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Abstract 

Background:  Circulating tumor cells (CTCs) are the critical initiators of distant metastasis formation. In which, the 
reciprocal interplay among different metastatic pathways and their metastasis driver genes which promote survival of 
CTCs is not well introduced using network approaches.

Methods:  Here, to investigate the unknown pathways of single/cluster CTCs, the co-expression network was recon‑
structed, using WGCNA (Weighted Correlation Network Analysis) method. Having used the hierarchical clustering, we 
detected the Immune-response and EMT subnetworks. The metastatic potential of genes was assessed and validated 
through the support vector machine (SVM), neural network, and decision tree methods on two external datasets. To 
identify the active signaling pathways in CTCs, we reconstructed a casual network. The Log-Rank test and Kaplan–
Meier curve were applied to detect prognostic gene signatures for distant metastasis-free survival (DMFS). Finally, a 
predictive model was developed for metastasis risk of patients using VIF-stepwise feature selection.

Results:  Our results showed the crosstalk among EMT, the immune system, menstrual cycles, and the stemness 
pathway in CTCs. In which, fluctuation of menstrual cycles is a new detected pathway in breast cancer CTCs. The 
reciprocal association between immune responses and EMT was identified in CTCs. The SVM model indicated a high 
metastatic potential of EMT subnetwork (accuracy, sensitivity, and specificity scores were 87%). The DMFS model was 
identified to predict patients’ metastasis risks. (c-index = 0.7). Finally, novel metastatic biomarkers of KRT18 and KRT19 
were detected in breast cancer CTCs.

Conclusions:  In conclusion, the reciprocal interplay among critical unknown pathways in CTCs manifests both their 
survival in blood and metastatic potentials. Such findings may help to develop more precise predictive metastatic-risk 
models or detect pivotal metastatic biomarkers.

Keywords:  Breast cancer, Single/cluster CTC​, Metastasis, Directed network, Epithelial-mesenchymal transition, 
Immune response
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Background
Metastasis is the leading cause of death among women 
with breast cancer [1, 2]. Cancer progression and metas-
tasis are critical and even controversial aspects of cancer 
studies [2]. There are two arguable metastasis models, 
including parallel progression and linear progression, 
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which try to explain the dark side of the tumor devel-
opments [3]. In the linear model, the tumor initiates by 
genetic or epigenetic alternations, grows, spreads, and 
gains metastasis potentials to disseminate ectopic sites; 
Contrarily, in the parallel model, the metastasis ability 
initiates early-onset and evolves by circulating tumor 
cells (CTCs), parallelly [3, 4]. CTCs, which negatively 
relate to the high rise of mortality rates in cancer, are 
rare disseminated tumor cells in the peripheral blood of 
patients [5]. Of note, they appear even in the early stages 
and are prominent and leading components in metastasis 
[2, 6]. Therefore, the detection of CTCs in metastatic and 
non-metastatic breast cancer patients implies their lead-
ing role in cancer progression [7]; Moreover, their physi-
cal characteristics as single CTC or CTC clusters play a 
crucial role in metastasis propensity [5]. They borrow the 
morphologic features of their primary tumors and gain 
new features to survive in blood [8]. CTC clusters, which 
consist of 2–50 cancer cells, can transit through the cir-
culation of patients and increase the potential of metas-
tasis to 23- to 50-fold [5]. They overcome many hurdles 
to colonize distant organs including intravasation into 
circulation, evading immune bulwarks, extravasation to 
distant sites, and eventually replacing the microenviron-
ment of host tissue [9, 10].

Of note, the signaling pathways or intrinsic molecular 
characteristics of the single/cluster CTCs are not well 
recognized. Therefore, fully realizing the CTCs’ cellu-
lar features using network approaches, will guide us to 
unknown metastasis concepts and more precise thera-
peutic decisions; In which, the reversal phenotypic of 
Epithelial–Mesenchymal-Transition (EMT) or immune 
system are two prominent components in cancer pro-
gression [1, 11, 12]. EMT mechanism, which helps can-
cer cells lose their cell adhesion and gain mesenchymal 
phenotype, accelerates metastasis through immunosup-
pression in primary tumors [12–14]. Accordingly, assess-
ment of the role of EMT and immune responses in CTCs 
as well as intermediate pathways is essential in cancer 
biology.

