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Abstract

This study assessed whether endothelin-1 (ET1) helps mediate post-ischemic acute kidney injury 

(AKI) progression to chronic kidney disease (CKD). The impact(s) of potent ETA or ETB 

receptor-specific antagonists (Atrasentan and BQ-788, respectively) on disease progression were 

assessed 24 hours or 2 weeks following 30 minutes of unilateral ischemia in CD-1 mice. 

Unilateral ischemia caused progressive renal ET-1 protein/mRNA increases with concomitant 

ETA, but not ETB, mRNA elevations. Extensive histone remodeling consistent with gene 

activation and increased RNA polymerase II binding occurred at the ET-1 gene. Unilateral 

ischemia produced progressive renal injury as indicated by severe histologic injury and a 40% loss 

of renal mass. Pre- and post-ischemia or just post-ischemic treatment with Atrasentan conferred 

dramatic protective effects such as decreased tubule/microvascular injury, normalized tissue 

lactate, and total preservation of renal mass. Nuclear KI-67 staining was not increased by 

Atrasentan, implying that increased tubule proliferation was not involved. Conversely, ETB 

blockade had no protective effect. Thus, our findings provide the first evidence that ET-1 

operating through ETA can play a critical role in ischemic AKI progression to CKD. Blockade of 

ETA provided dramatic protection, indicating the functional significance of these results.
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INTRODUCTION

A growing clinical literature indicates that acute kidney injury (AKI) can initiate the onset of 

progressive renal disease (1-6). For example, in a recent study from Kaiser Permanente of 

California, it was reported that patients who sustained a bout of dialysis- requiring AKI had 

a ~28 fold increased risk of developing stage 4 or 5 chronic kidney disease (CKD) (7). 

However, the mechanisms by which AKI might initiate the onset of CKD have not been 

defined.

One prominent theory holds that an initial ischemic insult can induce peritubular 

microvascular damage, thereby compromising renal blood flow (8-10). This may culminate 

in persistent renal ischemia / hypoxia with ongoing tissue damage. However, the factors that 

might contribute to this injury pathway have been difficult to define. This is largely due to 

the fact that the most commonly used model of ischemic AKI, bilateral renal artery 

occlusion (RAO), does not typically produce progressive renal damage (8-14). Rather, 

despite the fact that RAO produces so called “healing defects” (e.g., persistent tubular / 

microvascular damage; salt sensitive hypertension), neither sustained, nor progressive, GFR 

losses result (8-14).

In contrast to bilateral ischemic injury, we have recently demonstrated that 30 min of 

unilateral ischemic injury in the mouse produces ongoing tubular necrosis, interstitial 

inflammation, peritubular microvascular injury, renal fibrosis, and ultimately a 40-50% loss 

of renal mass over 2-3 weeks (15). Due to the presence of an uninjured contralateral kidney, 

the natural history of severe AKI can “play out” because the presence of one uninjured 

kidney prevents death from early uremia. By using this unilateral ischemia model, we have 

noted several important pathophysiologic events that participate in progressive renal 

damage. These include stepwise increases in pro-inflammatory cytokine generation, down 

regulation of selected anti-inflammatory defenses (e.g. heme oxygenase 1 and IL-10), and 

lipotoxicity (15).

An additional, but as yet unexplored, potential mediator of post-ischemic renal disease 

progression is the potent vasoconstrictor, endothelin 1 (ET-1; ref. 16,17). In support of its 

possible role in the pathogenesis of AKI are a few studies in which ET-1 gene deletion, or 

blockade of the ETA receptor, mitigated the initiation phase of ischemic, endotoxemic, or 

rhabdomyolysis- induced acute renal failure (18-21). However, much conflicting data exist 

in this regard. For example, at least five studies have found that ET-1 receptor blockade (of 

either the A or B receptor) either conferred no functional protection, or worsened post- 

ischemic AKI (22-26). In addition to the unresolved issue of whether ET-1 plays a role in 

the initiation phase of AKI, ET-1’s potential influence on post- ischemic renal disease 

progression has not been addressed. Indeed, if persistent tissue ischemia is a mediator of 

progressive renal damage, as suggested above, then ET-1- mediated renal vasoconstriction 

could potentially play a critical pathogenic role.

The goal of the present study was to gain new insights in this regard. Towards this end, we 

have defined the natural course of ET-1 expression, and that of its A and B receptors, in our 

unilateral model of progressive post-ischemic renal disease. We then tested whether 
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blockade of the vasoconstrictive ETA receptor (with ABT-627; “Atrasentan”; 27,28), would 

confer a protective effect. Conversely, because the ETB receptor has been suggested to 

induce vasodilation and possible cytoprotective effects (16-18), its potential impact on post- 

ischemic renal damage was also assessed via pharmacologic ETB selective blockade.

RESULTS

ET-1 mRNA and protein assessments

As shown in Figure 1, within 24 hrs of unilateral ischemic injury, a 4 fold increase in ET-1 

mRNA was observed, compared to values in normal kidneys extracted from sham operated 

controls (p<0.001). By 2 weeks post- ischemia, a marked further ET-1 mRNA increase was 

observed, reaching values that were >10 fold higher than those seen at 24 hrs. These post 

ischemic ET-1 mRNA increases resulted from ischemia, not surgical stress, given that the 

contralateral (non ischemic) kidneys retained normal ET-1 mRNA levels.

