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Abstract

Individuals with intrauterine growth retardation (IUGR) are prone to insulin resistance,

whereas the underlying molecular mechanisms remain unclear. In this study, we investi-

gated if the PI3K/Akt signaling pathway in skeletal muscle tissues involves insulin resistance

in IUGR offsprings, particularly ones with catch-up growth. An IUGR rat model was estab-

lished by feeding rats an isocaloric (30.50 Kcal/g) diet containing 8% protein (low-protein

diet) from day 1 of pregnancy until the birth of their pups. Glucometabolic parameters were

measured and compared. Quantitative PCR and western blot were performed to assess

mRNA and protein expression changes of the PI3K/Akt related signals in skeletal muscle tis-

sues. Pearson analysis was used to assess the correlation of the PI3K/Akt signaling level

and catch-up growth with the insulin resistance index (IRI). The values of fasting plasma glu-

cose, fasting insulin and IRI were significantly higher, whereas insulin sensitivity index was

significantly lower in IUGR offsprings than those in the controls. The PI3K mRNA and pro-

tein levels as well as the phospho-AktSer473 levels were significantly lower in IUGR off-

springs compared to the controls. Reductions of GLUT4 as well as increases of PTEN and

nuclear fractional PPARγ were detected in IUGR offsprings. Catch-up growth IUGR rats

were positively correlated with insulin resistance and underwent more remarkable alter-

ations of the PI3K, PTEN and GLUT4 expressions. Our results demonstrated that rats born

IUGR developed insulin resistance later in life, which was likely mediated by reductions of

the PI3K/Akt related signaling activities, particularly in those with excess catch-up growth.

Introduction

Intrauterine growth retardation (IUGR), one of the major causes of perinatal mortality and

serious complications [1,2], leads to increased predisposition to a variety of chronic diseases,
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such as hypertension/cardiovascular diseases, dyslipidemia, obesity, insulin resistance/diabe-

tes, and other metabolic syndromes in adulthood [3,4]. It has been shown that insulin resis-

tance might be the central pathogenesis of the above chronic metabolic diseases. Barker and

Hales firstly proposed the “thrifty phenotype” hypothesis, which says that fetal under-nutrition

is strongly associated with a number of chronic conditions later in life [5]. This increased sus-

ceptibility results from fetal metabolic and/or physiological adaptations [5]. This adaptation

may cause permanent effects, such as reduction of pancreatic β-cells and insulin skeletal recep-

tors, which results in insulin resistance later in life. However, the pathomechanisms of insulin

resistance remain unclear in individuals with IUGR.

Insulin resistance is a state with a normal or higher insulin level but lower effect on the glu-

cose uptake [6]. Insulin, a hormone produced in the pancreas by the islets of Langerhans, regu-

lates the amount and/or concentrations of glucose in the blood [6]. Upon binding to its

receptor, insulin facilitates glucose uptake into adipose tissue and skeletal muscle mainly

through the glucose transporters such as GLUT4. In this process, a distinct signaling cascade

including multiple enzymes involves, such as the phosphoinositide 3-kinase (PI3K)/Protein

Kinase B (PKB, also known as Akt) pathway [7,8]. Any abnormalities in insulin signaling path-

ways may cause reduction of its sensitivity, as a result of insulin resistance.

Some experimental data revealed that IUGR or low birthweight is not the only cause

leading to adult metabolic disorders [9,10]. In individuals with IUGR, catch-up growth dur-

ing the early postnatal period also plays an important role in the development of insulin

resistance, and a potential link between catch-up growth and insulin resistance has been

reported [11]. Rapid catch-up growth IUGR had the highest mortality for coronary heart

disease [9]. Furthermore, some studies highlighted that insulin resistance may be an early

event by which catch-up growth IUGR predisposed to adult disease [12,13]. However, the

effects of early catch-up growth during postnatal life on insulin sensitivity in individuals

with IUGR and the potential molecular mechanisms are still elusive. In the present study,

we investigated the dynamic changes of insulin sensitivity and the PI3K/Akt related signal-

ing activities in skeletal muscle tissues as well as the correlation of catch-up growth with

insulin resistance in rat IUGR offsprings.

Materials and methods

Animals and experimental designs

This study was carried out in strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the Peking University. The protocol was approved by

the Committee on the Ethics of Animal Experiments of the Peking University Third Hospital

(Protocol Number: LA2017200). IUGR rat model was established according to the protocol

described previously [14,15]. Sprague-Dawley rats, 8 weeks old, with body weights (BWs) 220–

240 g, were purchased from Laboratory Animal Science Department of Peking University

Health and Science Center (Beijing, China).