In this study, we implemented the co-expression net-
work reconstruction for CTCs isolated from advanced 
patients’ blood. We extracted metastasis-relevant sub-
networks that enriched the immune system and EMT 
pathways. The preservation of subnetworks was assessed 
in GSE51827. The metastasis-free survival analysis and 
Kaplan–Meier curve of genes were implemented in 
GSE7390 (external data). Concerning a better under-
standing of signaling pathways inside CTCs, we also 
extracted a signaling subnetwork from the KEGG data-
base. To determine the metastasis potentials of identified 
subnetworks, we carried out the SVM, neural network, 
and decision tree classifications on GSE7390, and the 

selected model was validated in GSE9195. We also devel-
oped a metastasis-free-survival-risk model to predict 
patients’ risk, using the VIF-stepwise feature selection 
and cox-PH model. Finally, an article review was imple-
mented to detect novel metastatic biomarkers in breast 
cancer.

Methods
Data sets and metadata information
The single-cell RNA-seq data related to advanced 
ER + breast cancer patients were downloaded from the 
NCBI data repository (GSE86978, AB 5500xl Genetic 
Analyzer). The data consist of 77 cells which 47 of them 
were CTC clusters, 22 cells were single CTCs, and the 
rest of the cells were not categorized. This dataset was 
used to reconstruct the co-expression network and 
extract subnetworks. The GSE51827 (AB 5500xl Genetic 
Analyzer), which consists of 29 cells (15 single CTCs and 
14 CTC clusters), was implemented to check the preser-
vation of subnetworks in the second dataset.

The gene expression of GSE7390, which consists of 198 
untreated breast cancer patients, was used for the assess-
ment of metastasis potential of subnetworks. Moreover, 
the GSE9195, which consists of 77 breast cancer patients 
with ER + subtype, was applied for validation of the clas-
sification model, overall survival, and metastasis-free 
survival analyses.

Quality control, pre‑processing, normalization, 
and differential analysis
The heterogeneity in cancer samples and transcriptomics 
data is a major concern, particularly in single-cell-based 
studies. Therefore, to have more precise downstream 
analyses and remove non-biological variations, we imple-
mented multiple quality control and pre-processing steps 
on both cells and gene-level. For cell level quality con-
trol, low-quality cells were removed to reduce the effect 
of technical errors using the Scater package in R that is 
specifically modified for single-cell studies [15]. The cal-
culateQCMetrics and isOutlier functions were used to 
detect low-quality cells. In this step, three cells out of 77 
cells were removed in GSE86978.

For gene-level quality control, genes with zero expres-
sion values and genes that had at least one not avail-
able value (NA) were filtered out in the pre-processing 
step. Finally, the expression data were normalized using 
the Scater package [15]. Additionally, before network 
reconstruction, we used hierarchical clustering in the 
WGCNA package to detect outliers in the datasets [16]. 
Therefore, we conducted downstream analyses with 74 
cells for GSE86978 dataset [15]. Moreover, we applied 
the same steps for GSE51827, but no outlier cells were 
detected. We should emphasize that the count matrix 
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for GSE86978 and GSE51827 datasets were according 
to the original publication. Both datasets had the AB 
5500xl Genetic Analyzer platform, but our normaliza-
tion method was different from the original articles. We 
selected the ER + breast cancer patients. Therefore, 134 
out of 198 patients were filtered for GSE7390. All patients 
in GSE9195 had ER + subtype. Therefore, all patients 
were included. The expression data of GSE7390 and 
GSE9195 were normalized using the Robust Multichip 
Average (RMA) method [17].

The differential expression analysis (DEA), which 
compares clustered cells’ expression to the single cells’ 
expression, was implemented using the limma package in 
R (FDR < 0.05, Benjamini and Hochberg method) [18].