The marked increase in renal cortical ET-1 mRNA was associated with an approximate 10 

fold increase in renal cortical ET-1 protein levels (Figure 2). In contrast, no significant 

increase in plasma or contralateral kidney ET-1 levels was observed (values remaining close 

to those seen in either normal mice or in sham operated surgical controls). This implies that 

the elevated renal cortical ET-1 protein levels in the 2 week post-ischemic kidneys were a 

result of increased renal ET-1 production, not increased uptake from the systemic 

circulation.

RNA polymerase II (Pol II) binding and histone modifications at the ET-1 gene

As shown in Fig. 3, the increases in renal cortical ET-1 mRNA at 2 weeks post ischemia 

were associated with an approximate 5 fold increase in Pol II binding to the start exon of the 

ET-1 gene, consistent with a marked increase in gene transcription (as assessed by 

chromatin immunoprecipitation, ChIP, assay). Furthermore, increased levels of each of three 

assessed ‘gene activating’ histone marks at exon 1 (H3K4m3; H3K9/14Ac, histone variant 

H2A.Z) corresponded with the increased Pol II levels. Thus, these ChIP data imply that 

ischemia leads to gene-activating histone modifications at the ET-1 gene, potentially 

contributing to increased gene transcription via increased Pol II recruitment.

Renal cortical ETA and ETB receptor mRNA expression post ischemia

As shown in Fig. 4, a 3 fold increase in ETA receptor mRNA was apparent by 24 hrs post 

ischemia. By 2 weeks post ischemia, a further 8 fold increase in ETA receptor mRNA was 

observed. Thus, compared to basal values, ETA receptor mRNA levels rose ~25 fold over 

the course of the experiment. In sharp contrast, no increase in ETB receptor mRNA was 

observed at 24 hrs post ischemia. By 2 weeks post ischemia, an ETB receptor mRNA 

increase was observed, but it was quantitatively trivial compared to the ETA mRNA 

increases (2× vs. 25×, respectively).

Unilateral ischemia / renal mass assessments

Control ischemia; Pre + post Atrasentan effects: As shown in the left hand panel of Fig. 

5, the unilateral I/R injury protocol induced a ~40% reduction in post-ischemic renal mass 
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(renal weight), in comparison to the weights of normal kidneys extracted from sham 

operated mice (p<0.0001). Not shown, sham surgery did not independently affect renal 

weight, compared to the renal weights of normal mice. Administration of Atrasentan, started 

before renal ischemia and continued throughout the two week post-ischemic period, 

conferred marked protection, as judged by the fact that the post-ischemic kidney mass 

(weights) did not significantly differ from that of normal kidneys. A graphic depiction of 

this result is presented in Fig. 6: the unilateral ischemia / reperfusion (I/R) kidney (far left) 

was markedly reduced in size, compared to a normal kidney (far right). In contrast, the pre + 

post ischemia Atrasentan treated kidney (I/R +Atra) manifested essentially normal kidney 

size.

Post ischemic Atrasentan treatment: To assess whether the above protective effect was 

mediated by Atrasentan acting in the pre vs. the post- ischemic injury phase, mice were 

treated with the drug starting 24 hrs post renal ischemia and continued for two weeks. As 

shown in the right hand panel of Fig. 5, ischemia without drug treatment once again caused 

a 40% reduction in renal weight. Post-ischemic Atrasentan treatment completely blocked 

this loss of renal mass, thereby recapitulating the protection seen in the pre + post 

Atrasentan treatment experiment. This indicates that Atrasentan mediated its protective 

effect during the delayed (>24 hrs) post-ischemic period, and not in the immediate ischemic/

reperfusion injury phase (i.e., during ischemia and 24 hrs of reflow).

Renal histologic assessments at 2 weeks post unilateral ischemia ± Atrasentan treatment

To confirm Atrasentan’s protective effect against ongoing post- ischemic injury, renal 

histology was examined in kidneys obtained 2 weeks post ischemia with and without 

Atrasentan treatment. The unilateral ischemia protocol caused marked proximal tubule 

dropout, extensive interstitial inflammation, ongoing proximal tubule necrosis, and 

extensive intratubular cast formation. These changes were observed throughout the renal 

cortex and outer medullary stripe. Atrasentan treatment caused a marked reduction in each 

of these changes (see Figure 7, far right panel). Blinded grading of the severity of these 

changes using a semiquantitative score (1+ to 4+; least to most severe injury observed) 

revealed a marked diminution in injury scores in the Atrasentan group (control ischemia, 

3.4±0.3; Atrasentan, 1.3±0.2; p <0.01). Thus, the histologic findings corroborated renal 

protection, as denoted by the Atrasentan- induced preservation of renal mass.