18 female rats were mated with males overnight and pregnancy was verified by examining

the vaginal sperm plugs. Pregnant rats were ad libitum fed an isocaloric (30.50 Kcal/g) diet

containing 8% protein (low-protein diet) or 20% protein diet (normal diet) from day 1 of preg-

nancy until the birth of their pups. Both diets were obtained from Beijing Huakangkang Bio-

technology Co., Ltd. (Beijing, China). In this study, male pups were studied in order to avoid

gender and hormonal influence. Both control and IUGR group had same litter size, 5 pups per

litter. All pregnant rats during lactation and newborn rats after weaning at 21 days of age were

fed the normal diet. Fresh diet and water were provided daily ad libitum. Diet assignment was

performed by an animal technician who was not involved in the outcome assessments.
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BWs were recorded at day 0 (birthweight), 2 days, 7 days, 14 days, and 21 days as well as 2

and 4 months of age after birth. Based on the birthweights, IUGR pups were defined as and

confirmed by the lower birthweights minus 2 standard deviations (SD) than the controls.

Based on the mean and SD of BWs, IUGR offsprings were further identified as i) with catch-

up growth (CG-IUGR), ii) with over catch-up growth (OCG-IUGR), and iii) without catch-up

growth (W/O CG-IUGR): BWs of the CG-IUGR group is between the “mean ± SD” of the

BWs of the control group with the same sex and age; BWs of the OCG-IUGR group is higher

than the “mean + SD” of the BWs of the control group with the same sex and age; BW of the

W/O CG-IUGR group is less than the “mean—SD” of the BWs of the control group with the

same sex and age [16]. To plot the growth rate, weight gained per day was calculated, and the

fractional growth rate (weight gained per day, divided by birth weight; FGR) were analyzed

from day 2 to 4 months [17].

Anesthesia was provided using isoflurane (2% inhalant), and all efforts were made to mini-

mize suffering. 12 h after fasting, blood was collected from the angular vein of the control and

the IUGR rats at day 21, month 2 and month 4 after birth, respectively. Plasma was separated,

frozen in dry ice, and kept at -80˚C until analysis. Rats were then sacrificed by cervical disloca-

tion under anesthesia, and the skeletal muscle was dissected, weighted, snapped into liquid

nitrogen, and stored at -80˚C for further analysis.

Measurement of glucose metabolic indices

The concentration of fasting plasma glucose (FPG) was measured by using the Accu-Chek

Aviva meter (Roche, Shanghai, China). The concentration of fasting insulin (FINS) was deter-

mined by using the Mercodia Insulin ELISA Kit (cat. no. 10-1113-01; Mercodia, Uppsala, Swe-

den) according to the manufacturer’s procedure. Insulin sensitivity index (ISI) was calculated:

ISI = 1/FPG (mmol�L-1) x FINS (mU�L-1). Homeostasis model assessment was used to calcu-

late insulin resistance index (IRI): IRI = [FPG (mmol�L-1) x FINS (mU�L-1)]/22.5.

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR)

Total RNA was extracted by using Trizol reagent (cat. no. 15596026; Thermo Fisher Scien-

tific, Inc., Wilmington, DE, USA). The concentrations of RNA were determined by using

the ND-1000 spectrophotometer (NanoDrop Technologies; Thermo Fisher Scientific, Inc.).

Totally, 2 μg RNA was reversely transcribed into complementary DNA (cDNA) by using

the First-Strand cDNA Synthesis kit (cat. no. 11483188001; Sigma-Aldrich). qPCR was then

performed on PE5700 Real-Time PCR system (Bio-Rad Laboratories, Inc., Hercules, CA,

USA). The SYBR Green PCR Master Mix (cat. no. 1725270; Bio-Rad Laboratories, Inc.) was

used, in which 2.0 μl of cDNA and 0.2 μM of the specific primer pairs (Table 1) were

included. A two-step PCR program was executed: initial denaturation at 95˚C for 10 min;

35 cycles of 95˚C for 45 sec, annealing temperature (Table 1) for 45 sec and 72˚C for 1 min.

The mRNA expression levels of the PI3K, Akt, GLUT4, and PTEN were normalized to the

housekeeping gene β-actin. The relative expression levels of the target genes were calculated

by using the 2-ΔΔCq method.