Co‑expression network (CEN) reconstruction 
and subnetwork extraction
The co-expression network was reconstructed using 
a weighted correlation network analysis (WGCNA) 
method [16]. The pairwise relation among genes was 
estimated using the Pearson correlation among genes. 
Concerning having more connected subnetworks, we 
carried out the topological overlap matrix (TOM) and 
connectivity gene filtering (connectivity values less than 
0.1 were omitted) [16]. Higher connectivity values indi-
cate more considerable co-expressed subnetworks [16, 
19]. Eventually, we used hierarchical clustering to extract 
subnetworks. The trait used in this study was the cluster 
and single status of the cells captured in blood. The sub-
networks, which have strong correlations between their 
first principle component and the biological trait, were 
selected as trait-related (metastasis) subnetworks. The 
gene significance and module membership were used to 
filter essential genes in selected subnetworks. The gene 
significance is the correlation between gene expression 
and the metastasis trait. The module membership is the 
correlation between gene expression and module repre-
sentative (first principle component in the principal com-
ponent analysis (PCA)). The preservation of subnetworks 
were assessed in the external dataset (GSE51827).

Signaling network reconstruction
We downloaded all homo sapiens pathways from the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database resource and merged them [20]. Furthermore, 
the KEGG ids were annotated to gene symbols. At the last 
step, to have casual relations among genes, we extracted 
a directed induced subnetwork from the KEGG database 
using two detected significant subnetworks ( 

∣

∣correlation
∣

∣

>0.5 was considered significant) [21]. The genes were cat-
egorized based on biological processes (BP of gene ontol-
ogy) terms using the ClueGO plug-in in Cytoscape [22, 

23]. The network visualization was implemented by the 
Cytoscape and the Gephi software [23, 24].

Gene set enrichment analysis and subnetwork 
preservation analysis
The significant trait-related, metastatic, subnetworks 
( 
∣

∣correlation
∣

∣>0.5) were enriched, using Consensus-
PathDB webserver (q-value < 0.05) [25]. The GSE51827, 
which has CTC gene expression, was downloaded from 
NCBI to implement preservation analysis of subnetworks 
in the external dataset in R [16, 19, 26]. The scater pack-
age, which is suitable for single-cell RNA-seq data, was 
used to preprocess, normalize, and merge expression 
data [15].

The combined statistics for preservation assessment, 
which includes Zsummary and Medianrank , were used 
to check the reproducibility of subnetworks [19]. The 
Zsummary , which shows the interaction pattern among 
genes in subnetworks, evaluate connectivity and den-
sity in the external dataset. Zsummary < 2 indicates not 
preserved subnetworks. If 2 < Zsummary < 10 , the sub-
network is semi preserved, and if Zsummary > 10 , the 
subnetwork is preserved. Moreover, a higher Medianrank 
indicates more preservation of subnetworks in the exter-
nal dataset [19]. The Zsummary and Medianrank were 
assessed for our subnetworks.

Assessment of distant metastasis potential of subnetworks
To evaluate the importance of selected subnetworks 
and the metastasis potential of genes, we implemented 
the classification algorithms on two individual datasets 
(GSE7390 and GSE9195). In this section, we learned 
three classifiers, including support vector machine 
(SVM), artificial neural network (ANN), and decision 
tree on metastatic and non-metastatic patients [27]. The 
classification algorithms were run with and without fea-
ture selection algorithms, including the genetic algorithm 
(GA) and the world competitive contest (WCC) algo-
rithm. The SVM was implemented with fivefold cross-
validation, linear kernel, and 80 percent of cells as the 
training set. Finally, the accuracy, precision, and specific-
ity were checked to select a better classifier for metastasis 
prediction; Furthermore, to identify the most metastatic-
related subnetwork. To assess the reproducibility of our 
results, the selected model was validated in another data-
set (GSE9195).

Distant metastasis‑free survival analysis
The Kaplan–Meier curve, distant metastasis-free sur-
vival, and overall survival analyses were implemented 
using GSE7390 in R [28]. The patients were stratified 
due to quartiles. The expression values lower than the 
first quartile were labeled low expression, and expression 
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values higher than the third quartile were labeled high 
expression. The stepwise Cox proportional hazard ratio 
(Cox-PH) was implemented for selected subnetworks 
[28]. The concordance index was calculated to evaluate 
model performance. The Variance Inflation Factor (VIF) 
lower than two was used as the variable selection crite-
ria. The first and third quartiles of the predicted hazard 
ratio were used for stratifying patients into three groups, 
including low-risk, medium-risk, and high-risk groups.

