa1−yN
DQWs with both QWs having widths of three MLs and the Lib of two MLs, the ETI

2Dg can
reach about 1.2 meV. Our calculations also revealed that the ETI

2Dg rapidly decreases with
an increasing Lib. We found that for InN/InyGa1−yN DQWs with the Lib above five or six
MLs, the TI phase does not appear, and two novel phase transitions occur.
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Figure 1. Schematic representation of an InGaN-based DQW heterostructure. On the right side, the
CB and VB edge profiles of an exemplary structure containing InN/In0.3292Ga0.6708N DQWs with
Lqw,A = 3 MLs, Lqw,B = 3 MLs, and Lib = 3 MLs.

2. Theoretical Model

To study the polarization-induced phase transitions in InGaN-based DQWs, we em-
ployed the 8-band k·p method combined with the nonlinear theory of elasticity and piezo-
electricity. The application of the nonlinear theory of elasticity and piezoelectricity enabled
us to accurately describe strain, piezoelectric polarization, and the built-in electric field,
which is essential for obtaining an inversion of the CB and VB sub-bands. The applied
k·p method calculates quantum states in InGaN-based DQWs on the assumption that the
effective SOI in InN is negative, which is crucial for determining the nature of the TPT and
the properties of the TI phase.

We consider the structures (see Figure 1) in which the chemical compositions of the
substrate, external barriers, and interwell barrier are the same, so these layers are unstrained.
For simplicity, we also assume that the chemical compositions of both QWs are identical.
Strain is only present in the QWs and is described by the following tensor:

ε =

εxx 0 0
0 εxx 0
0 0 εzz = −RBεxx

 (1)
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where εxx is the in-plane strain, εzz is the out-of-plane strain, and RB denotes the biaxial
relaxation coefficient [32]. The in-plane strain is determined by the well-known formula
εxx = as

aqw
− 1, where aS and aqw are the lattice constants of the substrate and the QW

material, respectively. We took the a lattice constants for GaN and InN from [33] and
assumed that for InGaN alloys, they linearly depend on composition [34]. The RB coefficient
is usually determined using the linear theory of elasticity, which predicts that it is equal
to 2 C13

C33
, where C13 and C33 are the second-order elastic constants. This simple approach

is, however, inaccurate when the strain εxx is large [32,35]. Here, we apply a more general
formula for the RB coefficient, which we derived in the framework of the third-order
elasticity theory, as follows,

RB =
1

εxx

[
1−

√
1 +

2
C333

(
−c +

√
c2 − 2C333d

)]
(2)

where c = C33 + 2C133

(
εxx +

1
2 ε2

xx

)
and d = 2C13

(
εxx +

1
2 ε2

xx

)
+ (C113 + C123)(

εxx +
1
2 ε2

xx

)2
[24,32]. In the above formula, C113, C123, C133, and C333 are the third-order

elastic constants. For GaN and InN, we use the values of the elastic constants obtained
from ab initio calculations, which were performed using the relationship between strain
and the Helmholtz free energy density [32]. For InGaN alloys, we consider the nonlinear
composition dependencies of the second-order elastic constants [35,36]. The composition
dependencies of the third-order elastic constants are unknown for the group-III nitride
alloys and, therefore, we use the linear approximation for these parameters in InGaN.

The built-in electric field in DQWs is calculated using a simple analytic model derived
for a multilayer structure in [37]. This model is based on the assumption that the potential
drop over the entire DQW structure, consisting of two external barriers, two QWs, and the
interwell barrier, vanishes. The values of the built-in electric field in the corresponding
layers of the DQW structure are given by the following formula:

Ei =
∑5

k=1

[
Lk
λk
(Pk − Pi)

]
λi ∑5

k=1

(
Lk
λk

) , i = 1, . . . , 5 (3)

where Li, Pi, and λi denote the width of a layer, macroscopic polarization, and electric
permittivity, respectively [37]. In this work, we dealt with the DQWs consisting of ultra-thin
QWs and an interwell barrier, with widths expressed in MLs. The well widths depend on
strain as follows,

Lqw =
1
2

nqwcqw(1− RBεxx) (4)

where nqw is the number of MLs, and cqw denotes the c lattice constant of the QW material.
The factor of 1

2 in Formula (4) originates from the fact that the wurtzite unit cell contains
two MLs. We take the c lattice constants for GaN and InN from [33] and assume that for
InGaN alloys, they linearly depend on composition [34]. In QWs, the macroscopic polariza-
tion is the sum of the spontaneous polarization Psp and the piezoelectric polarization Ppz,
so it can be expressed by

P = Psp + Ppz = Psp + 2e31εxx + e33εzz + (B311 + B312)ε
2
xx +

1
2

B333ε2
zz + 2B313εxxεzz (5)

where e31 and e33 are the first-order piezoelectric constants; B311, B312, B333, and B313 are
the second-order piezoelectric constants [38]. For unstrained barriers, the piezoelectric
polarization is zero, and we have P = Psp.

The electronic states in InGaN-based DQWs are calculated using the 8-band k·p
Hamiltonian H8×8 with relativistic and nonrelativistic linear-wave-vector terms, which
were parametrized according to ab initio calculations performed using the quasiparticle
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self-consistent GW method [13,31]. The Hamiltonian H8×8 is represented in a matrix form
as follows:

H8×8 =



Hc −Q Q∗ R 0 0 0 0
−Q∗ F K∗ M∗− 0 0 −W∗ 0

Q K G −N+ 0 −W∗ −T
√

2∆3
R M− −N∗+ L 0 0

√
2∆3 −S∗

0 0 0 0 Hc Q∗ −Q R
0 0 −W 0 Q F K −M+

0 −W −T∗
√

2∆3 −Q∗ K∗ G N∗−
0 0

√
2∆3 −S R −M∗+ N− L



|iS, ↑〉∣∣∣−(X + iY)/
√

2, ↑
〉∣∣∣(X− iY)/

√
2, ↑
〉

|Z, ↑〉
|iS, ↓〉∣∣∣(X− iY)/

√
2, ↓
〉∣∣∣−(X + iY)/

√
2, ↓
〉

|Z, ↓〉

(6)

where Hc = Evb + Eg + Ac
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band energy and energy gap are denoted by 𝐸  and 𝐸 , respectively; 𝐴 ⟘ and 𝐴 || 
describe the dispersion of the CB; whereas 𝑃  and 𝑃  are the Kane parameters [13,20]. 
The valence band parameters 𝐴 , … , 𝐴 , 𝛼 , … , 𝛼 , and ∆ , … , ∆  were taken from [31] for 
GaN and InN, whereas for InGaN alloys, the linear approximation was applied. Addi-
tionally, the parameters 𝐴 , … , 𝐴  were rescaled according to [20]. Strain and the built-in 
electric field were included in the Hamiltonian 𝐻 ×  according to [39,40]. Then, replac-
ing 𝑘  in the Hamiltonian 𝐻 ×  by the operator −𝑖 , we have the 8-band Schröding-
er-type equation, 

𝐻 ,× 𝑘⟘, 𝑘 = −𝑖 𝜕𝜕𝑧 𝐹 , 𝑧, 𝑘⟘ = 𝐸 𝑘⟘ 𝐹 , 𝑧, 𝑘⟘ ,     𝛼 = 1, … ,8, (7)

where 𝐸 𝑘⟘  and 𝐹 , 𝑧, 𝑘⟘  are the energies and the envelope functions of the DQW 
states, respectively [13,20]. Because the material parameters depend on position in DQW 
structures, we use the standard symmetrization to ensure the Hermiticity of operators 
containing the products of functions and derivatives [20]. Equation (7) is solved using the 
standard finite element method [41]. 

3. Results and Discussion 
We considered InxGa1−xN/GaN and InN/InyGa1−yN DQWs with the widths of indi-

vidual QWs, 𝐿 , , and 𝐿 , , equal to two and three MLs, three and two MLs, and three 
and three MLs. We found that TPT can occur in these structures. On the other hand, in 
thinner DQWs, i.e., when 𝐿 , = 2 𝑀𝐿𝑠 and 𝐿 , = 2 𝑀𝐿𝑠, the QCSE is too weak to 
induce the TPT, and only the NI phase appears. We assumed that the thickness of the 
external barriers (see Figure 1) is large, i.e., 𝐿 = 2000 nm, because this makes the 
built-in electric field in QWs extremely large and the TPT easier to achieve [13]. 
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 (6)

where 𝐻 = 𝐸 + 𝐸 + 𝐴 ⟘𝑘⟘ + 𝐴 ||𝑘 , 𝑄 = 𝑃 𝑘 /√2 , 𝑅 = 𝑃 𝑘 , 𝐹 = ∆ + ∆ +𝐴 + 𝐴 𝑘⟘ + 𝐴 + 𝐴 𝑘 , 𝐺 = 𝐹 − 2∆ , 𝐿 = 𝐴 𝑘⟘ + 𝐴 𝑘 , 𝐾 = 𝐴 𝑘 , 𝑀 =𝐴 𝑘 + 𝑖 𝐴 + 𝛼 𝑘 , 𝑀 = 𝐴 𝑘 − 𝑖 𝐴 + 𝛼 𝑘 , 𝑁 = 𝐴 𝑘 + 𝑖 𝐴 − 𝛼 𝑘 , 𝑁 =𝐴 𝑘 − 𝑖 𝐴 − 𝛼 𝑘 , 𝑆 = 𝑖𝛼 𝑘 , 𝑇 = 𝑖𝛼 𝑘 , and 𝑊 = 𝑖 𝛼 + 𝛼 𝑘 . The top valence 
band energy and energy gap are denoted by 𝐸  and 𝐸 , respectively; 𝐴 ⟘ and 𝐴 || 
describe the dispersion of the CB; whereas 𝑃  and 𝑃  are the Kane parameters [13,20]. 
The valence band parameters 𝐴 , … , 𝐴 , 𝛼 , … , 𝛼 , and ∆ , … , ∆  were taken from [31] for 
GaN and InN, whereas for InGaN alloys, the linear approximation was applied. Addi-
tionally, the parameters 𝐴 , … , 𝐴  were rescaled according to [20]. Strain and the built-in 
electric field were included in the Hamiltonian 𝐻 ×  according to [39,40]. Then, replac-
ing 𝑘  in the Hamiltonian 𝐻 ×  by the operator −𝑖 , we have the 8-band Schröding-
er-type equation, 

𝐻 ,× 𝑘⟘, 𝑘 = −𝑖 𝜕𝜕𝑧 𝐹 , 𝑧, 𝑘⟘ = 𝐸 𝑘⟘ 𝐹 , 𝑧, 𝑘⟘ ,     𝛼 = 1, … ,8, (7)

where 𝐸 𝑘⟘  and 𝐹 , 𝑧, 𝑘⟘  are the energies and the envelope functions of the DQW 
states, respectively [13,20]. Because the material parameters depend on position in DQW 
structures, we use the standard symmetrization to ensure the Hermiticity of operators 
containing the products of functions and derivatives [20]. Equation (7) is solved using the 
standard finite element method [41]. 

3. Results and Discussion 
We considered InxGa1−xN/GaN and InN/InyGa1−yN DQWs with the widths of indi-

vidual QWs, 𝐿 , , and 𝐿 , , equal to two and three MLs, three and two MLs, and three 
and three MLs. We found that TPT can occur in these structures. On the other hand, in 
thinner DQWs, i.e., when 𝐿 , = 2 𝑀𝐿𝑠 and 𝐿 , = 2 𝑀𝐿𝑠, the QCSE is too weak to 
induce the TPT, and only the NI phase appears. We assumed that the thickness of the 
external barriers (see Figure 1) is large, i.e., 𝐿 = 2000 nm, because this makes the 
built-in electric field in QWs extremely large and the TPT easier to achieve [13]. 
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where 𝑒  and 𝑒  are the first-order piezoelectric constants; 𝐵 , 𝐵 , 𝐵 , and 𝐵  
are the second-order piezoelectric constants [38]. For unstrained barriers, the piezoelec-
tric polarization is zero, and we have 𝑃 = 𝑃 . 

