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Abstract

Periodic oscillations play an important role in many biomedical systems. Proper functioning of biological systems that
respond to periodic signals requires the ability to synchronize with the periodic excitation. For example, the sleep/wake
cycle is a manifestation of an internal timing system that synchronizes to the solar day. In the terminology of systems
theory, the biological system must entrain or phase-lock to the periodic excitation. Entrainment is also important in
synthetic biology. For example, connecting several artificial biological systems that entrain to a common clock may lead to a
well-functioning modular system. The cell-cycle is a periodic program that regulates DNA synthesis and cell division. Recent
biological studies suggest that cell-cycle related genes entrain to this periodic program at the gene translation level, leading
to periodically-varying protein levels of these genes. The ribosome flow model (RFM) is a deterministic model obtained via a
mean-field approximation of a stochastic model from statistical physics that has been used to model numerous processes
including ribosome flow along the mRNA. Here we analyze the RFM under the assumption that the initiation and/or
transition rates vary periodically with a common period T . We show that the ribosome distribution profile in the RFM
entrains to this periodic excitation. In particular, the protein synthesis pattern converges to a unique periodic solution with
period T . To the best of our knowledge, this is the first proof of entrainment in a mathematical model for translation that
encapsulates aspects such as initiation and termination rates, ribosomal movement and interactions, and non-
homogeneous elongation speeds along the mRNA. Our results support the conjecture that periodic oscillations in tRNA
levels and other factors related to the translation process can induce periodic oscillations in protein levels, and may suggest
a new approach for re-engineering genetic systems to obtain a desired, periodic, protein synthesis rate.
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Introduction

External and internal periodic oscillations play an important

role in intracellular and extracellular biomedical systems and have

attracted enormous research interest (see e.g. [1] and the

references therein). Proper functioning of cells that are exposed

to such periodic signals requires internal biological mechanisms

that are able to synchronize with the periodic excitation. In the

terminology of systems theory, the biological system must entrain or

phase-lock to the periodic excitation. In other words, in response

to a periodic excitation with period T the system’s internal state

converges to a periodic signal with period T .

Entrainment in biological systems (sometimes called phase

locking [2]) and, more generally, biological oscillators and rhythms

have recently attracted enormous attention (see e.g. [3–5] and the

references therein). For example, the sleep/wake cycle is a

manifestation of an internal timing system that entrains to the

24 hours period of the solar day using a visual pathway connecting

the retina to the suprachiasmatic nucleus (SCN) [6].

Entrainment is also important in synthetic biology. For example,

most hormones in the body are released in periodic pulses.

Glucocorticoid secretion, for instance, has a circadian and

ultradian pattern of release. Synthetic biological oscillators may

be used to mimic these periodic release patterns in the

administration of synthetic hormones to patients suffering from

glucocorticoid-responsive diseases, thus improving therapeutic

effectiveness [7].

The design of robust synthetic biological oscillators is also the

first step for applications such as clocks that synchronize in order

to coordinate intracellular behavior, and artificial platforms that

can measure the genomic response to an oscillatory excitation [8].

Entrainment at the intra-cellular gene expression level
Proteins are ‘‘tiny machines’’ performing a vast array of

functions within living organisms including intra- and inter-

cellular signaling transduction, immunological response against

pathogens, movement of cells and tissues, facilitation of biochem-

ical reactions, structure and support of the cell and tissue, and

transport. Regions in the DNA, called genes, encode the

information needed to produce proteins. Gene expression is the

process by which the information inscribed in the genes is

converted into proteins. The major steps of gene expression are

transcription, translation, and mRNA and protein turnover [9].
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The cell-cycle is a periodic program that regulates DNA

synthesis and cell division. Proper execution of the cell-cycle

requires the expression and activation of key proteins at specific

times along the period. This process must be tightly regulated, as

perturbations in cell-cycle progression can lead to apoptosis or

cancer.

Recently, there is growing evidence that protein levels of cell-

cycle related genes can be regulated not only via transcription (see,

for example, [10]) but also via the translation elongation step.

Higareda-Mendoza and Pardo-Galvan [11] investigated the role

of human translation initiation factor 3 (eIF3) in cell-cycle control

of A549 cells. They reported that eIF3f expression oscillates during

cell-cycle, with one maximum expression peak in the early S phase

and a second during mitosis. Their interpretation is that eIF3f is a

translational modulator that selects mRNAs at specific cell-cycle

phase time points.

Frenkel-Morgenstern et al. [12] have shown that cell-cycle

regulated genes tend to include non-optimal codons, i.e., codons

that are rare and are recognized by tRNA molecules with low

intra-cellular abundance, and thus with a low translation rate.

These codons create ‘‘bottlenecks’’ in the translation process and

thus their slow translation rate becomes rate limiting. They argue

that periodicity in the tRNA levels of these codons induces

periodicity in the translation rate of these genes. The fact that cell-

cycle regulated genes display different codon preferences at

different phases of the cell-cycle supports the conjecture that cells

exploit non-optimal codons to generate cell-cycle-dependent

dynamics of proteins via the translation process. In other words,

the translation process entrains to the excitation generated by

periodically varying tRNA levels.

In another recent study, Patil et al. [13] have reported an

additional mechanisms by which cell-cycle can be regulated via

translation. The ribonucleotide reductase (RNR) complex plays an

important role in regulating cell-cycle transitions and in DNA

damage response. They showed that the levels of 16 tRNA

modifications, and thus the translation efficiencies of different

codons oscillate during cell-cycle; in addition, these oscillations match

the wobble interaction needed for translating codon of genes such

as RNR1. Their results imply that translation regulation has a

direct role in cell-cycle related oscillations.

Two other recent studies [14,15] suggest that non-optimal

codon usage during translation affect the expression, structure,

and functioning of proteins, and are particulary important in the

context of circadian clocks.

Periodicity in gene expression that is related to periodic

processes, such as the cell-cycle and biological clocks, is regulated

at all the different gene expression stages. This includes

transcription, translation, and post-translational regulation. The

related regulation mechanisms include dozens (or even hundreds)

of genes and proteins that interact with each other in ways that we

are only beginning to unveil. Usually these networks of interac-

tions include a few redundant mechanisms of oscillation regulation

[14–20]. For example, it was suggested that cell-cycle regulation

includes negative feedback oscillators. These can include for

example the interconnection of two genes where the first gene up

regulates the second, and the second down regulates the first [16].