Results
Pre‑processing of CTCs and DEA
After the quality control and pre-processing step for 
GSE86978, 74 out of 77 cells were included in the down-
stream analyses. The excluded cells revealed low quality, 
therefore, they were filtered out. The differential expres-
sion analysis was implemented after the normalization 
step (FDR < 0.05) [18]. The adjusted p-values and loga-
rithm of fold changes were reported in Additional files 1 
and 2.

We discovered the differential expression between CTC 
clusters and single CTCs for two identified subnetworks 
(EMT and Immune). As shown in Fig.  1, the immune 
subnetwork genes were downregulated in CTC clusters 
(light purple color in the heatmap), and the genes of the 
EMT subnetworks were upregulated (dark purple color in 
the heatmap) in CTC clusters in comparison with single 
CTCs. Figure 1 was extracted from the GSE86978 data-
set. Moreover, using identified subnetworks, the single 
and cluster CTCs were grouped well in both subnetworks 
(Fig. 1a, b). The immune-related subnetwork represented 
a stronger expression difference between clustered and 
single cells. Figure 1 was extracted from GSE86978.

Metastasis associated subnetworks
Metastasis-associated subnetworks were determined, 
using co-expression analysis and hierarchical cluster-
ing [16]. We detected 16 subnetworks. The first princi-
ple component (in PCA analysis) of subnetworks and 
the trait (cluster CTCs vs. single CTCs) association 
was assessed by correlation analysis. The two top sig-
nificant subnetworks, which had the highest correlation 
with the trait, were nominated for enrichment analysis 
( 
∣

∣midnightbluecorrelation
∣

∣=0.57, 
∣

∣turquoisecorrelation
∣

∣ = 
0.51) (Additional file  3). The sizes of midnightblue and 
turquoise subnetworks were 35 and 22 genes, and they 
were enriched for immune responses and EMT path-
ways, respectively (Fig. 2).

To have a biological concept for subnetworks, we 
addressed the midnightblue and the turquoise subnet-
works, the Immune and EMT subnetworks, respectively, 
The EMT subnetwork included cancer-related path-
ways such as ‘cell–cell communication’, ‘tight junction’, 

‘keratinization’, and ‘estrogen signaling pathway’. The 
Immune subnetwork included pathways such as ‘plate-
let activation’, ‘immune system’, and ‘innate immune sys-
tem’. After having reviewed the literature, we detected 
the novel metastatic biomarkers in breast cancer. The 
immune-related novel metastatic biomarkers in breast 
cancer were PTCRA​, F13A1, LAT, GNG11, ICAM2, 
NRGN, P2RX1, CLEC1B, BIN2, LPAR5, CCL5, SELP, 
RUFY1, C6ORF25, TUBB1, GFI1B, C2ORF88, ACRBP, 
and C17ORF72. Module membership and gene signifi-
cance of the Immune subnetwork were reported in Addi-
tional file 1.

The EMT-related genes were LRPPRC, AGR2, 
CLDN4, CRIP1, DSP, ELF3, JUP, KRT8, KRT18, KRT19, 
FAM102A, TACSTD2, EPCAM, PEBP1, PSMD8, RAN, 
SNRPC, SPTAN1, EZR, DDR1, MLPH, and WDR34. In 
which, gene SNRPC, upregulated in CTC clusters, is a 
metastatic novel biomarker in breast cancer. Module 
membership and gene significance for the EMT subnet-
work were summarized in Additional file 2.

The preservation of all subnetworks was assessed in the 
external dataset (GSE51827). The two combined statistics 
Zsummary and Medianrank were calculated to assess sub-
networks preservation in the second dataset (Immune 
subnetwork: Zsummary = 14 , Medianrank = 9 and EMT 
subnetwork: Zsummary = 31,Medianrank = 6 ). The 
Zsummary values for both subnetworks were more than 
10, and Medianrank values were low; Subsequently, these 
statistics indicated the Immune and EMT subnetwork 
preservations in the second dataset. The statistics for all 
subnetworks were reported in Additional file 4).