The electronic states in InGaN-based DQWs are calculated using the 8-band k·p 
Hamiltonian 𝐻 ×  with relativistic and nonrelativistic linear-wave-vector terms, which 
were parametrized according to ab initio calculations performed using the quasiparticle 
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|𝑖𝑆, ↑⟩| − 𝑋 + 𝑖𝑌 /√2, ↑| 𝑋 − 𝑖𝑌 /√2, ↑|𝑍, ↑⟩|𝑖𝑆, ↓⟩| 𝑋 − 𝑖𝑌 /√2, ↓| − 𝑋 + 𝑖𝑌 /√2, ↓|𝑍, ↓⟩
 (6)
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band energy and energy gap are denoted by 𝐸  and 𝐸 , respectively; 𝐴 ⟘ and 𝐴 || 
describe the dispersion of the CB; whereas 𝑃  and 𝑃  are the Kane parameters [13,20]. 
The valence band parameters 𝐴 , … , 𝐴 , 𝛼 , … , 𝛼 , and ∆ , … , ∆  were taken from [31] for 
GaN and InN, whereas for InGaN alloys, the linear approximation was applied. Addi-
tionally, the parameters 𝐴 , … , 𝐴  were rescaled according to [20]. Strain and the built-in 
electric field were included in the Hamiltonian 𝐻 ×  according to [39,40]. Then, replac-
ing 𝑘  in the Hamiltonian 𝐻 ×  by the operator −𝑖 , we have the 8-band Schröding-
er-type equation, 

𝐻 ,× 𝑘⟘, 𝑘 = −𝑖 𝜕𝜕𝑧 𝐹 , 𝑧, 𝑘⟘ = 𝐸 𝑘⟘ 𝐹 , 𝑧, 𝑘⟘ ,     𝛼 = 1, … ,8, (7)

where 𝐸 𝑘⟘  and 𝐹 , 𝑧, 𝑘⟘  are the energies and the envelope functions of the DQW 
states, respectively [13,20]. Because the material parameters depend on position in DQW 
structures, we use the standard symmetrization to ensure the Hermiticity of operators 
containing the products of functions and derivatives [20]. Equation (7) is solved using the 
standard finite element method [41]. 

3. Results and Discussion 
We considered InxGa1−xN/GaN and InN/InyGa1−yN DQWs with the widths of indi-

vidual QWs, 𝐿 , , and 𝐿 , , equal to two and three MLs, three and two MLs, and three 
and three MLs. We found that TPT can occur in these structures. On the other hand, in 
thinner DQWs, i.e., when 𝐿 , = 2 𝑀𝐿𝑠 and 𝐿 , = 2 𝑀𝐿𝑠, the QCSE is too weak to 
induce the TPT, and only the NI phase appears. We assumed that the thickness of the 
external barriers (see Figure 1) is large, i.e., 𝐿 = 2000 nm, because this makes the 
built-in electric field in QWs extremely large and the TPT easier to achieve [13]. 
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where 𝑒  and 𝑒  are the first-order piezoelectric constants; 𝐵 , 𝐵 , 𝐵 , and 𝐵  
are the second-order piezoelectric constants [38]. For unstrained barriers, the piezoelec-
tric polarization is zero, and we have 𝑃 = 𝑃 . 

The electronic states in InGaN-based DQWs are calculated using the 8-band k·p 
Hamiltonian 𝐻 ×  with relativistic and nonrelativistic linear-wave-vector terms, which 
were parametrized according to ab initio calculations performed using the quasiparticle 
self-consistent GW method [13,31]. The Hamiltonian 𝐻 ×  is represented in a matrix 
form as follows: 

𝐻 × =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡
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⎥⎥⎥
⎥⎥⎤

|𝑖𝑆, ↑⟩| − 𝑋 + 𝑖𝑌 /√2, ↑| 𝑋 − 𝑖𝑌 /√2, ↑|𝑍, ↑⟩|𝑖𝑆, ↓⟩| 𝑋 − 𝑖𝑌 /√2, ↓| − 𝑋 + 𝑖𝑌 /√2, ↓|𝑍, ↓⟩
 (6)

where 𝐻 = 𝐸 + 𝐸 + 𝐴 ⟘𝑘⟘ + 𝐴 ||𝑘 , 𝑄 = 𝑃 𝑘 /√2 , 𝑅 = 𝑃 𝑘 , 𝐹 = ∆ + ∆ +𝐴 + 𝐴 𝑘⟘ + 𝐴 + 𝐴 𝑘 , 𝐺 = 𝐹 − 2∆ , 𝐿 = 𝐴 𝑘⟘ + 𝐴 𝑘 , 𝐾 = 𝐴 𝑘 , 𝑀 =𝐴 𝑘 + 𝑖 𝐴 + 𝛼 𝑘 , 𝑀 = 𝐴 𝑘 − 𝑖 𝐴 + 𝛼 𝑘 , 𝑁 = 𝐴 𝑘 + 𝑖 𝐴 − 𝛼 𝑘 , 𝑁 =𝐴 𝑘 − 𝑖 𝐴 − 𝛼 𝑘 , 𝑆 = 𝑖𝛼 𝑘 , 𝑇 = 𝑖𝛼 𝑘 , and 𝑊 = 𝑖 𝛼 + 𝛼 𝑘 . The top valence 
band energy and energy gap are denoted by 𝐸  and 𝐸 , respectively; 𝐴 ⟘ and 𝐴 || 
describe the dispersion of the CB; whereas 𝑃  and 𝑃  are the Kane parameters [13,20]. 
The valence band parameters 𝐴 , … , 𝐴 , 𝛼 , … , 𝛼 , and ∆ , … , ∆  were taken from [31] for 
GaN and InN, whereas for InGaN alloys, the linear approximation was applied. Addi-
tionally, the parameters 𝐴 , … , 𝐴  were rescaled according to [20]. Strain and the built-in 
electric field were included in the Hamiltonian 𝐻 ×  according to [39,40]. Then, replac-
ing 𝑘  in the Hamiltonian 𝐻 ×  by the operator −𝑖 , we have the 8-band Schröding-
er-type equation, 

𝐻 ,× 𝑘⟘, 𝑘 = −𝑖 𝜕𝜕𝑧 𝐹 , 𝑧, 𝑘⟘ = 𝐸 𝑘⟘ 𝐹 , 𝑧, 𝑘⟘ ,     𝛼 = 1, … ,8, (7)

where 𝐸 𝑘⟘  and 𝐹 , 𝑧, 𝑘⟘  are the energies and the envelope functions of the DQW 
states, respectively [13,20]. Because the material parameters depend on position in DQW 
structures, we use the standard symmetrization to ensure the Hermiticity of operators 
containing the products of functions and derivatives [20]. Equation (7) is solved using the 
standard finite element method [41]. 