Potential effects on Atrasentan on renal growth independent of ischemic injury

To ascertain whether Atrasentan treatment might impact renal growth / size independent of 

an effect on renal ischemic injury, renal weights of the contralateral (non ischemic) kidneys 

from the above experiment were assessed. The contralateral (CL) kidneys manifested an 

approximate 25% increase in renal weight, compared to normal kidneys (Fig. 7, left; 

consistent with renal hypertrophy in response to contralateral ischemic injury; ref. 15). 

Atrasentan had no effect on this hypertrophic response, given that contralateral kidney 

weights were essentially identical in the no drug vs. drug treatment groups. As shown in the 

middle of Fig. 7, immunohistochemical staining for KI-67 (a nuclear proliferation marker) 

demonstrated a marked increase in renal tubular cell proliferation in the 2 week post 

ischemic kidneys (panel B; see arrow), compared to normal (panel A) kidneys. Given the 
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marked decrease in renal tubular injury in the Atrasentan treated group (and hence, less of a 

stimulus for renal regeneration), less KI-67 staining was observed in the post- ischemic 

kidneys from the Atrasentan treated vs. control ischemic mice. However, within areas in 

which renal tubular injury was observed in these Atrasentan treated kidneys, increased 

KI-67 nuclear staining was observed (see arrow at right of panel C).

Exploration of potential Atrasentan effects on the induction phase of ischemic AKI

To further explore the possibility that Atrasentan might mitigate the acute injury phase, and 

thus, cause a subsequent preservation of renal mass, mice were pre-treated × 24 hrs with the 

drug and then subjected to bilateral ischemic injury. By so doing, a possible protective effect 

against acute ischemia could be assessed by potential reductions in post-ischemic BUN and 

plasma creatinine concentrations. However, as shown in Fig. 8, no protection was observed 

against either 22.5 min or 25 min bilateral ischemic challenges, as gauged by either BUN or 

plasma creatinine concentrations. As an additional marker of renal injury, renal cortical 

NGAL mRNA levels were also assessed. Both I/R protocols induced marked NGAL mRNA 

elevations (Fig. 8, right panel). However, in neither instance did Atrasentan decrease these 

NGAL mRNA increases, further supporting the conclusion that Atrasentan was unable to 

block the initial ischemic injury phase.

Assessment of Atrasentan treatment on post- ischemic lactate levels and CD-34 staining

Unilateral ischemia was associated with an increase in renal cortical lactate levels from 1-3 

days post ischemia (see Figure 9, left). With Atrasentan treatment, post-ischemic lactate 

concentrations remained at or near control levels (NS vs. control values). Thus, these data 

are consistent with the hypothesis that ETA receptor blockade improved post-ischemic 

tissue oxygenation, presumably via through an improvement in renal microcirculatory 

perfusion. Morphologic support for this assumption was apparent from CD-34 staining of 

the two week post- ischemic kidneys with and without Atrasentan treatment. Marked 

micovascular dilatation, consistent with vascular stasis/vascular injury, was apparent in 

control post- ischemic kidneys, as assessed by CD-34 staining. These changes were almost 

completely absent in the presence of Atrasentan treatment (Fig. 9, right).

ETB receptor blockade with BQ-788

BQ-788 failed to decrease the severity of renal injury, as assessed by loss of renal mass at 

the two week time point (normal weights, 0.26±0.01 gms; control ischemia, 0.16±0.01 

grams; ischemia + BQ-788, 0.16 ±0.03 gms). This was not due to a lack of BQ-788 biologic 

activity, given that the agent caused an expected compensatory increase in ETB mRNA 

levels due to ETB receptor blockade (2.6±0.4 vs. 4.6±0.5, control ischemia vs. BQ-788 

treated ischemia; p<0.04). Thus these findings point to ET-1 / Atrasentan effects on post 

ischemic renal injury as being mediated through the ETA receptor.

DISCUSSION

Although there have been conflicting suggestions that ET-1 may play a role in the induction 

phase of ischemic AKI (18-26), its potential effects on post- ischemic disease progression 

have not been previously assessed. Given the growing evidence that post-ischemic AKI can 
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initiate CKD, if ET-1 were to play a pathogenic role, the clinical availability of ET-1 

receptor antagonists would imply that therapeutic options are ‘at hand’. Hence, the current 

study has evaluated the expression of ET-1 and that of its two dominant receptors (ETA, 

ETB) in our unilateral model of post- ischemic AKI that leads to near ‘end stage’ kidney 

disease in a matter of weeks.

To gain an initial insight into a possible role for ET-1 in post- ischemic disease progression, 

renal cortical ET-1 gene expression was assessed. Modest ET-1 mRNA increases were noted 

by 24 post ischemia. However, a subsequent and seemingly exponential ET-1 response 

ensued over the next 2 weeks. Thus, by the end of the experiments, ~40-50 fold increases in 

renal cortical ET-1 mRNA, and 10 fold ET-1 protein elevations, were observed. Notably, 

despite the dramatic increase in renal cortical ET-1 protein levels, plasma and contralateral 

kidney ET-1 protein concentrations remained unchanged. This indicates that the post-

ischemic renal cortical ET-1 protein elevations reflected intra-renal generation, not uptake 

from the systemic circulation. Notably, ETA receptor mRNA levels paralleled the rising 

ET-1 mRNA and protein concentrations. Conversely, relatively trivial, or no, ETB receptor 

mRNA increases were observed. It is notable that the ETA receptor mediates ET-1’s 

vasoconstrictive effects, whereas the ETB receptor is believed to exert counter-regulatory 

vasodilation and cytoprotective actions (16-18). Thus, the preferential increase in the ETA 

vs. the ETB receptor implies a ‘tipping of the balance” towards ET-1’s potent 

vasoconstrictive, and hence “injury-provoking”, effects.