Western blot assay

Total proteins were extracted from skeletal muscle tissues by using radioimmunoprecipi-

tation assay buffer [25 mmol�L-1 Tris-HCl pH 7.4, 150 mmol�L-1 NaCl, 1% Nonidet-40,

0.1% SDS, 0.5% sodium deoxycholate (cat. no. D6750; Sigma-Aldrich, St. Louis, MO,

USA)] supplemented with 1 mmol�L-1 Na3VO4 (cat. no. S6508; Sigma-Aldrich), 1 g�L-1

leupeptin (cat. no. L2884; Sigma-Aldrich) and 1 mmol�L-1 PMSF (cat. no. 93842; Sigma-
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Aldrich). Nuclear proteins were prepared by using the CelLytic NuCLEAR Extraction kit

(cat. no. NXTRACT, Sigma-Aldrich). Protein concentrations were quantified by using the

Pierce BCA Protein Assay Kit (cat. no. 23225; Thermo Fisher Scientific, Inc.). A total of

75 μg protein was separated on 8% SDS-PAGE, and then transferred to the Nitrocellulose

Transfer Membrane (cat. no. ab133412; Abcam, Cambridge, MA, USA) by using the

semi-dry transfer methods. The membrane was blocked at room temperature for 1 h in

5% bovine serum albumin prepared in tris-buffered saline containing 0.05% Tween-20

(TBST), and then incubated for overnight in cold room with the following primary anti-

bodies: rabbit anti-phospho-AktSer473 monoclonal antibody (1:500; cat. no. 4058; Cell Sig-

naling Technology, Inc., Danvers, MA, USA), rabbit anti-Akt polyclonal antibody

(1:1,000; cat. no. 9272s; Cell Signaling Technology, Inc.), rabbit anti-PI3 Kinase p85 anti-

body (1:1,000; cat. no. 4292; Cell Signaling Technology, Inc.), rabbit anti-phospho-PI3

Kinase p85 (Tyr458)/p55 (Tyr199) antibody (1:1,000; cat. no. 4228; Cell Signaling Tech-

nology, Inc.), rabbit anti-GLUT4 polyclonal antibody (1:200; cat. no. ab654; Abcam), rab-

bit anti-PPARγ monoclonal antibody (1:1,000; cat. no. 2435s; Cell Signaling Technology,

Inc.), rabbit anti-PTEN polyclonal antibody (1:500; cat. no. 9552; Cell Signaling Technol-

ogy, Inc.), rabbit anti-histone H3 monoclonal antibody (1:1,000; cat. no. 9717; Cell Signal-

ing Technology, Inc.), and rabbit anti-GAPDH monoclonal antibody (1: 10,000; cat. no.

5174S; Cell Signaling Technology, Inc.). Histone H3 and GAPDH was used as the internal

reference, respectively. Following 3 washes with TBST, the membranes were incubated

with horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG (1:10,000; cat. no. G-

21234; Invitrogen; Thermo Fisher Scientific, Inc.) for 1 h at room temperature. Following

3 washes with TBST, the blots were developed by using the Enhanced Chemiluminescence

Western Blotting Substrate (cat. no. 32109; Pierce; Thermo Fisher Scientific, Inc.), and

the intensity of the bands was quantified by using the ImageJ software (version 1.51s;

National Institute of Health, Bethesda, MD, USA).

Statistical analysis

Results are presented as the mean ± SD. Birthweights were compared by using unpair t test.

One-way and Two-way ANOVA analysis of variances followed by the Turkey’s post-hoc test

was used to conduct statistical analysis among multiple groups at different time points. Pear-

son analysis was used for analyzing the association of the protein levels and the FGR with insu-

lin resistance (SPSS 16.0, IBM Corporation, Armonk, NY). The value of p< 0.05 was

considered as statistical significance.

Table 1. Primer sequences employed for reverse transcription-quantitative polymerase chain reaction.

Gene Primers Annealing Tm Product size

PI3K F: 5’-aacacagaagaccaatactc-3’ 52˚C 195bp

R: 5’-ttcgccatctaccactac-3’

GLUT4 F: 5’-acccaccggcagcctctgatt-3’ 58˚C 132bp

R: 5’ -ggtggcgtaggctggctgtt-3’

AKT F: 5’-gtggcaagatgtgtatgag-3’ 51˚C 195bp

R: 5’ -ctggctgagtaggagaac-3’

PTEN F: 5’-aattcccagaggcgctatgt-3’ 55˚C 137bp

R: 5’-gattgcaagttccgccactgaaca-3’

β-actin F: 5’-agcccagaacatcatccctg-3’ 60˚C 156bp

R: 5’-caccaccttcttgatgtcatc-3’

https://doi.org/10.1371/journal.pone.0216665.t001
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Results

IUGR rat model was established

As described previously [14,15,18], IUGR pups were produced by feeding female rats the low-

protein diet (8% protein) during gestation. The control group was fed normal diet (20% protein).

The birthweights of the pups with IUGR were significantly lower (4.88 ± 0.94 g vs. 7.57 ± 1.20,

p< 0.001) than those of the controls (Fig 1A). These results demonstrated that IUGR model was

successfully established. The incidence of IUGR pups was ~93.33% in this study.