3. Results and Discussion 
We considered InxGa1−xN/GaN and InN/InyGa1−yN DQWs with the widths of indi-

vidual QWs, 𝐿 , , and 𝐿 , , equal to two and three MLs, three and two MLs, and three 
and three MLs. We found that TPT can occur in these structures. On the other hand, in 
thinner DQWs, i.e., when 𝐿 , = 2 𝑀𝐿𝑠 and 𝐿 , = 2 𝑀𝐿𝑠, the QCSE is too weak to 
induce the TPT, and only the NI phase appears. We assumed that the thickness of the 
external barriers (see Figure 1) is large, i.e., 𝐿 = 2000 nm, because this makes the 
built-in electric field in QWs extremely large and the TPT easier to achieve [13]. 
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where 𝑒  and 𝑒  are the first-order piezoelectric constants; 𝐵 , 𝐵 , 𝐵 , and 𝐵  
are the second-order piezoelectric constants [38]. For unstrained barriers, the piezoelec-
tric polarization is zero, and we have 𝑃 = 𝑃 . 
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Hamiltonian 𝐻 ×  with relativistic and nonrelativistic linear-wave-vector terms, which 
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|𝑖𝑆, ↑⟩| − 𝑋 + 𝑖𝑌 /√2, ↑| 𝑋 − 𝑖𝑌 /√2, ↑|𝑍, ↑⟩|𝑖𝑆, ↓⟩| 𝑋 − 𝑖𝑌 /√2, ↓| − 𝑋 + 𝑖𝑌 /√2, ↓|𝑍, ↓⟩
 (6)

where 𝐻 = 𝐸 + 𝐸 + 𝐴 ⟘𝑘⟘ + 𝐴 ||𝑘 , 𝑄 = 𝑃 𝑘 /√2 , 𝑅 = 𝑃 𝑘 , 𝐹 = ∆ + ∆ +𝐴 + 𝐴 𝑘⟘ + 𝐴 + 𝐴 𝑘 , 𝐺 = 𝐹 − 2∆ , 𝐿 = 𝐴 𝑘⟘ + 𝐴 𝑘 , 𝐾 = 𝐴 𝑘 , 𝑀 =𝐴 𝑘 + 𝑖 𝐴 + 𝛼 𝑘 , 𝑀 = 𝐴 𝑘 − 𝑖 𝐴 + 𝛼 𝑘 , 𝑁 = 𝐴 𝑘 + 𝑖 𝐴 − 𝛼 𝑘 , 𝑁 =𝐴 𝑘 − 𝑖 𝐴 − 𝛼 𝑘 , 𝑆 = 𝑖𝛼 𝑘 , 𝑇 = 𝑖𝛼 𝑘 , and 𝑊 = 𝑖 𝛼 + 𝛼 𝑘 . The top valence 
band energy and energy gap are denoted by 𝐸  and 𝐸 , respectively; 𝐴 ⟘ and 𝐴 || 
describe the dispersion of the CB; whereas 𝑃  and 𝑃  are the Kane parameters [13,20]. 
The valence band parameters 𝐴 , … , 𝐴 , 𝛼 , … , 𝛼 , and ∆ , … , ∆  were taken from [31] for 
GaN and InN, whereas for InGaN alloys, the linear approximation was applied. Addi-
tionally, the parameters 𝐴 , … , 𝐴  were rescaled according to [20]. Strain and the built-in 
electric field were included in the Hamiltonian 𝐻 ×  according to [39,40]. Then, replac-
ing 𝑘  in the Hamiltonian 𝐻 ×  by the operator −𝑖 , we have the 8-band Schröding-
er-type equation, 

𝐻 ,× 𝑘⟘, 𝑘 = −𝑖 𝜕𝜕𝑧 𝐹 , 𝑧, 𝑘⟘ = 𝐸 𝑘⟘ 𝐹 , 𝑧, 𝑘⟘ ,     𝛼 = 1, … ,8, (7)

where 𝐸 𝑘⟘  and 𝐹 , 𝑧, 𝑘⟘  are the energies and the envelope functions of the DQW 
states, respectively [13,20]. Because the material parameters depend on position in DQW 
structures, we use the standard symmetrization to ensure the Hermiticity of operators 
containing the products of functions and derivatives [20]. Equation (7) is solved using the 
standard finite element method [41]. 