Another possible regulation mechanism is via control of the

transcription rate of tRNA genes (and other genes), resulting in

oscillations in intra-cellular tRNA levels [12]. Since the decoding

time of codons is affected by the available levels of the tRNA

molecules recognizing them (see, for example, [21,22]), this may

eventually lead to oscillations in the decoding times of different

codons.

It may seem natural to assume that periodic variations, with

period T , in the initiation rate and/or the decoding times of

different codons will lead to a periodic protein production rate

with the same period T . However, this assumption is actually quite

strong. Indeed, these factors affect the protein synthesis rate via the

dynamics of the translation mechanism, and not every dynamical

system entrains to periodic excitations. Here we analyze this

problem using a computational model for translation-elongation.

Entrainment in a computational model for translation
High-throughput experiments provide more and more data on

the translation process. Computational models of translation are

needed to organize, understand, and connect this data to various

biophysical aspects of translation [23–28]. Understanding the

dynamics of gene expression, and not only the static information

encoded in the genes, is vital in order to understand how the

biological components work together to comprise functioning cells

and organisms. Developing a deeper understating of the dynamics

of translation may thus have implications in many fields of science

including human health [29–35], biotechnology [36–40], evolu-

tion [31,41–47], functional genomics [48–54], and systems biology

[33,51,55–59]. Recent reviews related to translation may be found

in [38,42,60].

A rigorous analysis of these models can deepen understanding of

the translation process, assist in integrating the vast amount of

empirical findings, lead to efficient algorithms for optimizing gene

translation for various biotechnological goals, and help to improve

the fidelity and predictive ability of the models. In the near future,

this will enable building syntectic biological devices that are based

on re-engineering biological mechanisms and specifically gene

expression.

A newly developed technique, called ribosome profiling [61,62],

provides indications on the occupancy of codons by ribosomes

along the mRNA molecules in vivo. This breakthrough has led to

a renewed interest in computational models for translation (see

e.g., [63–65]).

Reuveni et al. [66] considered a deterministic model for

translation called the ribosome flow model (RFM). This model is a

deterministic approximation of an important model from statistical

physics, called the asymmetric simple exclusion process (ASEP), that is

the standard mathematical model for ribosome flow. ASEP has

also been used to model and analyze many other systems and

processes, including traffic flow, molecular motors, surface growth,

the movement of ants, and more [67].

In this paper, we study the dynamical behavior of the RFM

under the assumption that some or all of its parameters vary

periodically, with a common period T . This models periodically

time-varying initiation and/or transition rates along the mRNA.

We refer to this model as the periodic ribosome flow model (PRFM).

Main results and their implications. Our main result

shows that the PRFM entrains to a periodic excitation. In other

words, the PRFM admits a unique periodic solution with period

T , and all the state-variables converge to this solution. This means

that all the ribosome densities converge to a periodic pattern with

period T and, in particular, the protein synthesis rate converges to

a periodic pattern. To the best of our knowledge this is the first

proof of entrainment in a non-trivial mathematical model for

translation.

Our results suggest that entrainment takes place in particular in

the case where the codon decoding rates (called transition rates in

the RFM) are constant, and the initiation rate is T -periodic.

Similarity, entrainment takes place if the initiation rate is constant

and some of the transition rates are T-periodic. From a biophysical

perspective, this suggests that periodic oscillations of the transla-
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tion rate (and thus protein abundance) can be induced in various

ways including: 1) oscillations of factors related to the initiation

step such as the mRNA levels of genes, the abundance of

ribosomes, and the abundance of initiation factors; and 2)

oscillations of factors related to the elongation step such as the

abundance of elongation factors and tRNA genes. Specifically,

oscillations in the abundance of a single tRNA gene is enough to

induce oscillations in the translation rate and protein abundance.

These results have several implications. First, they support the

conjecture that cell-cycle dependent dynamics of proteins may be

obtained by entrainment in the translation process. Moreover, the

biological mechanism can generate a periodic production rate

relatively easy; it is enough to vary just one tRNA abundance in a

periodic manner. However, in the PRFM entrainment takes place

whenever the initiation/transition rates vary periodically (with a

common period) regardless of their amplitude. This suggests that the

bottleneck argument in [12] is not necessarily needed.

Second, in the context of synthetic biology our results may lead

to new mechanisms for generating various syntectic devices at the

translation level. Several recent studies considered the design of

synthetic biological oscillators, mostly based on manipulating

aspects related to transcription (see, e.g. [1,8,68–71]). The authors

of [13] raise the question of why would cells regulate translation

using codon usage and changes in tRNA modification status. They

hypothesize that a rapid change in the abundance of tRNA

modifications may allow cells to quickly reset the translation speed

of existing transcripts, and thus respond quickly to stress or other

changes in environmental conditions. If this is indeed so then

developing synthetic biology devices based on entrainment at the

translation level may have unique advantages.

Mathematical tools. In order to make this paper more

accessible, we now briefly explain the main mathematical tools

that are used in analysis.

Proving entrainment in non-linear dynamical systems is non-

trivial. One standard approach is based on contraction theory

[3,72,73]. A dynamical system is called contracting if the distance

between trajectories emanating from any two initial conditions

quickly decreases with time (more precisely, it decreases at an

exponential rate). This means that the information about the

initial condition is ‘‘quickly forgotten’’.

Consider a system that is periodically excited with a period T .

Assuming that the trajectories remain bounded, it is possible to

show that the system admits a periodic solution with period T .

Consider two trajectories, one emanating from an initial condition

on this periodic solution, and the second from some arbitrary

initial condition. If the system is also contracting then these

trajectories must converge to one another, so all trajectories

converge to the periodic solution. This proves entrainment.

The proof of entrainment in the PRFM is based on these ideas.

However, some additional analysis is needed, as the RFM is on the

‘‘verge of contraction’’, yet it is not contracting on its entire state

space.

The remainder of this paper is organized as follows. The next

section briefly reviews the ASEP and RFM. The main results

about entrainment in the PRFM are described in the Results

section. The proofs are detailed in the Methods section. The

Discussion section provides a summary, and describes possible

directions for further research.

Preliminaries: From ASEP to the RFM

An important computational model for translation elongation is

the Asymmetric Simple Exclusion Process (ASEP) [25,26,74]. In this

stochastic model particles hop, according to some probability

function, between consecutive sites on a 1D lattice. Each site can

be either occupied by a particle or not. Hops may take place only

to a target site that is not already occupied by another particle

(hence the term simple exclusion). The term asymmetric implies that

there is some preferred direction of movement along the lattice. If

motion is allowed only in one direction then ASEP is sometimes

called the totally asymmetric simple exclusion process (TASEP). ASEP

(and its many variants) is regarded as a paradigmatic model for

non-equilibrium statistical mechanics and has been used to model

and analyze various biological systems and processes, including

intracellular transport, molecular motors, pedestrian dynamics and

of course gene expression [75–80].