Following ischemic renal injury, histone modifying enzyme systems can be activated and 

induce chromatin remodeling at pro-inflammatory genes (29-32). These changes include 

histone H3 trimethylation, acetylation, and histone H2A.Z exchange. By loosening 

chromatin structure, they facilitate RNA polymerase II (Pol II) binding to affected genes 

and, thus, enhance gene transcription rates. To assess whether such changes could 

potentially contribute to the progressive activation of the ET-1 gene post ischemia, ChIP 

assay was applied to 2 week post-ischemic kidney samples. Dramatic increases in all three 

assessed ‘gene activating’ histone marks (H3K4m3, H3K9/14 acetylation; H2A.Z) were 

observed. The functional significance of these changes was implied by parallel increases in 

the binding of Pol II (the enzyme that drives transcription) to the ET-1 gene. While 

definitive cause -and- effect relationships between these histone modifications and increased 

ET-1 gene transcription rates remain to be proven, that these histone changes, are indeed, 

‘gene activating’ in a variety of biologic systems certainly suggests that this is the case 

(29-32).

Atrasentan is a highly potent and selective ETA receptor antagonist (~1,800 fold greater 

specificity for ETA vs. ETB; 27, 28). Given the dramatic increases in intrarenal ET-1 

protein levels, and given the 25 fold increases in ETA receptor mRNA, we assessed whether 

blockade of ET-1 - ETA receptor binding would mitigate the seemingly inexorable 

progression of post-ischemic unilateral renal disease. Indeed, this was the case: pre + post 

ischemic Atrasentan administration conferred virtually complete protection against post- 

ischemic reductions in renal mass (40% vs. 0% renal mass loss without vs. with Atrasentan 

therapy). That marked histologic protection was also observed underscores Atrasentan’s 

protective effect. To discern whether this protection was exerted against the initial injury 
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phase, thereby culminating in less ‘downstream’ renal damage, or whether Atrastentan’s 

protective effect was induced during the post-ischemic phase, the drug was started 24 hrs 

after the initial ischemic event. Again, complete preservation of renal mass was observed 

(i.e., equal to that seen with combined pre + post Atrasentan treatment). Further supporting 

the conclusion that Atrasentan protected only during the post-ischemic period was indicated 

by two additional observations: first, the drug was unable to mitigate the early (0-24 hrs) 

phase of post- ischemic AKI, as assessed by 24 hr BUN, plasma creatinine, and NGAL 

mRNA levels; and second, in data not shown, Atrasentan failed to mitigate ATP depletion 

injury (as induced by antimycin / 2-deoxyglucose) in cultured proximal tubule (HK-2) cells 

(33,34). Indeed, given that Atrasentan was able to block evolving renal injury when started 

well beyond the initial injury phase could have substantial clinical relevance. Because the 

vast majority of AKI patients are seen following the establishment of ARF, not prior to it, 

identifying an agent can prevent post- ischemic disease progression suggests potential 

therapeutic application.

Because ET-1 has potential anti-mitogenic influences (35-37), a theoretical consideration is 

whether Atrasentan might slow renal regeneration in the aftermath of ischemic AKI. If so, 

this could potentially represent an adverse effect. To test for this possibility, degrees of renal 

hypertrophy/hyperplasia were assessed in contralateral kidneys obtained from the unilateral 

ischemia experiments ± Atrasentan treatment. As shown in Fig. 7, an approximate 25% 

increase in contralateral (right) kidney weight was observed 2 weeks after left ischemic renal 

damage, and this result was unaffected by Atrasentan treatment. To further explore this 

issue, renal immunohistochemical staining for KI-67, a nuclear protein marker of all active 

cell cycle phases (G1, S, G2, mitosis; but not Go), was assessed (38). As expected, a marked 

increase in KI-67 nuclear staining was observed in control post- ischemic kidneys, compared 

to normal renal tissues. Although less KI-67 staining was seen in post- ischemic Atrasentan 

treated kidneys, this was almost certainly due to the lesser degree of overall tubular damage, 

presumably leading to a less robust renal tubular proliferative response.