3. Results and Discussion 
We considered InxGa1−xN/GaN and InN/InyGa1−yN DQWs with the widths of indi-

vidual QWs, 𝐿 , , and 𝐿 , , equal to two and three MLs, three and two MLs, and three 
and three MLs. We found that TPT can occur in these structures. On the other hand, in 
thinner DQWs, i.e., when 𝐿 , = 2 𝑀𝐿𝑠 and 𝐿 , = 2 𝑀𝐿𝑠, the QCSE is too weak to 
induce the TPT, and only the NI phase appears. We assumed that the thickness of the 
external barriers (see Figure 1) is large, i.e., 𝐿 = 2000 nm, because this makes the 
built-in electric field in QWs extremely large and the TPT easier to achieve [13]. 
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band energy and energy gap are denoted by 𝐸  and 𝐸 , respectively; 𝐴 ⟘ and 𝐴 || 
describe the dispersion of the CB; whereas 𝑃  and 𝑃  are the Kane parameters [13,20]. 
The valence band parameters 𝐴 , … , 𝐴 , 𝛼 , … , 𝛼 , and ∆ , … , ∆  were taken from [31] for 
GaN and InN, whereas for InGaN alloys, the linear approximation was applied. Addi-
tionally, the parameters 𝐴 , … , 𝐴  were rescaled according to [20]. Strain and the built-in 
electric field were included in the Hamiltonian 𝐻 ×  according to [39,40]. Then, replac-
ing 𝑘  in the Hamiltonian 𝐻 ×  by the operator −𝑖 , we have the 8-band Schröding-
er-type equation, 

𝐻 ,× 𝑘⟘, 𝑘 = −𝑖 𝜕𝜕𝑧 𝐹 , 𝑧, 𝑘⟘ = 𝐸 𝑘⟘ 𝐹 , 𝑧, 𝑘⟘ ,     𝛼 = 1, … ,8, (7)

where 𝐸 𝑘⟘  and 𝐹 , 𝑧, 𝑘⟘  are the energies and the envelope functions of the DQW 
states, respectively [13,20]. Because the material parameters depend on position in DQW 
structures, we use the standard symmetrization to ensure the Hermiticity of operators 
containing the products of functions and derivatives [20]. Equation (7) is solved using the 
standard finite element method [41]. 

3. Results and Discussion 
We considered InxGa1−xN/GaN and InN/InyGa1−yN DQWs with the widths of indi-

vidual QWs, 𝐿 , , and 𝐿 , , equal to two and three MLs, three and two MLs, and three 
and three MLs. We found that TPT can occur in these structures. On the other hand, in 
thinner DQWs, i.e., when 𝐿 , = 2 𝑀𝐿𝑠 and 𝐿 , = 2 𝑀𝐿𝑠, the QCSE is too weak to 
induce the TPT, and only the NI phase appears. We assumed that the thickness of the 
external barriers (see Figure 1) is large, i.e., 𝐿 = 2000 nm, because this makes the 
built-in electric field in QWs extremely large and the TPT easier to achieve [13]. 
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states, respectively [13,20]. Because the material parameters depend on position in DQW
structures, we use the standard symmetrization to ensure the Hermiticity of operators
containing the products of functions and derivatives [20]. Equation (7) is solved using the
standard finite element method [41].

3. Results and Discussion

We considered InxGa1−xN/GaN and InN/InyGa1−yN DQWs with the widths of
individual QWs, Lqw,A, and Lqw,B, equal to two and three MLs, three and two MLs, and
three and three MLs. We found that TPT can occur in these structures. On the other hand,
in thinner DQWs, i.e., when Lqw,A = 2 MLs and Lqw,B = 2 MLs, the QCSE is too weak
to induce the TPT, and only the NI phase appears. We assumed that the thickness of the
external barriers (see Figure 1) is large, i.e., Leb = 2000 nm, because this makes the built-in
electric field in QWs extremely large and the TPT easier to achieve [13].

3.1. InxGa1−xN/GaN DQWs

First, we investigated InxGa1-xN/GaN DQWs with Lqw,A = 3 MLs, Lqw,B = 2 MLs,
and Lib = 2 MLs, which were grown on conventional GaN substrates. In Figure 2, we show
the bulk energy gap, E2Dg, and the subband dispersions for four distinct phases occurring
in these structures. Figure 2a presents the E2Dg as a function of the In content in the QWs.
As in the case of single InxGa1−xN/GaN QWs [13,20], we observed the TPT and the NTPT,
which were accompanied by the closing of E2Dg. In a more detailed analysis, we observed
that when the In content of the QWs, x, is below 0.96307, the DQW system is in the NI
phase with the usual ordering of sub-bands (see Figure 2b). We would like to note that
due to the negative SOI of InN, the highest light-hole (LH) sub-band with the Γ7 symmetry
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is above the highest heavy-hole (HH) sub-band with the Γ9 symmetry [13]. The names
of the subbands reflect the dominant contribution of the CB, HH, and LH states around
→
k
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were parametrized according to ab initio calculations performed using the quasiparticle 
self-consistent GW method [13,31]. The Hamiltonian 𝐻 ×  is represented in a matrix 
form as follows: 

𝐻 × =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

𝐻 −𝑄 𝑄∗ 𝑅 0 0 0 0−𝑄∗ 𝐹 𝐾∗ 𝑀∗ 0 0 −𝑊∗ 0𝑄 𝐾 𝐺 −𝑁 0 −𝑊∗ −𝑇 √2∆𝑅 𝑀 −𝑁∗ 𝐿 0 0 √2∆ −𝑆∗0 0 0 0 𝐻 𝑄∗ −𝑄 𝑅0 0 −𝑊 0 𝑄 𝐹 𝐾 −𝑀0 −𝑊 −𝑇∗ √2∆ −𝑄∗ 𝐾∗ 𝐺 𝑁∗0 0 √2∆ −𝑆 𝑅 −𝑀∗ 𝑁 𝐿 ⎦⎥⎥
⎥⎥⎥
⎥⎥⎤

|𝑖𝑆, ↑⟩| − 𝑋 + 𝑖𝑌 /√2, ↑| 𝑋 − 𝑖𝑌 /√2, ↑|𝑍, ↑⟩|𝑖𝑆, ↓⟩| 𝑋 − 𝑖𝑌 /√2, ↓| − 𝑋 + 𝑖𝑌 /√2, ↓|𝑍, ↓⟩
 (6)