In TASEP models for translation each site in the lattice

corresponds to a codon, the hopping particles are ribosomes, and

their footprint includes ‘ sites (in the case of translation, the

footprint of a ribosome is usually 9ƒ‘ƒ12 codons corresponding

to 28{35 nt [61]). For example, a new particle (ribosome) can

enter the lattice only if all the first ‘ sites are all empty. Initiation

time as well as the time a ribosome spends translating each codon

are random variables (e.g., with an exponential distribution), and

are codon–dependent. Analysis of TASEP is based on determining

the probability of steady-state configurations using matrix products

(see the excellent survey paper [81]).

Reuveni et al. [66] recently considered a deterministic model for

translation called the Ribosome Flow Model (RFM). The RFM is a

finite-dimensional mean-field approximation of TASEP (see, e.g.,

[81], p. R345 and [82], p. 1919). The RFM includes n state-

variables connected by a set of n non-linear first-order differential

equations:

_xx1~l(1{x1){l1x1(1{x2)

_xx2~l1x1(1{x2){l2x2(1{x3)

_xx3~l2x2(1{x3){l3x3(1{x4)

..

.

_xxn{1~ln{2xn{2(1{xn{1){ln{1xn{1(1{xn)

_xxn~ln{1xn{1(1{xn){lnxn:

ð1Þ

The positive parameters l [l1, . . . ,ln] are called the initiation rate

[transition rates]. The state-variable xi : z?½0,1� describes the

‘‘level of occupancy’’ of ribosomes at site i at time t, where

xi(t)~1 [xi(t)~0] corresponds to the site being completely full

[empty].

To explain this model, consider for example the equation for _xx1,

i.e. the change of ‘‘level of occupancy’’ at site 1. The term l(1{x1)
models the fact that ribosomes reach the first site with initiation

rate l, but their effective binding rate depends on how occupied

site 1 is. In particular, if x1(t)~1, i.e. the site is completely full, the

effective binding rate is zero. The term {l1x1(1{x2) describes

the rate of transition of ribosomes from site 1 to the consecutive

site 2.

Note that in ASEP each site may include either zero or one

particles. In the RFM, the xis correspond to averaged occupancy

levels and therefore xi(t) takes values in the closed interval ½0,1�.
We refer to

R(t) : ~lnxn(t),

that is, the exit rate of ribosomes from the last site, as the translation

rate at time t.
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Since the state-variables correspond to normalized occupancy

levels, the initial condition x(0) is always in the closed unit cube:

C : ~fx[ n: xi[½0,1�,i~1, . . . ,ng:

The simulation results in [66] show that TASEP and its mean-field

approximation (the RFM) yield similar predictions of translation

rates. For example, the correlation between their predictions over

the set of endogenous genes of S. cerevisiae is 0:96. Important

features of translation elongation that are captured in TASEP, for

example, the sequential order of the codons, translation efficiency,

the interaction between ribosomes and their jamming, the

initiation and elongation rates, are also encapsulated in the RFM.

We now briefly summarize some known results on the

dynamical behavior of the RFM. Let

Int(C) : ~fx[ n: xi[(0,1),i~1, . . . ,ng denote the interior of C,

and let x(t,a) denote the solution of the RFM at time t for the

initial condition x(0)~a[C. It has been noted in [83] that the

RFM is a (tridiagonal) monotone dynamical system [84]. Combining

this with the fact that C is an invariant set of the dynamics and a

theorem of Smillie [85] yields the following result.

Theorem 1 [83] The RFM admits a unique equilibrium point

e[Int(C), and lim t?? x(t,a)~e for all a[C.

This means that there exists a unique steady-state profile of

ribosome distributions (and thus a unique translation rate). The

trajectory starting from any initial distribution will converge to this

steady-state profile. Changing the values of the positive parameters

l,li will not change this qualitative picture, only the steady-state

profile.

Let j:j1 : n? z denote that L1 vector norm, i.e.

jzj1~jz1jz . . . zjznj. It has also been shown in [83] that the

RFM is non-expanding with respect to the L1 norm, that is,

jx(t,a){x(t,b)j1ƒja{bj1 ð2Þ

for all t§0 and all a,b[C. This means that the L1 distance

between two ribosome distribution profiles can never increase. It is

worth noting that both Theorem 1 and (2) follow immediately

from the more general results in this paper.

In some cases the transition rate along genes is constant [86], so

the translation efficiencies of all the codons are identical. This

happens, for example, when the rate limiting factor is the

concentration of elongation factors and not the local features of

the coding sequence, such as tRNA molecules or when there is a

balance between the codon frequencies and tRNA levels [87]. In

the context of the RFM, this can be modeled by considering the

special case where

l1~l2~ . . . ~ln~ : lc,

that is, the transition rates li are all equal, and lc denotes their

common value. Since this Homogeneous Ribosome Flow Model

(HRFM) includes only two parameters, l and lc, the analysis is

considerably simplified. Ref. [88] analyzes the qualitative and

quantitative dependence of e on the parameters l,lc in the

HRFM. Ref. [89] studied the HRFM when n??, i.e. when the

length of the mRNA chain goes to infinity. In this case, it is

possible to obtain closed-form expressions for the equilibrium

point using the theory of infinite 1-periodic continued fractions.

In eukaryotes the translation rate can affect the initiation rate

via recycling of ribosomes. To model this, Ref. [90] has considered

the RFM as a control system. Here l is replaced by a function u(t)
(the input), and an output y(t)~R(t) is added. It has been shown

that this is a monotone control system, as defined in [91]. Also, analysis

of the closed-loop system, obtained by closing the loop from y to u

with positive linear feedback, has shown that several nice

properties of the RFM hold also for the closed-loop system. In

particular, there exists a unique globally asymptotically stable

equilibrium point e. For the special case of equal lis, closed-form

expressions relating the closed-loop system parameters and e have

been obtained.

Results

A function f : ? is called T-periodic if

f (t)~f (tzT) ð3Þ

for all t. For example, sin (t) is 2pk periodic, for all integers k. In

this paper, we consider the behavior of the RFM (1) under the

following assumptions (see Figure 1):

1. The initiation rate l(t) and transition rates li(t), i~1, . . . ,n,

are continuous, strictly positive and uniformly bounded

functions of time, i.e., there exist d1, 2[ such that

0v 1ƒli(t),l(t)ƒ 2, for all t§0: ð4Þ

2. There exists a minimal Tw0 such that all these functions are

T-periodic.