Insulin resistance was developed in the IUGR offsprings

Insulin resistance is one of the major pathogenesis of diabetes. Some investigators showed that

children with IUGR were predisposed to diabetes and other related metabolic diseases [3]. In

our IUGR offsprings, we assessed glucose metabolic indices including FPG, FINS, HOMA-IRI,

and ISI at 21 days, 2 months and 4 months of age after birth. Our results did not show signifi-

cant differences of the four indices at day 21 between the IUGR offsprings and the controls

(Fig 1B and Table 2). Nevertheless, the values of both FPG and FINS were significantly

(p< 0.001) higher at 2 and 4 months in the IUGR offsprings than those in the controls. Fur-

ther analysis displayed that the HOMA-IRI was significantly higher (p< 0.001) whereas the

ISI was significantly lower (p< 0.001) at 2 and 4 months in the IUGR offsprings as compared

to the controls. These findings implied that insulin resistance occurred later in the IUGR

offsprings.

Dynamic alterations of the mRNA levels of PI3K, Akt, PTEN, and GLUT4

expressions in skeletal muscle tissues and their associations with insulin

resistance in the IUGR offsprings

Stimulation of insulin leads to a series of downstream signaling through binding to its recep-

tors in target cells [19,20]. As a result, any defects or abnormalities of the insulin related signal-

ing pathways may result in insulin resistance [21,22]. Currently, the PI3K/Akt pathway has

been identified as one of the most important pathways associated with insulin resistance

[23,24]. Here, we evaluated the abundances of the PI3K/Akt related proteins at the mRNA and

protein levels in the IUGR offsprings. qPCR and western blot assays showed that the mRNA

and protein levels of the PI3K were reduced significantly (p< 0.05) at day 21 as well as at 2

and 4 months in the IUGR offsprings in comparison with the controls (Figs 2A and 3). Total

Akt did not show significant (p> 0.05) differences at the mRNA and protein levels between

the IUGR offsprings and the controls (Figs 2B and 3), whereas the phosphorylated levels of

both PI3K p85Tyr458/p55Tyr199 and AktSer473 were significantly (p< 0.05) downregulated at all

three time points in the IUGR offsprings compared to the controls (Fig 3). These data sug-

gested that the activation of the PI3K/Akt signaling was prohibited in the IUGR offsprings.

Phosphatase and tensin homology (PTEN) contains a tensin-like domain as well as a catalytic

domain similar to that of the dual specificity protein tyrosine phosphatases [25]. Unlike most of

the protein tyrosine phosphatases, PTEN preferentially dephosphorylates phosphoinositide sub-

strates, and thus negatively regulates intracellular levels of phosphatidylinositol-3,4,5-trispho-

sphate in cells and functions as a tumor suppressor by negatively regulating Akt signaling [26].

Increased mRNA and protein levels of PTEN were significantly (p< 0.05) detected at 2 and 4

months in the IUGR offsprings as compared with the controls (Figs 2C and 3).

Glucose transporter type 4 (GLUT4), also known as solute carrier family 2, is a protein

encoded, in humans, by the SLC2A4 gene [27]. GLUT4, the insulin-regulated glucose trans-

porter, is found primarily in adipose tissues and striated muscle, e.g. skeletal and cardiac [28].

PI3K/Akt signal and insulin resistance in IUGR
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Activation of Akt by a PI3K dependent mechanism stimulates translocation and activation of

the GLUT4, and thereby induces glucose uptake [7,8]. The mRNA and protein levels of the

GLUT4 were significantly (p< 0.05) reduced at day 21 as well as at 2 and 4 months in the

Fig 1. Insulin resistance was developed in the IUGR offsprings. A. Birthweights were shown for IUGR pups and the

controls (CTL). The birthweights of the IUGR pups were significantly lower than those of the controls. Data are shown
as mean ± SD. n = 45,

�

p<0.05 vs. CTL. B. At 21 days, 2 months and 4 months of age, the concentrations of fasting

plasma glucose (FPG) and fasting insulin (FINS) were as well as insulin resistance index (HOMA-IRI) and insulin

sensitivity index (ISI) were compared between the IUGR offsprings and the controls. At day 21, the four indices did

not show differences between the controls and the IUGR offsprings. At 2 and 4 months, the values of FPG, FINS and

IRI were significantly higher, whereas the values of the ISI significantly lower in the IUGR offsprings than those in the

controls. Data are shown as mean ± SD. n = 15,
�

p<0.05 vs. CTL.

https://doi.org/10.1371/journal.pone.0216665.g001
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IUGR offsprings in comparison with the controls (Figs 2D and 3). This provided further evi-

dence of insulin resistance in the IUGR offsprings.