It should be noted that Atrasentan- mediated ETA blockade could potentially confer renal 

protection not strictly by blocking downstream ETA receptor signaling, but also, by 

increasing ET-1 availability to the unblocked ETB receptor. Noteworthy in this regard is 

that ET-1 / ETB signaling can exert cytoprotective effects (16-18). If the latter were relevant 

to the post-ischemic kidney, then the administration of an ETB receptor antagonist would be 

expected to worsen post- ischemic renal damage. To test for this possibility, the impact of a 

potent ETB receptor antagonist, BQ-788, on post- ischemic renal injury was assessed, and 

no change in disease progression / loss of renal mass was observed. Indeed, these results 

might be expected, given that ischemia / reperfusion had a relatively trivial effect on ETB 

receptor expression, at least as assessed by levels of its mRNA. Thus, these experiments 

underscore the primacy of the ETA receptor in the observed post- ischemic progressive renal 

disease.

To gain some support for the concept that ETA blockade conferred protection via an 

improvement in the renal microcirculation, renal cortical lactate concentrations were 

assessed from 1-3 days post ischemia in the presence and absence of Atrasentan treatment. 

As shown in Fig. 9, Atrasentan almost completely normalized the elevated tissue lactate 
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levels during this period, clearly suggesting that decreased vasoconstriction, with improved 

oxygen delivery, were operative during this period. Furthermore, at two weeks post 

ischemia, remarkably less microvascular injury / vascular congestion was observed with 

Atrasentan treatment, as assessed by CD-34 staining. In concert, these two observations 

strongly point to improvements in the renal microcirculation with Atrasentan, as would be 

expected from an ETA blocking agent. However, it should be noted that other ET-1 / ETA 

sensitive injury pathways (e.g., nitric oxide signaling, the angiotensin II system, and TGF-β 

mediated fibrosis) could also have been involved; e.g. ref. 39). Thus, future studies will be 

required to dissect out the relative hemodynamic vs. non hemodynamic pathways through 

which ETA blockade confers its dramatic post-ischemic cytoprotective effect.

Finally, a number of queries arise from consideration of the above experiments. The first is 

that Yang et al have suggested that a dominant mechanism by which unilateral ischemia 

produces progressive renal damage and fibrosis is via the development of G2/M growth 

arrest (40). However, that ETA blockade completely prevented a loss of renal mass implies 

that this previously observed growth arrest (40) is in fact induced by ongoing ET-1 mediated 

renal vasoconstriction / tissue hypoxia, and resultant tissue damage. A second question that 

arises from the current experiments is why equal degrees of contralateral kidney 

hypertrophy developed whether or not ETA blockade was induced. Indeed, the Atrasentan- 

induced preservation of post-ischemic renal mass might be expected to decrease 

compensatory hypertrophy in the contralateral kidneys. These findings suggest that the 

stimulus for renal hypertrophy is expressed in the early post ischemic period, prior to the 

emergence of Atrasentan’s ultimate protective effects. The third question raised by the 

current study is whether some of Atrasentan’s protective effects could have been mediated 

by changes in systemic blood pressure, rather than changes in intrarenal hemodynamics. 

However, in studies not presented (for space considerations), we observed that our unilateral 

ischemia model does not raise systemic mean arterial blood pressure (MAP; as assessed with 

tail blood pressure monitoring), and Atrasentan did not induce significant MAP reductions 

(86 vs. 82 mm Hg without and with ETA blockade, respectively; assessed over a one week 

time frame). This implies that it is Atrasentan’s intrarenal, not potential systemic, 

hemodynamic effects that induced its protective effects.

In conclusion, the present study demonstrates that post-ischemic renal injury is associated 

with a marked and progressive activation of the ET-1 gene, as denoted by rising ET-1 

mRNA and protein levels, and a 5 fold increase in Pol II binding to the ET-1 gene. These 

changes are associated with extensive ‘gene activating’ chromatin remodeling at the ET-1 

gene, suggesting that epigenetic alterations likely facilitate post- ischemic ET-1 gene 

transcription. Paralleling these changes are preferential increases in post- ischemic ETA (vs. 

ETB) receptor expression, further suggesting that increased ET1 - ETA receptor signaling 

likely occurs. Functional significance of these changes to post- ischemic disease progression 

is indicated by the fact that a highly potent and specific ETA receptor antagonist, 

Atrasentan, but not an ETB receptor antagonist (BQ-788), completely prevented an 

otherwise 40% loss of post- ischemic renal mass. This protective action is expressed in the 

post- ischemic injury phase, given that delaying therapy for 24 hrs post ischemia did not 

detract from the agent’s renal sparing effects. While multiple protective mechanisms could 

potentially be operative, an improvement in the post-ischemic microcirculation / 
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microvascular integrity seem likely to be involved. This assertion is based on Atrasentan’s 

ability to markedly diminish post-ischemic tissue lactate levels, and to decrease 

microvascular injury/congestion, based on CD-34 vascular assessments. Finally, we believe 

that this is the first study of its kind to demonstrate that any pharmacologic agent can confer 

essentially complete protection against AKI progression to chronic / end stage renal disease. 

Thus, the current results would appear to be important, both from an understanding of 

underlying pathophysiologic mechanisms as well as potential clinical relevance, given that 

ETA blocking agents are currently ‘at hand’.