We refer to this case as the periodic ribosome flow model (PRFM).

Remark 1 Note that the PRFM includes in particular the case

where some of these rates are constant, as a constant function is T-

periodic for every T . However, item 2) above implies that the case

where all the rates are constant is ruled out, as then the minimal T

is zero. Indeed, this case is just the RFM.

The next example illustrates the dynamical behavior of the

PRFM.

Example 1 Consider the PRFM with n~3,

l(t)~2z sin (2pt),

l1(t):1,

l2(t)~3z sin (2ptz1=2),

l3(t)~4z2 cos (4ptz1=8),

and initial condition x(0)~ 1=2, 1=2, 1=2½ �0. Note that all the

rates here are periodic, with minimal common period T~1.

Figure 2 depicts xi(t), i~1,2,3, as a function of t. It may be seen

that each state-variable converges to a periodic signal with period

T~1.

The next example considers the case where only the initiation

rate oscillates, and the constant transition rates are the rate-

limiting factors.
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Example 2 Consider the PRFM with n~3,

l(t)~2z sin (pt),

l1(t)~l2(t)~l3(t):1,

and initial condition x(0)~ 1=2, 1=2, 1=2½ �0. Note that here

the transition rates are constant and relatively small, whereas the

initiation rate is larger and periodic with period T~2. Figure 3

depicts xi(t), i~1,2,3, as a function of t. It may be seen that all the

xis converge to a periodic signal with period T~2. Note that the

rate-limiting transition rates considerably attenuate the oscillations

amplitude as they propagate through the mRNA chain. Here the

small transition rates form the ‘‘bottleneck’’ in the process. This

example demonstrates that entrainment takes place even when the

rate-limiting factor is constant, as long as there exists at least one

other factor that is periodic with Tw0.

Our main result shows that the state-variables in the PRFM

always entrain to a unique periodic solution. Let x(t,t0,a) denote

the solution of the PRFM at time t for the initial condition

x(t0)~a.

Theorem 2 The PRFM admits a unique periodic solution

c : z?Int(C), with period T , and
Figure 2. State-variables x1(t) [solid line]; x2(t) [dashed]; and
x3(t) [dotted] (y-axis) as a function of time (x-axis) in Example 1.
All state-variable converge to a periodic signal with period T~1.
doi:10.1371/journal.pone.0096039.g002

Figure 1. Upper part: the elongation rates of codons and the initiation rate are T -periodic, for example, due to signals related to the cell-cycle. Lower
part: in the RFM, this is modeled by T-periodic rates l(t) and li(t) yielding the PRFM. Our main result shows that consequently the translation rate
and ribosomal densities (the xis) converge to a unique T-periodic solution.
doi:10.1371/journal.pone.0096039.g001
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lim
t??
jx(t,0,a){c(t)j1~0, for all a[C:

In other words, every trajectory converges to the unique periodic

trajectory c. In particular, the translation rate R(t)~ln(t)xn(t)
converges to the T-periodic function ln(t)cn(t).

By Remark 1, Theorem 2 holds in particular in the case where

the transition rates li, i~1, . . . ,n, are constant, and the initiation

rate is T-periodic (but not constant). Similarity, Theorem 2 also

holds if the initiation rate is constant and some of the transition

rates, li, are T-periodic (but not constant).

The stochastic nature of reaction events induces random noise

in biochemical networks (see, for example, [92,93]). As noted in

[94], this becomes particularly important when there are few

molecules in the system, as is often the case in a cell. It is natural to

consider whether entrainment in the PRFM takes place also in the

presence of noise. Our simulations suggest that this is indeed the

case.

Example 3 Consider the PRFM with n~3,

l(t)~2z sin (2pt)zw1(t),

l1(t)~1zw2(t),

l2(t)~3z sin (2ptz1=2)zw3(t),

l3(t)~4z2 cos (4ptz1=8)zw4(t),

and initial condition x(0)~ 1=2, 1=2, 1=2½ �0. The wi(t)’s are

drawn as independent random values from the uniform distribu-

tion on the interval ({1,1) for all t. Note that this implies that all

the rates remain positive for all t. Figure 4 depicts xi(t), i~1,2,3,

as a function of t. It may be seen that each state-variable still

converges to a periodic signal with period T~1, but with

perturbations induced by the noise.

Further study of entrainment in the PRFM in the presence of

random perturbations is beyond the scope of this paper. However,

we note that there exist theoretical results on contraction in the

presence of random noise; see e.g. [95,96].

As mentioned above, the RFM is a mean-field approximation of

TASEP. Thus, our results suggest a natural question, namely, does

TASEP entrain?

Example 4 Consider a TASEP model with N sites. When a

particle in site i cannot hop because site iz1 contains a particle,

the next hopping time is determined by

tzp(li),

where t is the current time, and p(li) is a random variable drawn

from the exponential distribution with mean parameter li. Recall

that the exponential probability distribution function with mean m

is given by

f (x) : ~
1

m
exp ({x=m), for all x§0:

At the next hopping time, this particle hops unless the next site is

full again, in which case a new hopping time is drawn.

We ran a simulation of this process with N~10, and final time

Tf ~200000. In the simulation, performed using MATLAB, time

was discretized using a time step of 0:01. (In particular, the next

hopping times are always rounded to a value k � 0:01, where k is

an integer.) Initially, all sites are empty. The rates are

Figure 4. State-variables x1(t) [solid line]; x2(t) [dashed]; and
x3(t) [dotted] (y-axis) as a function of time (x-axis) in Example 3.
The initiation and transition rates are periodic with a common period
T~1, but with added random noise. It may be seen that each state-
variable converges to a periodic signal with period T~1, but with
added noise.
doi:10.1371/journal.pone.0096039.g004

Figure 3. State-variables x1(t) [solid line]; x2(t) [dashed]; and
x3(t) [dotted] (y-axis) as a function of time (x-axis) in Example 2.
The initiation rate is periodic with period T~2, while the transition
rates are constant and relatively small. All state-variable converge to a
periodic signal with period T~2, but the amplitude of the oscillations
is considerably attenuated as it passes through the mRNA chain.
doi:10.1371/journal.pone.0096039.g003
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l2(t)~3z cos (
1

8
z

2pt

20000
),

l3(t)~2z sin (
1

8
z

2pt

20000
),

and li(t):2 for all i=[ 2,3f g. Note that all these rates are periodic

with a common minimal period

T~20000: ð5Þ

Fig. 5 depicts the results. The time range ½0,Tf � is divided into

segments of length 1000 (so that there are Tf =1000~200

segments), and the 0=1 occupancy at each time step is averaged

on each segment. For example, the value depicted at time segment

1 is the averaged occupancy in the time interval ½0,999�. The

averaged occupancy on each segment is shown in Fig. 5 for sites

2,3,7, and 9. It may be seen that all the averaged occupancies

entrain to the periodic excitation. In particular, they are periodic

(up to the noise induced by the stochastic process) with a period of

20 segments, corresponding to a time period of 20 � 1000 which is

equal to T in (5).