where 𝐻 = 𝐸 + 𝐸 + 𝐴 ⟘𝑘⟘ + 𝐴 ||𝑘 , 𝑄 = 𝑃 𝑘 /√2 , 𝑅 = 𝑃 𝑘 , 𝐹 = ∆ + ∆ +𝐴 + 𝐴 𝑘⟘ + 𝐴 + 𝐴 𝑘 , 𝐺 = 𝐹 − 2∆ , 𝐿 = 𝐴 𝑘⟘ + 𝐴 𝑘 , 𝐾 = 𝐴 𝑘 , 𝑀 =𝐴 𝑘 + 𝑖 𝐴 + 𝛼 𝑘 , 𝑀 = 𝐴 𝑘 − 𝑖 𝐴 + 𝛼 𝑘 , 𝑁 = 𝐴 𝑘 + 𝑖 𝐴 − 𝛼 𝑘 , 𝑁 =𝐴 𝑘 − 𝑖 𝐴 − 𝛼 𝑘 , 𝑆 = 𝑖𝛼 𝑘 , 𝑇 = 𝑖𝛼 𝑘 , and 𝑊 = 𝑖 𝛼 + 𝛼 𝑘 . The top valence 
band energy and energy gap are denoted by 𝐸  and 𝐸 , respectively; 𝐴 ⟘ and 𝐴 || 
describe the dispersion of the CB; whereas 𝑃  and 𝑃  are the Kane parameters [13,20]. 
The valence band parameters 𝐴 , … , 𝐴 , 𝛼 , … , 𝛼 , and ∆ , … , ∆  were taken from [31] for 
GaN and InN, whereas for InGaN alloys, the linear approximation was applied. Addi-
tionally, the parameters 𝐴 , … , 𝐴  were rescaled according to [20]. Strain and the built-in 
electric field were included in the Hamiltonian 𝐻 ×  according to [39,40]. Then, replac-
ing 𝑘  in the Hamiltonian 𝐻 ×  by the operator −𝑖 , we have the 8-band Schröding-
er-type equation, 

𝐻 ,× 𝑘⟘, 𝑘 = −𝑖 𝜕𝜕𝑧 𝐹 , 𝑧, 𝑘⟘ = 𝐸 𝑘⟘ 𝐹 , 𝑧, 𝑘⟘ ,     𝛼 = 1, … ,8, (7)

where 𝐸 𝑘⟘  and 𝐹 , 𝑧, 𝑘⟘  are the energies and the envelope functions of the DQW 
states, respectively [13,20]. Because the material parameters depend on position in DQW 
structures, we use the standard symmetrization to ensure the Hermiticity of operators 
containing the products of functions and derivatives [20]. Equation (7) is solved using the 
standard finite element method [41]. 

3. Results and Discussion 
We considered InxGa1−xN/GaN and InN/InyGa1−yN DQWs with the widths of indi-

vidual QWs, 𝐿 , , and 𝐿 , , equal to two and three MLs, three and two MLs, and three 
and three MLs. We found that TPT can occur in these structures. On the other hand, in 
thinner DQWs, i.e., when 𝐿 , = 2 𝑀𝐿𝑠 and 𝐿 , = 2 𝑀𝐿𝑠, the QCSE is too weak to 
induce the TPT, and only the NI phase appears. We assumed that the thickness of the 
external barriers (see Figure 1) is large, i.e., 𝐿 = 2000 nm, because this makes the 
built-in electric field in QWs extremely large and the TPT easier to achieve [13]. 

  

= 0 [19]. As the value of x increases, the energy gap of InxGa1−xN alloys decreases
toward the bandgap of InN and, more importantly, the built-in electric field in the QWs
increases, causing an inversion of the CB and LH sub-bands and the TPT from the NI to
the TI (see Figure 2d). The TPT is mediated by the Weyl semimetal (WSM) (see Figure 2c)

because the CB and LH sub-bands anticross at
→
k
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= 0 [13]. The amplitude of compressive
in-plane strain in the QW layers at the TPT, denoted by

∣∣∣εTPT
xx,qw

∣∣∣, is about 9.71%. In the TI

phase, the ETI
2Dg reaches a maximum value of ETI

2Dg,max = 0.826 meV. For x values larger
than 0.96667, the E2Dg vanishes due to the NTPT from the TI phase to the NTSM, arising
from nonlocal overlapping between the sub-bands, as shown in Figure 2e [13,20].
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between the results presented in Figures 2a and 3a originate from the fact that wurtzite 
structures have no center of inversion, and the crystallographic directions [0001] and 
[000-1] are not equivalent. In Figure 3b, we present the 𝐸  for the InxGa1−xN/GaN 
DQWs with 𝐿 , = 3 𝑀𝐿𝑠, 𝐿 , = 3 𝑀𝐿𝑠, and 𝐿 = 2 𝑀𝐿𝑠. Although we dealt with 
structures having identical widths of QWs, the observed phases remain essentially the 
same because the built-in electric field breaks the mirror symmetry of the DQW potential 
(see Figure 1). Therefore, the BG phase, which has been observed for symmetric 
HgTe/CdTe DQWs [29,30], does not appear in InxGa1−xN/GaN DQWs with the identical 
QW widths. Comparing the results shown in Figure 3b with those presented in Figures 
2a and 3a, we see that for the DQWs with both wells having three MLs, the TI phase is 
obtained with significantly less In content and, subsequently, less strain. In particular, the 
TPT and NTPT occur for x = 0.85573 and x = 0.85712, respectively. The 𝜀 ,  is 8.71%, 
which is the advantage of these structures in terms of their epitaxial growth. Unfortu-
nately, we predicted that the 𝐸 , = 0.427 meV, which is almost twice as small as the 
DQWs considered in Figure 2a. 