METHODS

All experiments were performed using male 30-45 gram CD-1 mice, obtained from Charles 

River Laboratories, Wilmington, MA. They were housed under routine vivarium conditions 

with free food and water access. Surgeries were conducted under deep pentobarbital 

anesthesia (40-50 mg/Kg IP). Post-surgical analgesia was provided with buprenorphine (0.1 

mg/Kg IM). All surgical procedures were approved by the institution’s IACUC, in 

accordance with NIH guidelines.

Quantifying ET-1 and ETA / ETB receptor expression following ischemic renal injury

Ten mice were subjected to a midline laparotomy, and the left renal pedicles were exposed 

and occluded × 30 min using atraumatic microvascular clamps. Body temperature was 

maintained at 37°C with an external heating source. After vascular clamp removal, uniform 

reperfusion was confirmed by loss of kidney cyanosis. The abdominal incision was then 

sutured in two layers, and the mice were allowed to recover from anesthesia. Ten sham 

operated mice served as controls.

At either 24 hrs or 2 weeks post surgery, half of the mice in the post unilateral ischemic 

group (N, 5) or the sham- operated group (N, 5) were re-anesthetized and the abdominal 

incisions were opened. A blood sample was obtained from the inferior vena cava and both 

kidneys were resected. They were iced, and the renal cortical samples were cut with a razor 

blade and extracted for RNA (RNeasy; Qiagen), and total protein. RNA samples were used 

to determine the mRNAs for ET-1 and its A (ETA) and B (ETB) receptors by competitive 

RT-PCR using the primers shown in Table 1. Results were expressed as ratios to 

simultaneously obtained GAPDH product, used as a ‘housekeeping’ gene. ET-1 protein 

concentrations in renal cortical extracts and plasma were determined by ELISA (Enzo Life 

Sciences, Farmingdale, NY).

Chromatin immunoprecipitation assay (ChIP): ET-1 chromatin remodeling and RNA 
polymerase II (Pol II) binding

Renal cortical chromatin extracts were prepared from the following kidneys: kidneys from 

three sham operated mice (2 weeks post surgery); three 2 week post ischemic kidneys; and 

three corresponding contralateral kidneys. Using ChIP assay, degrees of Pol II binding, 

histone H3 trimethylation (H3K4m3), histone H3 acetylation (H3K9/K14), and Pol II levels 

at exon 1 of the ET-1 gene were assessed by real time PCR (29-32). In addition, the degree 

of histone H2A.Z variant exchange at ET-1 exon 1 was assessed (29-32). Results were 
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expressed as the amount of Pol II, H3K4m3, H3K9/14 Ac, and H2A.Z at ET-1 exon 1 / per 

mg of probed chromatin protein.

Post- ischemic renal disease progression: impact of ETA receptor blockade

Eighteen mice were subjected to the above unilateral ischemic injury protocol. Nine of the 

mice received the highly potent and specific ETA receptor antagonist ABT-627 (Atrasentan; 

ref. 27,28). The Atrasentan was administered in the drinking water (25 μg/mL; designed to 

equate with a dose of ~5 mg/Kg/day). The drug was started one day before surgery and 

continued throughout the remainder of the 2 week experiment. Fresh drug was provided 

2-3x per week. The remaining 9 mice received only free food and water access, serving as 

controls.

Upon completion of a two week post- ischemic recovery period, the mice were re-

anesthetized with pentobarbital, the abdominal incision was re-opened, and the left (post 

ischemic) kidneys and the right (contralateral) kidneys were removed and weighed. The 

degree of post- ischemic loss of renal mass was assessed by comparing the weights of 

kidneys from sham operated mice, control post- ischemic mice, and post- ischemic mice that 

had received Atrasentan treatment. Finally, frontal sections of post- ischemic kidneys were 

taken from 5 control mice and 5 Atrasentan treated mice, fixed in 10% buffered formalin, 

and used for subsequent histochemical analyses.

Renal histology—Two micron sections were cut and stained with hematoxylin and eosin 

for overall assessment of the severity of tissue injury. The severity of histologic injury was 

assessed by blinded scoring of slides of 2 week post-ischemic kidneys from 5 Atrasentan 

treated mice (pre + post ischemia treatment), and from 5 non Atrasentan treated post 

ischemic controls (semiquantitative scale of 1+ to 4+, or least to most severe renal injury 

observed, based on the extent of proximal tubule dropout / necrosis and cast formation). In 

addition, renal tubular cell proliferation was assessed by immunohistochemical staining for 

KI-67, a nuclear protein marker of all active cell cycle phases (G1, S, G2, mitosis; but not 

Go) (38). ]. Finally, renal microvascular integrity was assessed by immunohistochemical 

staining for the endothelial cell marker, CD-34 (38). [Note: at 2 weeks post unilateral 

ischemia in the absence of Atrasentan treatment, modest interstitial collagen deposition is 

apparent both by Sirius red and Masson Trichrome staining (15, 38). Given the almost 

normal renal histology with Atrasentan treatment; see Results, collagen deposition was not 

assessed in Atrasentan treated kidneys].

Determination of whether Atrasentan treatment, restricted to the post- ischemic period, 
confers renal protection

The above experiment was repeated, but Atrasentan administration was commenced 24 hrs 

after the induction of ischemic damage. At the end of two weeks, the mice were re-

anesthetized and the left and right kidneys were weighed. The degree of post- ischemic renal 

weight reduction (the primary endpoint of the above described experiment) was determined. 