Our simulations do suggest that some form of entrainment also

takes place in TASEP. Of course, one must first rigorously define

what entrainment means in a stochastic model such as TASEP.

Discussion

Many biological and physiological processes are periodic (see,

e.g., [97]), indicating periodicity in their corresponding gene

expressions. For example, the cell-cycle is a periodic series of

events that allows cells to replicate.

Two recent studies suggest that the protein levels of cell-cycle

related genes are regulated by periodically varying tRNA levels

[12,13]. In other words, the translation-elongation mechanism

entrains to these periodic oscillations.

To examine the plausibility of this idea, one must first consider

the time constants involved; specifically, the mRNA life time and

translation time should be longer than the cell-cycle period. For

concreteness, consider the case of S. cerevisiae. The cell-cycle period

in S. cerevisiae is less than 87 minutes [98] (cell-cycle period can be

much shorter in eukaryotes; for example, it was reported that the

duration of cell-cycle in early embryo of the fruit fly D. melanogaster

is only 8 minutes [99]). In S. cerevisiae there are hundreds of genes

with mRNA half-life larger than 100 minutes (see, for example,

[100]). The translation rate in S. cerevisiae was estimated to be

higher than 0:956 codons per second (the slowest codon is CUU)

[101] with average rate over all codons of 10 codons per second (in

mouse the average codon translation rate was estimated to be

around 5 codons per second [86]). In practice, this rate can be

much slower due to strong folding of the mRNA and interaction of

the translated amino-acids with the exit channel of the ribosome

[27]. In S. cerevisiae the ORF length range is between 51 and

14,733 nucleotides; for example, the longest gene in yeast is

MDN1/YLR106C which includes 4,911 amino acides (see http://

www.yeastgenome.org). This is a huge dynein-related AAA-type

ATPase (midasin) which forms extended pre-60S particle with the

Rix1 complex (Rix1p-Ipi1p-Ipi3p) and acts in removal of

ribosomal biogenesis factors at successive steps of pre-60S

assembly and export from nucleus. This gene corresponds to an

upper bound on the translation time of a gene that is larger than 81

minutes (assuming a lower bound on translation rate of 1 codons

per second; which may be lower in practice); an estimated

translated time of this protein based on mean codon translation

time is 8:2 minutes. In mammals the mean codon decoding time is

5 codons per second and the longest human protein (Titin – TTN)

which has 33,000 amino acids, corresponding to estimated

translation time of 110 minutes. This suggests that periodically

varying tRNA levels may indeed induce periodic expression levels

of cell-cycle related proteins. In addition, assuming that time to

steady sate is related to the translation time (at least one ribosome

should finish the translation), an estimated lower bound on the

oscillations is 8=110&1=13:7 the time to reach steady state.

To rigorously analyze entrainment at the translation level, we

considered the RFM under the assumption of periodic initiation

rate l(t) and/or periodic transition rates li(t) with a common

minimal period Tw0. Our main result is that all the ribosome

densities converge to a unique periodic solution with period T .

This implies in particular that the protein translation rate

converges to a unique periodic function. The PRFM is thus the

first computational tool providing an explanation of how

periodicity can be passed from the translation to the protein level

via the codon usage bias, i.e., the differences in the frequency of

occurrence of different codons in the coding sequence. Specifical-

ly, according to the PRFM the distribution of codons in different

open reading frames (ORFs) can affect their oscillations. For

example, if the levels of certain tRNA species oscillate this will

affect only genes with codons that are recognized by these tRNAs.

These results support the conjecture that oscillations of the

tRNA levels and/or initiation factors, with a common period T ,

induce periodicity in the protein levels of cell-cycle genes. The

assumption of variations with a common period may seem

unjustified, but analysis of the PRFM shows that it is enough to

oscillate a single tRNA level, or just the initiation rate to obtain an

oscillatory behavior, with the same period, in protein synthesis.

Furthermore, genes that are part of a certain pathway and/or

Figure 5. Simulation of TASEP with periodically time-varying
rates. The plot shows the averaged occupancy over time segments as a
function of the time segment.
doi:10.1371/journal.pone.0096039.g005
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function usually have common regulators (see, for example, [102]),

and this may lead to periodic oscillations with a common period. It

is important to emphasize that we do not claim here that the

oscillations amplitude is necessarily ‘‘large’’. There may be cases

where the amplitude of the oscillations in some xi or R may be

small and in this case the signal may ‘‘look’’ constant; for example,

in the case that the oscillations are not in the bottleneck (in terms

of translation rate) of the gene they may have a smaller effect on

the translation rate.

Oscillations and entrainment also play an important role in

synthetic biology [1,8,68–71]. Indeed, a major challenge in this

field is scaling up to larger and more complex biological systems.

One possible approach is to design networks based on an

interconnection of several biological elements (modules) that

synchronize to a single central clock. Entrainment is needed to

achieve this. In this context, the period T of the oscillator may

perhaps be controlled and, in particular, made much shorter than

the cell-cycle period. The analytic results on the PRFM may thus

lead to new synthetic devices that produce periodically-varying

protein levels based on oscillations in tRNA levels and/or

initiation factors. Indeed, the analysis of the PRFM suggests that

there are many different possible ways for generating such a

periodic dynamics.

It is important to remember that oscillations in various factors,

and not only the concentrations of tRNA molecules, can affect the

periodic dynamics of the translation process. Among others, the

oscillations in the concentrations of Aminoacyl tRNA synthetase,

ribosomes (via changes in concentrations of ribosomal RNA genes

and/or ribosomal proteins), elongation and initiation factors,

mRNAa levels, and free amino acids may trigger an oscillatory

behavior of the translation process.

One experimental approach for validating our theoretical

results, and for further research of oscillations in translation is by

in-vitro single-molecule fluorescence experiments (see, for example

[103–107]). Such an experiment should encompass the different

components of the translation machinery (tRNA molecules,

ribosomes, elongation and initiation factors). Specifically, it will

enable monitoring oscillations at the level of single ribosomal

movements.