Detection of crosstalk among pathways
The signaling crosstalk between two selected subnet-
works as well as intermediate pathways between Immune 
and EMT was investigated by mapping them to the 
KEGG pathways and extracting induced subnetwork. A 
directed subnetwork of size 255 genes was extracted and 
illustrated in Fig.  3. The network density was 0.5 and it 
included 10 components, in which, PLCG1 showed the 
highest betweenness value; and MYC, MYLK, and MRAS 
showed the highest closeness in the subnetwork.

To have a better illustration of the inter-
play among pathways, we categorized genes by 
colors based on ClueGO results. We detected 12 
gene categories based on biological processes, 
including’Hormonal regulation’,’Immune responses’,’Ion 
metabolism’,’Nucleobase metabolism’,’Oxidative 
responses’,’Protein localization’,’Protein topol-
ogy response’,’STAT singling pathway’,’Vitamin 
metabolism’,’Cell differentiation’,’Circulation in blood 
regulation’, and’Energy metabolism’ (Fig. 3). These cat-
egories were illustrated by colors on the subnetwork 
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nodes, and the genes with no category remained 
grey. The nodes with multiple colors indicated differ-
ent biological processes. The node size was illustrated 
by node degrees (Fig.  3). Genes PLCG1 and ENTPD8, 

participated in ‘Energy Metabolism’ and ‘Nucleobase 
Metabolism’, were two hub nodes in our detected 
directed subnetwork. The ClueGO results were 
reported in Additional file 5.

Fig. 1  CTC cluster vs. single CTCs gene expression change. a Gene expression changes between CTC clusters and single CTCs for EMT-related 
subnetwork. b Gene expression changes between CTC clusters and single CTCs for Immune-related subnetwork
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Fig. 2  Gene set enrichment analysis. The numbers for each bar indicate the number of significant genes. a Significant pathways of EMT subnetwork 
(size = 22) (q-value < 0.05). b Significant pathways of Immune subnetwork (size = 35) (q-value < 0.05). c Significant pathways of signaling network of 
CTCs (q-value < 0.05)
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Distant metastasis classification model
The distant metastasis potential of two nominated sub-
networks was assessed using SVM, neural network, and 
decision tree classification methods in GSE7390. The 
accuracy, sensitivity, and specificity scores of the SVM 
model for the EMT subnetwork were 79%, 78%, and 
21%, respectively. The neural network accuracy, sensi-
tivity, and specificity scores were 18%, 18%, and 80%, 
respectively. Eventually, the decision tree accuracy, sen-
sitivity, and specificity scores were 60%, 60%, and 30%, 
respectively. These results refer to a full model (all genes 
in the subnetwork included). Comparing three models, 
the SVM model was the strongest method in classifying 
metastatic and non-metastatic patients, but the specific-
ity score was too low.

The SVM accuracy, sensitivity, and specificity scores 
for immune-related subnetwork were 78%, 78%, and 78%, 
respectively. The neural network accuracy, sensitivity, 
and specificity scores were 85%, 85%, and 14%, respec-
tively. Eventually, the decision tree accuracy, sensitivity, 
and specificity scores were 71%, 71%, and 36%, respec-
tively. These results refer to a full model (all genes of 
subnetwork included). The specificity of the neural net-
work and decision tree methods was low compared to the 
SVM model. Due to the results, the SVM model was the 
most powerful method in classifying metastatic and non-
metastatic patients for the immune-related subnetwork. 
The SVM model accuracy, sensitivity, and specificity 
for the Immune subnetwork were superior to the EMT 
subnetwork.

Fig. 3  Signaling network of CTCs. The node size indicates the node degree. The direction indicates signaling among CTCs
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The feature selection algorithms, for the SVM model, 
were implemented for both subnetworks. The WCC 
introduced 13 and 15 genes, and GA introduced 12, 
17 genes for EMT- and immune-related subnetworks, 
respectively. The WCC introduced HLA-E, MYLK, 
WIPF1, TLN1, F13A1, NRGN, ICAM2, PTGS1, SELP, 
PF4, ITGA2B, GFI1B, TUBB1, PTCRA​, RUFY1, BIN2, 
and CLEC1B and the GA introduced CCL5, MYLK, 
WIPF1, TLN1, NRGN, GNG11, PTGS1, SELP, ITGA2B, 
MAX, GFI1B, P2RX1, PTCRA​, RUFY1, and BIN2 for the 
immune subnetwork.