As above, the values were contrasted between the unilateral ischemic kidneys ± Atrasentan 

treatment (n, 4 each group), and to values obtained in 5 kidneys obtained from normal mice.
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Determination of whether Atrasentan pre-treatment protects against the acute ischemic 
injury phase

Nine mice were pre-treated for 24 hrs with Atrasentan and then they were subjected to either 

22.5 min (n, 6) or 25 min (n, 3) of bilateral ischemic injury. An equal number of mice were 

subjected to the same bilateral ischemia protocols without drug treatment. Atrasentan was 

continued during the post- ischemic period. Twenty four hrs later, the mice were re-

anesthetized, the abdominal incisions were re-opened, a blood sample was obtained from the 

inferior vena cava, and the kidneys were resected. The ability of Atrasentan to protect 

against renal ischemia was assessed by determining plasma BUN and creatinine 

concentrations and by levels of renal cortical NGAL mRNA, a marker of AKI severity (41).

Assessment of Atrasentan treatment on post-ischemic lactate levels

Eighteen mice were subjected to unilateral renal ischemia, half with and half without 

receiving Atrasentan treatment. Either 24 hrs, 48 hrs, or 72 hrs later, three Atrasentan treated 

mice and three control ischemic mice were sacrificed, the left post-ischemic kidneys were 

harvested, renal cortical tissues were extracted and deproteinated, and assayed for tissue 

lactate levels (Biovision; K607-100; Milpitas, CA). Results were compared to those 

determined in 4 normal mice and expressed as μmol/mg extracted cortical tissue.

Effect of BQ-788 on post-ischemic renal injury

Eight mice were subjected to the unilateral ischemic injury protocol, with half of the mice 

receiving the ETB specific receptor antagonist BQ-788. The agent was administered in 

drinking water (6.7 μg/mL), to provide a dose of ~1 mg/Kg/day (in excess of the K1 of 

ET-1 / ETB binding affinity; 42-44). Two weeks post- ischemia, the kidneys were harvested 

and weighed, as noted above. To confirm BQ-788’s biologic activity, levels of ETB receptor 

mRNA was also assessed (i.e., blockade would be expected to raise ETB mRNA levels).

Calculations and Statistics

All values are presented as means ± 1 SEM. Statistical comparisons were performed by 

unpaired Student’s t test. Continuous variable results were compared by Student’s T test. 

The histologic data were judged by Wilcoxon rank sum test. Significance was judge by a p 

value of <0.05.
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Figure 1. Renal cortical and plasma endothelin 1 (ET-1) mRNA levels following ischemic injury
ET-1 mRNA rose approximately 3 fold by 24 hrs post induction of unilateral ischemic 

injury, and by 2 weeks, marked further elevations were observed. The specificity of this 

change for the ischemia- injured kidney was indicated by the normal ET-1 mRNA levels in 

the contralateral (contralat) kidneys at both the 24 hr and 2 week time points (compared to 

normal kidney values).
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Figure 2. Renal cortical and plasma ET-1 protein levels at 2 weeks post- ischemic injury
Renal cortical ET-1 protein levels were markedly elevated at 2 weeks post ischemia, 

compared to either normal or contralateral (non ischemic) kidney values (left panel). 

Conversely, no increase in plasma ET-1 values (right panel) was observed at this time 

(compared to values in normal plasma or in plasma from 2 week post sham operated mice.)
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Figure 3. ChIP assay assessments of Pol II binding, histone 3 methylation, histone 3 acetylation, 
and histone variant H2A.Z at exon 1 of the ET-1 gene
Marked increases in Pol II binding were observed at the ET-1 gene, paralleling the increases 

in ET-1 mRNA as shown in Fig 1. The increases in Pol II were paralleled by comparable 

increases in H3K4m3, H3K9/14Ac, and H2A.Z, implying that these ‘gene activating’ 

histone marks may have functionally contributed to increased ET-1 gene transcription.
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Figure 4. Renal cortical ETA and ETB receptor mRNA levels at 24 hrs and 2 weeks post 
ischemic injury
ETA receptor mRNA manifested a marked and progressive rise following ischemic injury, 

reaching values that were ~50 fold higher than the values found in the contralateral (CL) 

kidney. The latter did not significantly differ from normal (N) kidney values. In contrast, 

ETB mRNA was not significantly elevated at 24 hrs post ischemia and it rose to only twice 

the values seen in the non-ischemic contralateral (CL) kidneys. In sum, these data indicate a 

preferential increase in ETA vs. ETB mRNA expression.
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Figure 5. Renal weights 2 weeks after the induction of unilateral ischemic injury +/− Atrasentan 
(Atra) treatment in the pre + post (left panel), or just the post ischemic period
The ischemia / reperfusion (I/R) protocol produced an approximate 40% reduction in renal 

weight, compared to kidney weights obtained from age matched normal mice (p<0.0001). 