 

Figure 2. (a) The E2Dg for InxGa1−xN/GaN DQWs with Lqw,A = 3 MLs, Lqw,B = 2 MLs, and
Lib = 2 MLs as a function of the In content in the QWs. (b–e) The sub-band dispersions for (b) the
NI, (c) WSM, (d) TI, and (e) NTSM occurring in these DQWs.
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Similar but slightly different results were obtained for InxGa1−xN/GaN DQWs with
Lqw,A = 2 MLs, Lqw,B = 3 MLs, and Lib = 2 MLs. Figure 3a depicts the E2Dg for these
structures as a function of x. The TPT and the NTPT occurs for x = 0.95467 and x = 0.95812,
respectively. The

∣∣∣εTPT
xx,qw

∣∣∣ is 9.63% whereas the ETI
2Dg,max = 0.632 meV. The differences

between the results presented in Figures 2a and 3a originate from the fact that wurtzite
structures have no center of inversion, and the crystallographic directions [0001] and [000-1]
are not equivalent. In Figure 3b, we present the E2Dg for the InxGa1−xN/GaN DQWs with
Lqw,A = 3 MLs, Lqw,B = 3 MLs, and Lib = 2 MLs. Although we dealt with structures
having identical widths of QWs, the observed phases remain essentially the same because
the built-in electric field breaks the mirror symmetry of the DQW potential (see Figure 1).
Therefore, the BG phase, which has been observed for symmetric HgTe/CdTe DQWs [29,30],
does not appear in InxGa1−xN/GaN DQWs with the identical QW widths. Comparing
the results shown in Figure 3b with those presented in Figures 2a and 3a, we see that for
the DQWs with both wells having three MLs, the TI phase is obtained with significantly
less In content and, subsequently, less strain. In particular, the TPT and NTPT occur for
x = 0.85573 and x = 0.85712, respectively. The

∣∣∣εTPT
xx,qw

∣∣∣ is 8.71%, which is the advantage of
these structures in terms of their epitaxial growth. Unfortunately, we predicted that the
ETI

2Dg,max = 0.427 meV, which is almost twice as small as the DQWs considered in Figure 2a.
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Figure 3. The E2Dg as a function of the In content in the QWs, for InxGa1−xN/GaN DQWs with
(a) Lqw,A = 2 MLs, Lqw,B = 3 MLs, and Lib = 2 MLs; and (b) Lqw,A = 3 MLs, Lqw,B = 3 MLs, and
Lib = 2 MLs.

3.2. InN/InyGa1−yN DQWs

We extended our investigations to InN/InyGa1−yN DQWs. We assumed that these
structures are pseudomorphically grown on metamorphic InyGa1−yN buffer layers or
InyGa1−yN virtual substrates, which are used in optoelectronic devices [42–45]. In Figure 4,
we present the E2Dg for InN/InyGa1−yN DQWs with (a) Lqw,A = 3 MLs and Lqw,B = 2 MLs,
(b) Lqw,A = 2 MLs and Lqw,B = 3 MLs, and (c) Lqw,A = 3 MLs and Lqw,B = 3 MLs. The
width of the interwell barrier is Lib = 2 MLs. In all cases, we see the TPT from the NI to the
TI via the WSM and the NTPT from the TI to the NTSM. These phase transitions are driven
by an increase in the built-in electric field in QWs, due to a decrease in the In content in
the barriers, y. For the structures presented in Figure 4a–c, the TPT occurs at a y equal to
0.09345, 0.10937, and 0.3311, respectively. Therefore, the values of

∣∣∣εTPT
xx,qw

∣∣∣ are 9.10%, 8.94%,
and 6.72%, and they are significantly smaller compared with the results obtained for the cor-
responding InxGa1−xN/GaN DQWs. Moreover, for InN/InyGa1−yN DQWs, we obtained
higher values of ETI

2Dg,max, which are equal to 1.066, 0.908, and 1.178 meV, for the structures
considered in Figure 4a–c, respectively. Interestingly, in the case of InN/InyGa1−yN DQWs,

we found that the smallest value of
∣∣∣εTPT

xx,qw

∣∣∣ and, simultaneously, the largest ETI
2Dg,max, are
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for the structures with Lqw,A = 3 MLs and Lqw,B = 3 MLs. Therefore, these structures are
the most attractive for experimental observation of the QSHE.

Nanomaterials 2022, 12, x FOR PEER REVIEW 8 of 13 
 

 

Figure 3. The 𝐸  as a function of the In content in the QWs, for InxGa1−xN/GaN DQWs with (a) 𝐿 , = 2 𝑀𝐿𝑠, 𝐿 , = 3 𝑀𝐿𝑠, and 𝐿 = 2 𝑀𝐿𝑠; and (b) 𝐿 , = 3 𝑀𝐿𝑠, 𝐿 , = 3 𝑀𝐿𝑠, and 𝐿 =2 𝑀𝐿𝑠. 

3.2. InN/InyGa1−yN DQWs 
We extended our investigations to InN/InyGa1−yN DQWs. We assumed that these 

structures are pseudomorphically grown on metamorphic InyGa1-yN buffer layers or 
InyGa1−yN virtual substrates, which are used in optoelectronic devices [42–45]. In Figure 4, 
we present the 𝐸  for InN/InyGa1-yN DQWs with (a) 𝐿 , = 3 𝑀𝐿𝑠  and 𝐿 , =2 𝑀𝐿𝑠, (b) 𝐿 , = 2 𝑀𝐿𝑠 and 𝐿 , = 3 𝑀𝐿𝑠, and (c) 𝐿 , = 3 𝑀𝐿𝑠 and 𝐿 , = 3 𝑀𝐿𝑠. 
The width of the interwell barrier is 𝐿 = 2 𝑀𝐿𝑠. In all cases, we see the TPT from the NI 
to the TI via the WSM and the NTPT from the TI to the NTSM. These phase transitions 
are driven by an increase in the built-in electric field in QWs, due to a decrease in the In 
content in the barriers, y. For the structures presented in Figure 4a–c, the TPT occurs at a 
y equal to 0.09345, 0.10937, and 0.3311, respectively. Therefore, the values of 𝜀 ,  are 
9.10%, 8.94%, and 6.72%, and they are significantly smaller compared with the results 
obtained for the corresponding InxGa1−xN/GaN DQWs. Moreover, for InN/InyGa1−yN 
DQWs, we obtained higher values of 𝐸 , , which are equal to 1.066 , 0.908 , and 1.178 meV, for the structures considered in Figure 4a–c, respectively. Interestingly, in the 
case of InN/InyGa1−yN DQWs, we found that the smallest value of 𝜀 ,  and, simulta-
neously, the largest 𝐸 , , are for the structures with 𝐿 , = 3 𝑀𝐿𝑠  and 𝐿 , =3 𝑀𝐿𝑠. Therefore, these structures are the most attractive for experimental observation of 
the QSHE. 