The SVM model, full model, for immune subnetwork 
validated in GSE9195. The accuracy, sensitivity, and 
specificity were 0.868; surprisingly, the validation scores 
were superior to GSE7390. The results confirmed that the 
immune-related genes detected in this study can classify 
metastatic and non-metastatic samples more precisely 
compared to the neural network and decision tree mod-
els, using two data sets. We implemented the classifica-
tion methods to assess the metastasis potential of two 
nominated CTC-related subnetworks.

Distant metastasis‑free‑survival and overall survival 
analyses
The association between gene expression and distant 
metastasis-free survival /overall survival was imple-
mented to detect metastatic potential genes in two 
selected subnetworks. Overall survival and distant 
metastasis-free survival of JUP, KRT18, and KRT19 were 
significant (Log-rank test p-value < 0.05; the exact p-val-
ues were reported in Figures) (Fig.  4a–f). These three 
genes belonged to the EMT subnetwork. The upregu-
lation of JUP, KRT18, and KRT19 was associated with 
more metastases; Therefore, the lower overall survival of 
patients (Fig. 4a–f). Moreover, JUP, KRT18, and KRT19 
were upregulated in CTC clusters (Fig.  1a). The lower 
distant metastasis-free survival and lower overall survival 
curves confirmed the importance of selected genes in 
metastasis. Therefore, they are important gene signatures 
in CTCs.

We fitted a metastasis-free-survival Cox-PH regres-
sion model for EMT and Immune subnetworks to assess 
patients’ metastasis risks through a predictive model. The 
Immune Cox-PH model included RUFY1 and P2RX1 
variables (Likelihood ratio test p-value = 0.0295); and 
the EMT Cox-PH model included RAN, PEBP1, KRT8, 
DSP, DDR1, and CLDN4 variables (Likelihood ratio test 
p-value = 0.0001016). The coefficients of variables and 
p-values were reported in Additional file  6 and Addi-
tional file  7. All the significant genes in the model had 
VIF < 2 to avoid multicollinearity problems, using the 
VIF-feature selection method (Additional file  8 and 
Additional file  9). The proportional hazard assumptions 

for two model variables were assessed by the Schoenfeld 
residuals (Additional file 10 and Additional file 11). The 
predictive Cox-PH models for distant metastasis-free 
survival for two subnetworks were illustrated in Fig. 4g, 
h. The concordance index, a performance evaluation 
measure, for EMT and Immune predictive Cox-PH mod-
els were 0.7 and 0.6, respectively. Therefore, the EMT 
model is more powerful in discriminating patients into 
low, medium, and high metastasis risk groups compared 
to the Immune model.

Of note, the concordance index is a generalization of 
the area under the ROC curve (AUC) that is modified 
for survival analysis. Concordance index can take into 
account censored data. Therefore, to evaluate more than 
one model, we use the concordance index that evaluates 
the candidate models’ performance. The higher con-
cordance index indicates more power in discrimination. 
The supplementary material was provided in Additional 
file 12.

Discussion
Whereas multiple studies on circulating tumor cells 
(CTCs) as single CTCs or metastatic microemboli (CTC 
clusters) have been conducted, the molecular mecha-
nisms of such rare cells are insufficiently characterized. 
CTCs bear several undiscovered metastatic potentials 
to overcome many restrictions, including extravasation 
of the primary tumor microenvironment, survival in 
the bloodstream, and successfully colonizing secondary 
organs; Therefore, a better understanding of the biologi-
cal mechanisms of different types of CTCs, single/cluster, 
is essential.