Peroxisome proliferator-activated receptor gamma (PPARγ), also known as the glitazone

receptor, or NR1C3 (nuclear receptor subfamily 1, group C, member 3) is a type II nuclear

receptor that in humans is encoded by the PPARG gene [29]. PPARγ has the highest expres-

sion levels in adipose tissue as compared with other metabolic organs, such as skeletal muscle,

liver, and pancreas [30]. PPARγ is the master regulator of adipogenesis, thereby stimulating

the production of insulin-sensitive adipocytes [31]. In addition, PPARγ activation in mature

Table 2. Glucose metabolic indices in the controls and the IUGR offsprings.

Day 21 2 months 4 months

CTL IUGR p CTL IUGR p CTL IUGR p
FPG

(mM)

4.61 ± 0.34 4.79 ± 0.31 0.31 5.53 ± 0.58 7.49 ± 0.38 < 0.001 6.35 ± 0.66 8.94 ± 0.90 < 0.001

FINS

(mU/L)

4.28 ± 1.04 4.21 ± 0.24 0.86 9.18 ± 0.66 14.67 ± 1.90 < 0.001 33.08 ± 2.76 56.33 ± 2.81 < 0.001

IRI 0.87 ± 0.21 0.90 ± 0.07 0.75 2.25 ± 0.31 4.90 ± 0.81 < 0.001 9.30 ± 0.90 22.44 ± 3.10 < 0.001
ISI 0.054 ± 0.017 0.041 ± 0.004 0.49 0.024 ± 0.002 0.009 ± 0.001 < 0.001 0.005 ± 0.000 0.002 ± 0.000 < 0.001

CTL: control, IUGR: offsprings with intrauterine growth restriction, FPG: fasting plasma glucose, FINS: fasting insulin, IRI: insulin resistance index, ISI: insulin

sensitivity index.

https://doi.org/10.1371/journal.pone.0216665.t002

Fig 2. Dynamic changes of the mRNA levels of PI3K, Akt, PTEN and GLUT4 in the skeletal muscle tissue in the

IUGR offsprings. The mRNA levels of PI3K (A), Akt (B), PTEN (C) and GLUT4 (D) were measured at 21 days, 2

months and 4 months of age after birth and compared between the IUGR offsprings and the controls (CTL). In

comparison with the controls, the mRNA levels of PI3K and GLUT4 were significantly lower at all three time points in

the IUGR offsprings. At 2 and 4 months, PTEN mRNA levels were higher in the IUGR offsprings than that in the

controls. Akt mRNA levels did not show significant difference between the IUGR offsprings and the controls. Data are
shown as mean ± SD. n = 15,

�

p<0.05 vs. CTL.

https://doi.org/10.1371/journal.pone.0216665.g002
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Fig 3. Dynamic changes of the protein levels of phospho-PI3K, phospho-Akt, PTEN, GLUT4 and PPARγ in skeletal muscle tissues of the IUGR

offsprings. A. The representative western blot images are shown for PI3K, phospho-PI3K, Akt, phospho-Akt, PTEN and GLUT4 as well as the nuclear

PPARγ. B. Graphed is the relative abundance of the total PI3K p85, Akt, PTEN and GLUT4 as well as PPARγ normalized to the housekeeping gene GAPDH

and histone H3 (HH3), respectively. The levels of phospho-PI3K p85Tyr458/p55Tyr199, phospho-AktSer473 relative to the total PI3K p85 and Akt was compared,

respectively. In comparison with the controls, the protein levels of total PI3K as well as the phospho-PI3K, phospho-Akt and GLUT4 were significantly lower

at all three time points in the IUGR offsprings. At 2 and 4 months, the levels of PTEN and nuclear PPARγ were significantly higher in the IUGR offsprings

than that in the controls. Total Akt did not show significant differences between the IUGR offsprings and the controls. Data are shown as mean ± SD. n = 15,
�

p<0.05 vs. CTL.

https://doi.org/10.1371/journal.pone.0216665.g003
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adipocytes induces expressions of a number of genes involved in the insulin signaling cascade,

thereby improving insulin sensitivity [32]. Recently, the data in muscle-specific PPARγ deleted

mice demonstrated that whole body insulin sensitivity is, at least in part, relying on the intact

PPARγ system in skeletal muscle [33]. To assess the level of nuclear PPARγ, nuclear fraction

was extracted and western blot assay was performed in the present study. The results revealed

a significant (p< 0.05) increase of PPARγ protein in nuclear fractions at 2 and 4 months in

the IUGR offsprings compared to the controls (Fig 3).

To further analyze the relationship between the PI3K/Akt related signaling and the insulin

resistance, we performed Pearson coefficient correlation analysis. Our results showed a nega-

tive correlation (p< 0.05) of GLUT4 with HOMA-IRI, and a positive correlation (p< 0.05) of

PTEN with HOMA-IRI at 2 and 4 months in the IUGR offsprings (Fig 4).