There are other types of large scale in-vitro experiments (see for

example, [108–111]) that may be relevant. Here, crude extracts

containing all the macromolecular components (70S or 80S

ribosomes, tRNAs, aminoacyl-tRNA synthetases, initiation, elon-

gation and termination factors, etc.) required for translation of

RNA are prepared. To ensure efficient translation, each an extract

must be supplemented with amino acids, energy sources (ATP,

GTP), energy regenerating systems (creatine phosphate and

creatine phosphokinase for eukaryotic systems, and phosphoenol

pyruvate and pyruvate kinase for the E. coli lysate), and other co-

factors (Mg2+, K+, etc.).

In-vitro experiments should enable to produce oscillations in

different molecules related to the translation process (for example,

the tRNA levels; similarly to the mathematical example described

above) and measuring the effect of these oscillations on the

ribosomal translation pattern.

The mathematical analysis performed here leads to several

computational questions that deserve further study. First, our

results provide little information on the periodic solution c. In

particular, important questions are how does the amplitude and

other properties of c depend on the initiation and translation rates,

and what is the convergence rate of the solutions to c. The analysis

suggests that there are several possible ways to induce periodicity

in the translation rate (e.g., via oscillating tRNA molecules, mRNA

molecules, initiation factors, elongation factors, ribosomal RNA,

etc), and it would be interesting to analyze how the periodic

solution c is affected by the different possible ways of inducing

periodicity.

Finally, and more generally, TASEP and its variants have been

used to model and analyze a large number of biological and

artificial systems including biomolecular motors [112,113], the

collective motion of ants [114], traffic flow [115–117], ad hoc

communication networks [118], and surface growth [119]. Many

of these systems may be affected by periodic signals. For example,

traffic flow is often controlled by periodically-varying traffic lights.

It may be of interest to model and study such systems using the

PRFM.

Methods

In order to prove our main results, we first detail several known

results that will be used later on.

Preliminaries
Consider the system

_xx~f (t,x), ð6Þ

evolving on a convex set C5 n. Let x(t,t0,x0) denote the

solution of (6) at time t§t0 with x(t0)~x0 (for the sake of

simplicity, we assume from here on that x(t,t0,x0) exists and is

unique for all t§t0§0).

Recall that (6) is said to be contracting [72] on C with respect to a

norm j:j : n? z if there exists cw0 such that

jx(t2,t1,a){x(t2,t1,b)jƒ exp ({(t2{t1)c)ja{bj ð7Þ

for all t2§t1§0 and all a,b[C. In other words, trajectories

contract to one another at an exponential rate.

A standard approach for proving contraction is based on

analyzing the Jacobian matrix J(t,x) : ~
L
Lx

f (t,x). Recall that a

vector norm j:j : n? z induces a matrix norm jj:jj : n? z

defined by

jjAjj : ~ max
jxj~1
jAxj,

and a matrix measure m : n|n? defined by

m(A) : ~ lim
;0

1
(jjIz Ajj{1):

The next result, known as Coppel’s inequality (see, e.g. [120,121]),

provides a bound on the solution of a linear time-varying system in

terms of the induced matrix measure.

Theorem 3 Consider the differential equation

_yy(t)~M(t)y(t) ð8Þ

where y : z? n, and the matrix M : z? n|n is defined and

continuous for all t§t0§0. Suppose that j:j : n? z is a vector norm

and let m : n|n? denote the induced matrix measure. Then every

solution of (8) satisfies
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jy(t)jƒ exp

ðt

t0

m(M(s))ds

 !
jy(t0)j, for all t§t0:

We now give an informal explanation of how this can be used to

prove contraction. Suppose that there exists cw0 such that

m(J(t,x))v{c ð9Þ

for all t§0 and all x[C, where C( n is a convex set. The

distance x between two trajectories of (6) emanating from

infinitesimally close initial conditions satisfies
d

dt
( x)~J(t,x) x,

so combining (9) and Coppel’s inequality suggests that (7) holds for

all a,b[C. Furthermore, it can be shown that contraction implies

entrainment to a periodic excitation, see e.g. [3,72] for rigorous

statements and proofs.

Consider applying these ideas to the PRFM. We can write the

PRFM as _xx~f (t,x), where f is T-periodic, i.e. f (tzT ,x)~f (t,x)
for all x and t. A calculation shows that the Jacobian of f is

J(t,x)~L(t,x){D(t), ð10Þ

where L is shown below and

D: = diag(l,0,…..0,ln).

L~

{l1(1{x2) l1x1 0 0

l1(1{x2) {l1x1{l2(1{x3) . . . 0

0 l2(1{x3) . . . 0

P

0 . . .
{ln{2xn{2{

ln{1(1{xn)
ln{1xn{1

0 . . . ln{1(1{xn) {ln{1xn{1

2
666666666664

3
777777777775

–—————————————————————————

Recall that a matrix is said to be a Metzler matrix if all its off-

diagonal entries are non-negative. Note that L(t,x) is Metzler,

tridiagonal, and with zero sum columns for all t§0 and all x[C.

It is well-known ([122], Chapter 3) that the induced matrix

measure corresponding to the L1 vector norm is

m1(A)~ maxfc1(A), . . . ,cn(A)g, ð11Þ

where

cj(A) : ~Ajjz
X

1ƒiƒn
i=j

jAij j, ð12Þ

i.e., the sum of the entries in column j, with non diagonal elements

replaced by their absolute values. Of course, if A is Metzler then

one can take Aij instead of jAij j in (12).

Calculating m1(J(t,x)) for the PRFM shows that when n~2,

m1(J(t,x))~ maxf{l(t),{l2(t)g

ƒ{ 1,

so in this case we have contraction with respect to the L1 norm.

However, for n§3, ci(J(t,x))~0 for i~2,3, . . . ,n{1, and

m1(J(t,x)):0. Intuitively, this means that the PRFM is on the

‘‘verge’’ of contraction with respect to the L1 norm, but this is not

enough to prove entrainment. Furthermore, when x1~0 and

x3~1 all the entries in the second column of J are zero, and this

implies that the PRFM is not a contraction on C with respect to any

norm (as a necessary condition for contraction is that J(t,x) is a

Hurwitz matrix for all t§0 and all x[C).

Proof of Main Result
For two vectors a,b[ n, we write aƒb if aiƒbi for i~1, . . . ,n.