This study was aimed to explore metastasis-related 
mechanisms within CTCs. We have implemented the co-
expression analysis to detect subnetworks discriminat-
ing single/cluster CTCs (Fig. 1). Two of the subnetworks 
indicated a significant correlation to the trait (single/clus-
ter status of CTCs). Our detected subnetworks illustrated 
immune- and EMT-related pathways (Fig. 2a, b). Due to 
previous studies, the immune-associated mechanisms 
and EMT pathways are of two major arms in breast can-
cer progression and metastasis, but investigating them in 
CTCs is not thoroughly studied [11].

First, we assess the EMT-related markers. To prepare 
cancer cells for migration and intravasation in the early 
stages of cancer, the keratin family, claudins, and cad-
herins must be downregulated through the EMT process 
in primary tumors; still, due to the surviving urgency of 
CTCs in the bloodstream and avoiding anoikis, a small 
number of tumor cells must be attached and break off 
from the primary site [29, 30]. These aggregated cells 
are called cluster CTCs. Therefore, cytoskeleton-related 
genes, such as the keratins, claudins, and cadherins 
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should be upregulated in CTC clusters to survive shear 
forces in blood circulation. In our study, we identified a 
number of cytoskeleton-related genes that were reported 

in the EMT-related subnetwork. The plakoglobin (JUP), 
KRT8, KRT18, KRT19, CLDN4, and EPCAM, which their 
role in breast cancer metastasis was demonstrated in 

Fig. 4  Metastasis free survival and overall survival. p indicate p-value of Log-Rnk test in a–h section. g a predictive metastasis risk model for EMT 
subnetwork. High risk indicates the upper-quartile of gene expression; low-risk indicates the lower-quartile of gene expression. h a predictive 
metastasis risk model for the immune subnetwork. High risk indicates the upper-quartile of gene expression; low-risk indicates the lower-quartile of 
gene expression
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previous studies, are EMT markers [5, 30–33]. The KRT8, 
KRT18, KRT19 are a group of cytoskeleton genes within 
the cellular cytoplasm called keratins. Although they are 
extensively used as diagnostic tumor markers, several 
studies have demonstrated their involvement in can-
cer cell invasion and metastasis as well as in treatment 
responsiveness [31, 33]. Keratins are the intermediate 
filament-forming proteins of epithelial cells that organize 
the internal three-dimensional cellular structure; In fact, 
they act in cell shape maintenance for bearing tensions. 
[33]. Moreover, the plakoglobin (JUP), the upregulation 
of which in breast cancer CTC clusters in comparison 
to single cells was demonstrated in Aceto, Nicola, et  al. 
study, is one of the cell junction genes that hold tumor 
cells together to leave primary tumor as CTC clusters 
[5]. In our study, the overexpression of JUP, KRT18, and 
KRT19 as well as the overall survival and metastasis-free 
survival were significant (Fig. 4a–f). Therefore, they may 
play an essential role in the integrity of CTC clusters in 
the bloodstream shear forces. Meanwhile, EPCAM and 
cytokeratins have been reported as detection mark-
ers in the enrichment of CTCs [34]. Of note, few mark-
ers guide scientists to detect metastatic patients in the 
clinic therefore the rest of the genes detected in the EMT 
subnetwork were not investigated in CTC studies; Con-
sequently, they could be new targets in experimental 
studies for CTCs.

As we know the other key factor in metastasis is 
immune responses. Several types of immune cells ambig-
uously reveal anti- and pro-tumor behaviors [35]. The 
immunosuppressive microenvironment of tumors pro-
tects the primary tumor cells. Nevertheless, while tumor 
cells extravasate and enter circulation, they lose their 
tumor protection; Therefore, they must adapt themselves 
to escape immune surveillance [1, 35]. The interplay 
between immune cells and cytokeratins may contribute 
to evasion of CTCs from immune surveillance. For exam-
ple, the cytotoxic T lymphocytes (CTLs) were recruited 
by recognizing tumor antigens presented by major his-
tocompatibility class I (MHCI) [36, 37]. The under-
expression of MHCI in tumor cell surface guides them 
to hide from CTLs and thereby survive in circulation. 
Moreover, the overexpression of cytokeratins such as 
KRT8, and together with heterodimeric partners KRT18 
and KRT19 inhibit MHCI interactions with CTLs [35, 
36]. All these findings, overexpression of KRT8, KRT18, 
KRT19, and under-expression of HLA-E, are consistent 
with our results which highlight the CTC cluster poten-
tial to evade the immune system; consequently, longer 
survival (Fig.  1a, b). Therefore, there might be an inter-
play between EMT and the immune system in the CTCs. 
On the contrary, Thangavel, Hariprasad, et  al. did not 
find significant differential expression for EMT-related 