Early catch-up growth is correlated with insulin resistance in the IUGR

offsprings

Mounting studies have shown that low birthweight is associated with impairs of glucose toler-

ance and occurrence of insulin resistance, subsequently, type 2 diabetes [34]. Moreover, it has

been demonstrated that the accelerated growth that often follows low birthweight is an impor-

tant risk factor for obesity and type-2 diabetes [18]. In this study, the BWs of IUGR offsprings

were recorded and compared. The mean BWs showed no significant differences from 7 days to

4 months of age between the IUGR offsprings and the controls (Fig 5A). Based on the mean

and SD of the BWs, the offsprings of IUGR were further classified as CG-IUGR, OCG-IUGR

and W/O CG-IUGR, respectively (Fig 5B). We observed 40% (18/45) of IUGR offsprings with

CG, 26.7% (12/45) with OCG, and 33.3% (15/45) without CG since day 7. The BWs of W/O

CG-IUGR were significantly (p< 0.05) lower at all time points than those of the controls (Fig

Fig 4. GLUT4 and PTEN protein levels were correlated with insulin resistance in the IUGR offsprings. Association

analysis was conducted between GLUT4 or PTEN protein levels and the insulin resistance index (HOMA-IRI) at 2 (A)

and 4 months (B) of age after birth in IUGR offsprings. The abundance of GLUT4 was negatively correlated with

HOMA-IRI, and PTEN was positively correlated with HOMA-IRI.

https://doi.org/10.1371/journal.pone.0216665.g004
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5B). As compared with the controls, the BWs of OCG-IUGR was significantly higher (p< 0.05)

at day 7, 14 and 21 (Fig 5B). Nevertheless, the BWs showed no differences between the controls

and CG-IUGR from day 7 to 4 months (Fig 5B). To compare the growth rate, the FGR was cal-

culated and plotted (Fig 5C). The CG-IUGR group had a higher (p< 0.05) FGR from day 7 to 4

months, while the OCG-IUGR group from day 7 to day 21, in comparison with the controls

(Fig 5C). These results suggested a persistent growth in BWs in the CG-IUGR, whereas a tran-

sient growth in BWs in the OCG-IUGR. We also compared the FGR between the controls and

the whole IUGR offsprings. We observed a significant higher (p< 0.05) of FGR from day 7 to 2

months in IUGR offsprings compared to the controls (Fig 5D). We thus focused on the FGR

that showed significance at the earliest time point day 7, and performed Pearson correlation

analysis of the FGR with the HOMA-IRI at 2 and 4 months in the whole IUGR offsprings. Of

note, the FGR at day 7 was positively (2 months: r = 0.97, p< 0.001; 4 months: r = 0.93,

p< 0.01) correlated with the HOMA-IRI at 2 and 4 months in the IUGR offsprings.

Fig 5. Catch-up growth occurs in the IUGR offsprings. A. Body weights of the controls (CTL) and the IUGR

offsprings were recorded at birth (day 0), 2, 7, 14 and 21 days, as well as 2 and 4 months of age. Data are shown as
mean ± SD. n = 45;

�

p< 0.05 vs. CTL. B. Based on the mean and standard deviations of body weights, IUGR offsprings

were further identified as with catch-up growth (CG-IUGR), with over catch-up growth (OCG-IUGR), and without

catch-up growth (W/O CG-IUGR). Data are shown as mean ± SD. n = 45 (CTL), 15 (W/O CG-IUGR), 18 (CG-IUGR),
and 12 (OCG-IUGR);

�

p< 0.05 vs. CTL. C. The fractional growth rate was plotted from day 2 to 4 months for the

controls, W/O CG-IUGR, CG-IUGR and OCG-IUGR. Data are shown as mean ± SD. n = 45 (CTL), 15 (W/O
CG-IUGR), 18 (CG-IUGR), and 12 (OCG-IUGR);

�

p< 0.05 vs. CTL. D. The fractional growth rate was plotted from day

2 to 4 months for the controls and the whole IUGR offsprings. Data are shown as mean ± SD. n = 45;
�

p< 0.05 vs.
CTL.

https://doi.org/10.1371/journal.pone.0216665.g005
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Dynamic alterations of the PI3K, PTEN and GLUT4 expressions in skeletal

muscle tissues in the IUGR offsprings with early catch-up growth

We evaluated the abundances of the PI3K/Akt related signaling at the mRNA and protein lev-

els in the CG-IUGR and the OCG-IUGR rats. The abundances of PI3K at mRNA level and

GLUT4 at protein level were significantly reduced (p< 0.05) at day 21 as well as at 2 and 4

months in both the CG-IUGR and the OCG-IUGR rats in comparison with the controls (Fig

6A and 6B). Of note, the abundances of PI3K and GLUT4 were significantly lower (p< 0.05)

at 2 and 4 months in the OCG-IUGR compared to the CG-IUGR rats. Increases of PTEN pro-

tein levels were only detected in the OCG-IUGR rats in comparison with the controls (Fig 6C).