Let 1n[ n denote the vector with all entries equal to one. For

f[½0,1=2�, define

Vf : ~fx[C : f1nƒxƒ(1{f)1ng:

Note that V0~C, and that Vf is a strict subcube of C for all

f[(0,1=2�. The next result shows that the trajectories of the RFM

always enter such a strict subcube, and then remain in it.

Proposition 1 Consider the PRFM. Fix arbitrary t1§0, a[C, and

tw0. There exists f~f(t)[(0,1=2), with f(t)?0 as t?0, such that

x(t,t1,a)[Vf, for all t§t1zt: ð13Þ

Proof. See the section Additional Proofs.

Recall that the PRFM is not a contraction on C with respect to

any norm. The next result shows that contraction does hold on

any strict subcube of C. The proof, given in the Additional Proofs

section, uses a suitable diagonal scaling of the L1 norm.

Proposition 2 Fix an arbitrary f[(0,1=2). Then the PRFM is

contracting on Vf.

Note that all the proofs up to this point (given in the section

Additional Proofs) do not rely on the assumption that the rates are

periodic functions. We can now prove our main result.

Proof of Theorem 2. Recall that the excitation is periodic with

period T . Let m(a) : ~x(T ,0,a), i.e., m maps the initial condition

x(0)~a to the solution of the PRFM at time T . Then m is

continuous and maps C to C, so by the Brouwer fixed point

theorem (see, e.g. [123]) there exists f[C such that m(f)~f, i.e.

x(T ,0,f)~f. This implies that the PRFM admits a periodic

solution c with period T . It follows from Proposition 1 that

x(t,0,f)[Int(C) for all t§0. We already know that every trajectory

enters some strict subcube of C, that this subcube is an invariant

set, and that in this subcube contraction holds. Thus, every

trajectory converges to the periodic solution emanating from

x(0)~f. In particular, there cannot be two distinct periodic

solutions. This completes the proof of Theorem 2.

Note that the reasoning above does not rule out the possibility

that

c(t):c(0), ð14Þ

for all t§0, i.e. that the periodic trajectory is just a fixed point. To

study this case, assume that a fixed point e[C indeed exists. Then

(1) yields

l(t)(1{e1)~l1(t)e1(1{e2)
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~l2(t)e2(1{e3)

..

.

~ln{1(t)en{1(1{en)

~ln(t)en,

for all t§0. Thus, (14) is possible only in the rather special case

where all the rates are equal, up to multiplication by a non-

negative scalar.

Additional Proofs
This section includes the proofs of several results stated above.

We begin by stating and proving two auxiliary results. The next

subsection describes a result that will be used to prove Proposition

1.

Repelling Boundaries and Persistence
Lemma 1 Consider a time-varying system

_xx~f (t,x) ð15Þ

evolving on a subset of X : ~I1|I2| . . . |In( n
z, where each Ij is

an interval of the form ½0,A�, Aw0, or ½0,?). Suppose that the time-

dependent vector field f ~ f1, . . . ,fn½ �0 has the following boundary-repelling

property:

(BR) For each w0 and each sufficiently small Dw0, there exists

K~K( ,D)w0 such that, for each k~1, . . . ,n and each t§0, the

condition

xkƒD, and xi§ , for every 1ƒiƒk{1 ð16Þ

(for k~1, the condition is simply x1ƒD)

implies that

fk(t,x)§K, for all t§0: ð17Þ

Then given any tw0 there exists ~ (t)w0, with (t)?0 as t?0, such

that, for every solution x(t), t§0, it holds that

xi(t)§ for all i[f1, . . . ,ng and all t§t:

In other words, the conclusion is that after an arbitrarily short time

every xi(t) is separated away from zero.

Proof of Lemma 1. Pick any tw0. Let tn : ~t=n. We proceed by

induction: for each k[f1, . . . ,ng we will define an k and show that

for every solution x(t), xi(t)§ k for every t§ktn and every

i[f1, . . . ,kg. Then ~ n gives the result. Pick any fixed Dw0
small enough that (BR) holds, and let x(t) be any given solution.

From here on, we write just t instead of tn.

Consider first the case k~1. Let K~K(D, ) (for any arbitrary

w0) and define 1 : ~ minfD,Ktg. Let t0[½0,t� be such that

x1(t0)§ 1. Such a t0 exists, since by property (BR), x1(t)v 1ƒD
for all t[½0,t� would imply that _xx1(t)~f1(t,x(t))§Kw0 for all

t[½0,t�, which in turn implies x1(t)§x1(0)zKt§Kt§ 1, con-

tradicting x1(t)v 1. We claim that also x1(t)§ 1 for every t§t0.

Indeed, suppose otherwise. Then, there is some t1wt0 such that

j : ~x1(t1)v 1. Let

s : ~ minft§t0 jx1(t)ƒjgwt0:

As x1(s)ƒjv 1ƒD, property (BR) says that

_xx1(s)~f1(s,x(s))§K , so it follows that _xx1(t)w0 on an interval

½s{t,s�, for some tw0. But then x1(s{t)vx1(s)ƒj, which

contradicts the minimality of s. Thus x1(t)§ 1 for all t§t0, and

in particular for all t§t.

Now by induction, consider 1vkvn, and suppose that

xi(t)§ k for all t§kt, and every i[f1, . . . ,kg. We must define

kz1 so that xi(t)§ kz1 for all t§(kz1)t and every

i[f1, . . . ,kz1g. Let K~K( k,D) in (BR), and define

kz1 : ~ minf k,D,Ktg.
Let t0[½kt,(kz1)t� be such that xkz1(t0)§ kz1. Such a t0

exists, since by property (BR), (using that xi(t)§ k~ : for all

iƒk and t§kt) xkz1(t)v kz1ƒD for all t[½kt,(kz1)t� would

imply that _xxkz1(t)~fkz1(t,x(t))§Kw0 for all t[½kt,(kz1)t�,
which in turn implies

xkz1((kz1)t)§xkz1(kt)zKt§Kt§ kz1, contradicting

xkz1((kz1)t)v kz1.

We claim that also xkz1(t)§ kz1 for every t§t0. Indeed,

suppose otherwise. Then, there is some tkz1wt0 such that

j : ~xkz1(tkz1)v kz1. Let

s : ~ minft§t0 jxkz1(t)ƒjgwt0:

As xkz1(s)ƒjv kz1ƒD, and also xi(s)§ k (because xi(t)§ k

for all t§kt, and s§t0§kt), we may apply property (BR), which

says that _xxkz1(s)~fkz1(s,x(s))§K , so it follows that _xxkz1(t)w0
on an interval ½s{t,s�, for some tw0. But then

xkz1(s{t)vxkz1(s)ƒj, which contradicts the minimality of

s. Thus xkz1(t)§ kz1 for all t§t0, and in particular for all t§t.