  

 

 

Figure 4. The E2Dg as a function of the In content in the barriers for InN/InyGa1−yN DQWs with
(a) Lqw,A = 3 MLs, Lqw,B = 2 MLs, and Lib = 2 MLs; (b) Lqw,A = 2 MLs, Lqw,B = 3 MLs, and
Lib = 2 MLs; and (c) Lqw,A = 3 MLs, Lqw,B = 3 MLs, and Lib = 2 MLs.
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∣∣∣ increases with increasing Lib. More importantly, one can see

that both the ETI
2Dg,max and the window of the In content for the TI phase, ∆yTI , rapidly

decrease with increasing Lib. This effect is additionally demonstrated in Figure 6, where the
ETI

2Dg,max and ∆yTI are presented as a function of Lib. Figure 6a shows that with increasing
Lib, the ETI

2Dg,max decreases at a similar rate for all three series of DQWs. In Figure 6b, we
see that the reduction in ∆yTI with increasing Lib is slower for the structures with both
QW widths being three MLs than for the structures with QW widths of two and three
MLs. We also found that for sufficiently large Lib, i.e., Lib = 5 MLs in Figure 5a,b and
Lib = 6 MLs in Figure 5c, the TI phase does not appear. The value of Lib at which the TI
phase disappears is one ML larger for the series of DQWs with both QW widths being three
MLs (Figure 5c), because for these structures, the ETI

2Dg,max is significantly larger than for the
other two series of DQWs (Figure 5a,b), as is clearly seen in Figure 6a. In the cases where
the TI phase disappears, we observed two novel phase transitions. First, we found the



Nanomaterials 2022, 12, 2418 9 of 13

NTPT, from the NI to the nonlocal normal semimetal (NNSM), having the normal ordering
of the CB and LH sub-bands. Then, the TPT occurs from the NNSM to the NTSM via the
buried Weyl semimetal phase (BWSM) containing the Weyl points, which are buried in the
LH sub-band. In Figure 7, we show the sub-band dispersions for all four phases ((a) NI,
(b) NNSM, (c) BWSM, and (d) NTSM) in InN/InyGa1−yN DQWs with Lqw,A = 2 MLs,
Lqw,B = 3 MLs, and Lib = 5 MLs, which occur in order of decreasing In content in the bar-
riers. Similar results were obtained for the structures with Lqw,A = 3 MLs, Lqw,B = 2 MLs,
and Lib = 5 MLs, and Lqw,A = 3 MLs, Lqw,B = 3 MLs, and Lib = 6 MLs. We would like to
note that the NTPT from the NI to the NNSM was predicted for HgTe/CdTe QWs at high
hydrostatic pressure [46]. To the best of our knowledge, the TPT from the NNSM to the
NTSM via the BWSM was not discovered in any 2D structure.
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Figure 5. The E2Dg as a function of the In content in the barriers for InN/InyGa1−yN DQWs with
(a) Lqw,A = 3 MLs, Lqw,B = 2 MLs, and Lib = 3, 4, 5 MLs; (b) Lqw,A = 2 MLs, Lqw,B = 3 MLs, and
Lib = 3, 4, 5 MLs; and (c) Lqw,A = 3 MLs, Lqw,B = 3 MLs, and Lib = 3, 4, 5, 6 MLs. The results
obtained for different values of Lib are marked with different colors.
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Figure 6. The values of (a) ETI
2Dg,max and (b) ∆yTI for InN/InyGa1−yN DQWs as a function of Lib.

Squares represent DQWs with Lqw,A = 3 MLs and Lqw,B = 2 MLs, circles represent structures
with Lqw,A = 2 MLs and Lqw,B = 3 MLs, and triangles correspond to the results for DQWs with
Lqw,A = 3 MLs and Lqw,B = 3 MLs.
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Figure 7. The sub-band dispersions for (a) the NI, (b) NNSM, (c) BWSM, and (d) NTSM occurring in
InN/InyGa1−yN DQWs with Lqw,A = 2 MLs, Lqw,B = 3 MLs, and Lib = 5 MLs. The phases appear
in order of decreasing In content in the barriers.

4. Conclusions

We studied the phase transitions and the properties of the TI phase in InxGa1−xN/GaN
and InN/InyGa1−yN DQWs, applying a realistic model based on the nonlinear theory
of elasticity and piezoelectricity, and the eight-band k·p method with relativistic and
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nonrelativistic linear-wave-vector terms. Despite a rigorous assumption of a negative SOI in
InN, we demonstrated that the TI phase can occur in InxGa1−xN/GaN and InN/InyGa1−yN
DQWs when the widths of individual QWs are two and three MLs, and three and three
MLs. In these structures, when the interwell barrier is sufficiently thin, we observed the
TPT from the NI to the TI via the WSM, and the NTPT from the TI to the NTSM. We found
that in InxGa1−xN/GaN DQWs, the ETI

2Dg is much smaller for the structures with both QW
widths being three MLs than when the QW widths are two and three MLs, whereas in
InN/InyGa1−yN DQWs, the opposite was true. For InN/InyGa1−yN DQWs with 3 ML
QWs and the Lib = 2 MLs, the ETI

2Dg can reach about 1.2 meV. Our calculations also revealed
that both the ETI

2Dg and the ∆yTI rapidly decrease with increasing Lib. We showed that for
structures with Lib above 5 or 6 MLs, the TI did not occur. In these structures, we found
two novel phase transitions, namely the NTPT from the NI to the NNSM and the TPT from
the NNSM to the NTSM, via the BWSM. We hope that these results will stimulate intensive
theoretical and experimental studies toward achieving the TI phase in InGaN-based DQWs
and will contribute to new applications of these prospective topological nanomaterials. Our
work lays the groundwork for future investigations of the phase transitions in other QW
systems fabricated from nontopological semiconductors, such as Ge/GaAs, InSb/CdTe,
and ZnO/CdO, in which an inversion of the CB and VB sub-bands is achieved by the
built-in electric field [47–49].
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