markers between CTC clusters and CTC singles [38]. 
Their study was implemented on basal-like breast cancer 
tumors in which a group of specific EMT markers was 
assessed while we analyzed the ER + data with a different 
method. In Thangavel, Hariprasad et al. Study, the EMT 
markers were selected using a scoring method intro-
duces by George, Jason T., et al., while our EMT markers 
were detected using the co-expression and enrichments 
results (Fig.  2a) [39]. However, our results may indicate 
the strength of our study to identify the right markers in 
CTCs and do not violate former studies.

Of note, several studies supported the association 
between EMT and immune cell escape of cancer cells [40, 
41]. Moreover, a plethora of genes and signals support 
stemness pathways such as Wnt, TGF-β, and NOTCH in 
CTCs [10]. Downregulation of DAB2, which is a putative 
tumor suppressor and involves in the TGF-β pathway and 
promotes EMT, was reported in breast cancer tumors 
[42, 43]. Therefore, the under-expression of DAB2 in 
CTC clusters might be related to the stemness pheno-
type which helps CTC clusters to escape the immune 
system. In our study, DAB2, the expression of which was 
downregulated in CTC clusters (the logarithm of fold 
change = − 5.7), was detected in our immune subnet-
work (Fig.  1b). Therefore, our findings may indicate the 
survival potential of CTC clusters in circulation, which 
were consistent with previous studies on cancer biology. 
Whereas the CTC clusters have higher metastatic poten-
tial due to less frequency in metastatic patients, but the 
single cells contribute metastasis either. Hereof, several 
studies such as Szczerba, Barbara Maria, et al. indicated 
more single-cell, about 88.0%, detected in metastatic 
patients [44]. Therefore, either single CTCs or CTC clus-
ters have metastasis potential with different molecular 
mechanisms.

Not only the immune system and EMT but also the 
intermediate pathways are important in the progression 
of CTCs. The crosstalk between the signaling pathways 
of immune response and hormonal regulations, such as 
the fluctuation of menstrual cycles, was investigated by 
Atashgaran, Vahid, et  al. in breast cancer [45]. Further-
more, they showed the dis-regulation of hormonal fac-
tors affecting genome instability and the decrease of 
immune surveillance in breast cancer [45]. The immune 
responses and hormonal regulation were detected in our 
study too (Fig. 3). On the other hand, we know EMT is 
a complex process through which tumor cells facilitate 
their dissemination and acquire stemness characteris-
tics, or it is better to say that cells lose their differentia-
tion [14, 46]; Therefore, bases on previous studies, not 
only signaling pathways of stemness but also the stimula-
tion of self-renewing pathways in tumor cells are essen-
tial in tumorigenesis [14, 46]. Such several metastatic 
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prone pathways and the interplay among all of them 
were detected in circulating tumor cells in our results 
(Figs.  2c and 3). Inasmuch as the CTCs are tumor cells 
that reflect characteristics of primary tumors and they 
also gain more additional propensity to survive in blood-
stream, they were able to extravasate secondary site and 
metastasize. These pro-metastatic cells need to recruit 
different signaling pathways that interplay among them 
leads to creating multi-role cells that reflect great meta-
static and survival potentials. As a result, characterizing 
multiple aspects of CTCs involved in cancer progression 
is essential; Moreover, it would be useful in finding novel 
biomarkers or patients’ treatment strategies.

Conclusions
In summary, although CTCs, which are cancer-related 
biomarkers, are applied in the clinic, the molecular 
mechanisms were not investigated well. The unknown 
crosstalks among multiple pathways including EMT and 
immune responses improve the survival of CTCs in the 
patients’ blood. Therefore, they may contribute to thera-
peutic resistance and metastasis. Computational inves-
tigations on CTCs suggest novel metastatic biomarkers 
which could be new targets for experimental studies or 
therapeutic aims.
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