By the definition of kz1 and the induction hypothesis, we also

have xi(t)§ kz1 for all t§(kz1)t and every i[f1, . . . ,kg.
We can now prove Proposition 1. We begin by showing that the

PRFM satisfies property (BR) in Lemma 1 on X~C. Fix an

arbitrary w0. Consider the case k~1. If x1ƒD then

f1~l(1{x1){l1x1(1{x2)

§K1,

where K1 : ~ 1(1{D){ 2D. Now pick 1vkvn. If xkƒD and

xi§ for 1ƒiƒk{1 then

fk~lk{1xk{1(1{xk){lkxk(1{xkz1)

§ �KK ,

where
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�KK : ~ 1 (1{D){ D2 :

Finally, if xnƒD and xi§ for 1ƒiƒn{1 then

fn~ln{1xn{1(1{xn){lnxn

§ �KK :

Thus, (17) holds for K : ~ minfK1, �KKg and clearly Kw0 for all

Dw0 sufficiency small. Thus, the PRFM satisfies (BR). Pick an

arbitrary tw0. Applying Lemma 1 implies that there exists

g1~g1(t)w0 such that

x(t,t1,a)§g11n, for all t§t1zt:

Define yi(t) : ~1{xnz1{i(t), i~1, . . . ,n. It is straightforward to

verify that the dynamics of the y-system is just that of the PRFM,

up to a reordering of the rates l(t),li(t). This implies that the y-

system also satisfies property (BR), so there exists g2(t)w0 such

that

y(t,t1,a)§g21n, for all t§t1zt:

Thus, (13) holds for f : ~ minfg1,g2g. This completes the proof of

Proposition 1.

Remark 2 Note that the proof above shows that the

requirement that the rates are uniformly separated from zero by

1w0 (see (4)) cannot be omitted. Indeed, if 1~0 then �KK is no

longer positive. In fact if we allow the rates to vanish identically

then Proposition 1 does not hold. For example, suppose that

ln(t):0. Then 1n becomes an equilibrium point of the RFM, and

so (13) does not hold for a~1n.

The next subsection includes a result on diagonal scaling of a

tridiagonal matrix. This will be used to prove that the PRFM is a

contraction on Vf, f[(0,1=2).

Diagonal Scaling of a Tridiagonal Matrix
Let P[ n|n be an invertible matrix. Define a vector norm

j:j1,P : n? z by jzj1,P : ~jPzj1. The induced matrix measure

is m1,P(A) : ~m1(PAP{1):

Theorem 4 Suppose that L[ n|n is a tridiagonal matrix with zero

sum columns, and that there exist r1,r2w0 such that

r1ƒLijƒr2, for all i=j: ð18Þ

Then for each w0 there exist

qi~qi( )w1, i~1, . . . ,n{1, ð19Þ

such that for the matrix

P~P( )~ diag 1,q1,q1q2, . . . ,q1q2 . . . qn{1ð Þ

and the matrix measure

m1, (L) : ~m1(PLP{1)

the following properties hold:

1. m1, (L)~ max c1,c2, . . . ,cnf g where

c1~ ,

ci~
1

qi{1
{1

� �
Li{1,i

2
, i~2, . . . ,n{1,

cn~{
1

qn{1

{1

� �
Ln,n,

ð20Þ

and there exists a~a( ,r1,r2)v0 such that ciƒa for i~2, . . . ,n.

2. if D~diag d1, . . . ,dnð Þ is a non-negative diagonal matrix, with d1w0,

then

m1, (L{D)ƒ maxf{d1=2,ag

v0

for all [(0,d1=2).

Proof of Theorem 4. Since L is tridiagonal with zero column sums,

we can write

L~

{b1 a2 0 . . . 0 0

b1 {a2{b2 a3 . . . 0 0

0 b2 {a3{b3 . . . 0 0

..

. ..
. ..

. ..
. ..

.

0 0 0 . . . {an{1{bn{1 an

0 0 0 . . . bn{1 {an

2
6666666664

3
7777777775

,

with

0vr1ƒai,biƒr2: ð21Þ

Therefore

M : ~PLP{1

~

{b1
a2

q1
0 . . . 0 0

q1b1 {a2{b2
a3

q2
. . . 0 0

0 q2b2 {a3{b3 . . . 0 0

..

. ..
. ..

.
. . . ..

. ..
.

0 0 0 . . . {an{1{bn{1
an

qn{1

0 0 0 . . . qn{1bn{1 {an

2
66666666666664

3
77777777777775
:

Let ci denote the sum of the elements in column i of M, with off

diagonal elements taken with absolute value. Since the off diagonal

elements of M are non-negative,

c1~ q1{1ð Þb1

ci~
1

qi{1
{1

� �
aiz qi{1ð Þbi, i~2, . . . ,n{1,
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cn~
1

qn{1
{1

� �
an :

Pick any w0 and define, recursively:

q1 : ~1z
b1

qi : ~1z
ai

2bi

1{
1

qi{1

� �
, i~2, . . . ,n{1 :

Then clearly (20) holds. Using (21) yields q1§1zs1, where

s1 : ~ =r2w0. Combining this with the definition of q2 and (21)

implies that there exists s2w0 such that q2§1zs2. Proceeding in

this fashion yields an s~s( ,r1,r2)w0 such that qi§1zs for all i.

By (20), this implies that there exists a~a( ,r1,r2)v0 such that

ciƒa for i~2, . . . ,n. This completes the proof of Theorem 4.

We can now prove Proposition 2. Pick tw0, t1§0, and a[C.

By Proposition 1, there exists f~f(t)[(0,1=2) such that (13) holds.

This implies that the off diagonal elements of L(t,x(t)) satisfy

1 fƒLij(t,x(t))ƒ 2 (1{f), for all i=j, t§t1zt:

Recall that the Jacobian of the PRFM is J(t,x(t))~L(t,x(t)){D(t),
with d11(t)~l(t)§ 1 . Let : ~ 1=2. By Theorem 4, there exists a

matrix P~P( ), and a scalar a~a( , 1f, 2(1{f))v0, such that

m1, (J(t,x(t)))ƒ maxf{ 1=2,agv0 for all t§t1zt. Thus, the

PRFM is contracting on Vf with respect to the norm j:j1, . This

completes the proof of Proposition 2.
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