Overall, these data suggested a dynamic alterations of PI3K, PTEN and GLUT4 expressions in

skeletal muscle tissues in the IUGR offsprings, particularly in the OCG-IUGR rats.

Discussion

In this study, we showed that the IUGR offsprings with rapid postnatal catch-up growth start-

ing at day 7 was correlated with the occurrence of insulin resistance at 2 and 4 months after

birth, in which reductions of the PI3K/Akt related signaling were involved.

As reported by other investigators [14, 15, 18], the rat IUGR model was successfully estab-

lished via maternal nutritional restriction, which was confirmed by the low birthweights. To

assess if insulin resistance was developed in the IUGR offsprings, we measured four glucose

metabolic indices. Increased FPG and FINS at 2 and 4 months suggested abnormalities of glu-

cose metabolism and insulin secretion in the IUGR offsprings. The dramatically increased IRI

and decreased ISI further demonstrated that insulin resistance occurred in the later develop-

ment of IUGR offsprings. Insulin acts by increasing the glucose transport rate of each trans-

porter through increasing the number of functional glucose transporters [35]. Insulin

resistance in adipose cells and muscle tissue is associated with decreased number and/or activ-

ity of GLUT4 [36]. Reductions of muscle tissue GLUT4 protein levels and insulin secretions

have been reported in IUGR offsprings [37]. Consistently, we found that the mRNA and pro-

tein levels of GLUT4 decreased significantly at all designed time points in the IUGR offsprings.

This result revealed a remarkable reduction of glucose transporter GLUT4. However, FPG and

ISI at day 21 did not have statistical significance between the IUGR offsprings and the controls.

Under the basal state, GLUT4 mainly exists in the membrane-like structure of cells. When

insulin stimulates the membrane, GLUT4 rapidly moves to the surface of the membrane to

perform transport function [19–22,35,36]. Although the total content of GLUT4 is reduced,

the regulation of early body compensatory mechanism and rapid redistribution in the mem-

brane may still make the surface GLUT4 function properly. With the increase of age, the

Fig 6. The expression levels of PI3K, PTEN and GLUT4 were analyzed in the IUGR offsprings with early catch-up

growth. The mRNA levels of PI3K (A), as well as the protein levels of the GLUT4 (B) and PTEN (C) were assessed and

compared among the controls and IUGR offsprings with catch-up (CG) or over catch-up growth (OCG). Data are
shown as mean ± SD. n = 15 (CTL), 6 (CG-IUGR), and 4 (OCG-IUGR).

�

p<0.05 vs. CTL; #p<0.05 vs. IUGR-CG.

https://doi.org/10.1371/journal.pone.0216665.g006
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expressions of GLUT4 in skeletal muscle of the IUGR offsprings continued to decrease. With

the persistent reduction of GLUT4, the compensatory function of the body has been exceeded

the load and cannot continue to maintain normal physiological functions. Thus, obvious insu-

lin resistance appears.

It has been reported that activation of Akt by a PI3K dependent mechanism can stimulate

translocation of the GLUT4 [38]. Here, reductions of total PI3K abundances and its phospho-

PI3K p85Tyr458/p55Tyr199 subunit were detected in the IUGR offsprings. The level of phospho-

AktSer473 was also reduced in the IUGR offsprings. These data implied a significant inhibition

of the PI3K/Akt signaling activity in the IUGR offsprings. PTEN, as a negative regulator, is

responsible for suppression of Akt activation by dephosphorylating phosphoinositide sub-

strates [39,40]. As expected, a significant increase of the PTEN level was detected in the IUGR

offsprings. Interestingly, it has been reported that increased PTEN expression is associated

with the development of insulin resistance [41]. Loss-of-function PTEN mutations in adipose

tissue results in systemic glucose tolerance and improvement of insulin sensitivity because of

increased recruitment of the GLUT4 towards the membrane [42]. In glucosamine-induced

insulin-resistant skeletal muscle cells, the rate of glucose uptake as well as the expression and

translocation of GLUT4 were decreased, whereas the expressions of PTEN and phospho-

PTEN were increased [43]. In combination with our findings, it suggests that PTEN may be a

promising target for pharmacological interventions aimed at reversing insulin resistance in

individuals with IUGR.