When Atrasentan was administered starting one day prior to ischemia and continued 

throughout the two week post ischemic period, renal weight was almost completely 

preserved (NS, vs. normal kidney weights). This benefit was due to Atra’s effect in the post-

ischemic period, as evidenced by the fact that starting the agent 24 hrs post ischemia 

conferred the same degree of protection as did the pre + post administration protocol (NS vs. 

normal kidney weights).
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Figure 6. Photographs of a 2 week post- ischemic kidney (left), a post- ischemic kidney with pre + 
post ischemic Atrasentan treatment (middle), and a normal kidney (right)
This figure graphically depicts the key finding that is presented in Fig 5: i.e., that the I/R 

protocol induced a dramatic (near 40-50%) reduction in renal size, and that Atra conferred 

essentially complete protection against the ischemia- induced loss of renal mass.
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Figure 7. Renal proliferation and histology following the unilateral ischemic protocol with and 
without Atrasentan treatment
Left hand panel: This panel depicts the weights of the contralateral (CL; non ischemic) 

kidneys from the unilateral ischemic injury experiments ± Atra treatment. As shown, the CL 

(right) kidneys manifested compensatory hypertrophy in response to left kidney ischemia, 

such that by 2 weeks, an approximate 25% increase in renal weight was apparent compared 

to normal kidneys. Atrasentan did not exert an independent proliferative or anti-proliferative 

effect, given that the CL kidney weights from the Atrasentan treated group were identical to 

those seen in the non Atra treated group.

Middle panel. This panel depicts KI-67 staining of a normal kidney (A), a 2 week (left) post 

ischemic kidney (B), and a 2 week left post ischemic kidney with pre + post Atra treatment 

(C). The post ischemic kidneys manifested a marked increase in nuclear KI-67 staining, 

compared to that seen in normal kidneys (arrows point to examples of positive KI-67 

nuclear staining). Less KI-67 staining is apparent in the Atrasentan treated kidney, given that 

less tubular damage, and hence, less stimulus for a regenerative response, would be expected 

to occur. For example, as depicted, much greater preservation of tubular mass (denoted by 

asterix) is apparent in the Atra + ischemia vs. the control ischemic kidney section. However, 

in areas in which cell injury was observed, increased KI-67 staining is observed (arrow in 

panel C). Scale bar = 80 microns.

Right hand panel. Panel A (top figure) depicts severe tubular dropout, cast formation, and 

interstitial inflammation at 2 weeks post ischemia following unilateral ischemia. Marked 

morphologic protection is depicted in a kidney obtained 2 weeks post ischemia with 

concomitant Atrasentan treatment. Scale bars = 100 micron.
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Figure 8. Atrasentan fails to protect against the induction phase of ischemic- reperfusion injury
Mice were subjected to either 22.5 minutes or 25 min of bilateral ischemic renal injury in the 

presence or absence of Atra pre-treatment for 24 hrs before and for 24 hrs after the induction 

of renal ischemia. The severity of injury was assessed at 24 hrs post ischemia by BUN and 

plasma creatinine concentrations and by the extent of induction of renal cortical NGAL 

mRNA. Atra failed to mitigate AKI severity, as assessed by any of these three parameters.
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Figure 9. Renal cortical lactate concentrations in normal and post- ischemic kidneys; CD-34 
staining of the microvasculature with and without Atrasentan treatment
Renal cortical lactate concentrations were elevated from 1-3 days post ischemia, compared 

to baseline (BL) values (left panel). Atrasentan almost completely normalized these elevated 

levels (control vs. Atrasentan treated post-ischemic kidney tissues, p<0.015). A morphologic 

correlate of an improved microcirculation is that control post-ischemic kidneys 

demonstrated marked microvascular dilatation, consistent with vascular congestion, whereas 

the microvascular pattern appeared normal at two weeks post- ischemia with Atrasentan 

treatment. Histologic photomicrographs depict the region of the inner cortex / outer 

medullary stripe. A, normal kidney, B, 2 weeks post ischemia; C, 2 weeks post ischemia 

with Atrasentan treatment. Scale bar = 200 micron.
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Table 1
Mouse Primers for RT-PCR

Primers used for semiquantitative analysis of endothelin 1 (ET-1), and it’s A and B receptors (ETA, ETB, 

respectively). Products were factored by simultaneously obtained GAPDH product.

mRNA Primer Sequences Product Size

ET-1 5′-TCC TCT GCC CGT CTG AAC AAG AAA-3′
5′-GCC ATC AGC AAT AGC ATC AAG GCA-3′

239 bp

ETA
receptor

5′-TCC TAT GCA GCT CGC CCT TGT ATT-3′
5′-ATC ACC GTC TTG AAC CTC TGT GCT-3′

202 bp

ETB
receptor

5′-CAG TCT TCT GCC TGG TCC TC-3′
5′-CCA GCA GCA CAA ACA TGA CT -3′

242 bp

GAPDH 5′-CTG CCA TTT GCA GTG GCA AAG TGG-3′
5′-TTG TCA TGG ATG ACC TTG GCC AGG-3′

437 bp

Kidney Int. Author manuscript; available in PMC 2014 April 01.