Since there is a peroxisome proliferator-activated receptor (PPAR) response element in the

promoter region of PTEN, PPARγ acts as a transcriptional factor, having a crucial role on reg-

ulating PTEN expression [44]. In inflammatory and tumor-derived cells, PPARγ plays a criti-

cal function in regulating PI3K signaling by modulating PTEN level [45]. We analyzed the

abundance of PPARγ in nuclear fractions extracted from skeletal muscle tissues, showing that

the level of nuclear PPARγ increased dramatically in the IUGR offsprings. These results sug-

gested that PPARγ-mediated increase of PTEN expressions may inhibit the PI3K/Akt activity,

leading to reduction of GLUT4 expressions and thus the development of insulin resistance in

IUGR offsprings. Pearson’s coefficient analysis also revealed a negative correlation of GLUT4

protein levels with HOMA-IR, and a positive correlation of PTEN protein levels with

HOIMA-IR.

Early acceleration of growth that often follows low birthweight is an important risk factor

for later development of obesity, type-2 diabetes and cardiovascular diseases [46]. In mice with

IUGR, it was found that catch-up growth was related to the occurrence of peripheral and cen-

tral insulin resistance in adulthood [18]. However, the potential molecular mechanisms by

which catch-up growth affect insulin sensitivity remains elusive in individuals with IUGR. In

the present study, the BWs were monitored, and the growth rate after birth was presented as

the FGR for IUGR offsprings. We found that the mean BWs did not show significant differ-

ences from 7 days to 4 months of age between the IUGR offsprings and the controls. However,

based on the mean and SD of the BWs, the IUGR offsprings were further classified as

CG-IUGR, OCG-IUGR and W/O CG-IUGR starting at day 7. Usually, there are two ways to

obtain catch-up growth in IUGR offsprings. IUGR pups were fed normal protein diet after

birth; by contrast, IUGR pups were continuously fed low protein diet after birth to restrict

catch-up growth [47]. In addition, litter size was reduced in IUGR group. For example, Ye

et al. reduced litter size to five pups per litter at birth in the IUGR group, as compared with

eight pups per litter in the control group, to ensure the catch-up growth of the offsprings with

IUGR [17]. Here, normal diets and water were provided ad libitum after birth for the off-

springs of IUGR and the control. Both the IUGR and the controls had the same litter size, 5

pups per litter. We observed that some pups with IUGR realized catch-up growth starting at
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day 7 after birth. The potential reason may be due to differences of food intake. This phenome-

non is common in children with IUGR. Nevertheless, the reason why some children or pups

with IUGR obtain catch-up growth later in life remains unclear, and should be further investi-

gated in future.

In the current study, CG-IUGR rats persistently presented with a high growth rate starting

at day 7, whereas OCG-IUGR rats only had a transiently high growth rate during 7 and 21

days after birth. Although the BWs were lower than the controls at all time points, the FGR of

W/O CG-IUGR was similar as that of the controls. This suggested that the IUGR rats without

CG can follow growth of the controls. In consistent, the results of FGR by comparing the con-

trols and the whole IUGR offsprings showed that the whole offsprings with IUGR had catch-

up growth. At early 7 days of age after birth, catch-up growth was detected in IUGR offspring.

Pearson’s coefficient analysis revealed a positive correlation of FGR at day 7 with HOMA-IRI

at 2 and 4 months. Thus, it might be a choice to avoid rapid increase of BWs in early child-

hood. By this, we may reduce the risk for later development of insulin resistance and diabetes.

We also compared the level of PI3K, PTEN and GLUT4 between the CG-IUGR and

OCG-IUGR rats. Our results showed that the PI3K and GLUT4 abundances were significantly

lower in the OCG-IUGR than that in the CG-IUGR rats. In addition, increased PTEN level

was detected only in the OCG-IUGR rats. These findings suggested that reduction of GLUT4

potentially mediated by the PTEN/PI3K/Akt signaling may involve the regulation of insulin

sensitivity in the IUGR offsprings with catch-up growth. It was reported that mice that under-

went IUGR followed by catch-up growth display peripheral and central insulin resistance in

adulthood, and that expressions and/or phosphorylation of PI3K p110 subunit and phospho-

IRS1 were altered in the arcuate nucleus of the hypothalamus [18]. A prospective study

reported that low birthweight, not catch-up growth, was correlated with insulin resistance at

12 months in non-obese infants with small for gestational age status [48]. Thus, the association

of the low birthweight in infants with catch-up growth and the development of insulin resis-

tance later in life should be further investigated.

Conclusions

Taken together, we demonstrated that glucose metabolic abnormalities and insulin resistance

were developed in IUGR offsprings, in which reduction of GLUT4 expression possibly medi-

ated by suppression of PI3K/Akt signaling via PPARγ-induced PTEN upregulation was

involved. Additionally, rats that underwent IUGR followed by catch-up growth was associated

with insulin resistance, and also had more dramatic alterations of PTEN, PI3K and GLUT4

expressions, particularly in those with over catch-up growth. Nevertheless, in small for gesta-

tional age infants no matter with or without obese, it should be further investigated if insulin

resistance is correlated with catch-up growth.
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