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Abstract

Background: Medulloblastoma (MB) is one of the most common malignant cancers in children. MB is primarily
classified into four subgroups based on molecular and clinical characteristics as (1) WNT (2) Sonic-hedgehog (SHH)
(3) Group 3 (4) Group 4. Molecular characteristics used for MB classification are based on genomic and mRNAs
profiles. MB subgroups share genomic and mRNA profiles and require multiple molecular markers for differentiation
from each other. Long non-coding RNAs (lncRNAs) are more than 200 nucleotide long RNAs and primarily involve
in gene regulation at epigenetic and post-transcriptional levels. LncRNAs have been recognized as diagnostic and
prognostic markers in several cancers. However, the lncRNA expression profile of MB is unknown.

Methods: We used the publicly available gene expression datasets for the profiling of lncRNA expression across MB
subgroups. Functional analysis of differentially expressed lncRNAs was accomplished by Ingenuity pathway analysis
(IPA).

Results: In the current study, we have identified and validated the lncRNA expression profile across pediatric MB
subgroups and associated molecular pathways. We have also identified the prognostic significance of lncRNAs and
unique lncRNAs associated with each MB subgroup.

Conclusions: Identified lncRNAs can be used as single biomarkers for molecular identification of MB subgroups
that warrant further investigation and functional validation.

Keywords: Long non-coding RNA, Pediatric Medulloblastoma, Cancer biomarkers, Gene expression and pathways,
Therapeutic targets

Background
Medulloblastoma (MB), the most common pediatric
brain tumor, constitutes nearly 20% of newly diagnosed
brain tumors in children [1, 2]. Treatment of MB in-
volves radiation therapy, chemotherapy and surgical re-
section. These strategies have improved the survival by
70–80% but also lead to serious morbidities [3, 4]. MB
are classified into four major molecular subgroups as
WNT, Sonic hedgehog (SHH), Group 3 and Group 4.

The WNT subgroup is least common among all 4 sub-
groups and present in only 10% of cases. Genetic
changes in genes: CTNNB1, DDX3X, SMARCA4 and
DKK1 are frequently observed in the WNT subgroup.
WNT has the best prognosis among all types of MB.
SHH is second most common subgroup with abnormal-
ities in SHH signaling pathway and accounts for ~ 30%
of total MB cases. Genetic anomalies in genes: MYCN,
GLI1, PTCH1, SUFU, MLL2, SMO, TP53, BCOR1,
GAB1, GABRG1 and LDB1 are frequently seen in the
SHH subgroup. The SHH subgroup has an intermediate
prognosis among MB subgroups. Group 3 is the third
most common subgroup with 25% of the total MB cases.
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Group 3 is mainly MYC-driven and genetic aberrations
are seen in genes: MYC, PVT1, OTX2, MLL2,
SMARCA4, and CHD7 in this subgroup. The prognosis
of the Group 3 is very poor and 5 year overall survival is
less than 50%. Group 4 is the most common subgroup
of MB and accounts for 35% of total cases. The progno-
sis of the Group 4 is intermediate and genetic aberra-
tions are commonly present in genes: OTX2, DDX31,
CHD7, NCAIP, MYCN, CDK6, GFI1/GFI1B, MLL2,
KDM6A, MLL3, and ZMYM3 [5–9]. Molecular markers
used for WNT identification are CTNNB1 (nuclear),
FLIA, YAP1 and DKK1; for SHH are SFRP1, GLI1, FLIA,
YAP1 and GAB1; for Group 3, NPR3; and for Group 4,
KCNA1. Identification of new molecular markers for
drug targeting, diagnosis and prognosis are important
due to need for improved molecular profiling of MB
[10].
Long non-coding RNAs (LncRNAs) are RNAs of more

than 200 bp in length and can be transcribed from an

intergenic region, genic regions or super enhancer re-
gions in the genome. LncRNAs can modulate chro-
matin structure, gene regulation via interactions with
epigenetic modifiers and transcriptional co-factors,
and also have post-translation effects via affecting the
stability of mRNA or proteins [11, 12]. Deregulated
lncRNA expression is associated with many cancers
[13]. LncRNA signatures have been used to classify
different types of cancer as biomarkers for diagnosis,
prognosis and therapy [14–18]. LncRNAs are secreted
in serum, plasma, and CSF in a stable form protected
from endogenous RNAase and can be used for non-
invasive analysis from patient samples [19, 20]. The
role of lncRNA in brain development is well studied
[21–26]. However, there is not much known about
role of lncRNAs in MB. LncRNA LOXL1-AS1 pro-
motes the proliferation and metastasis of MB by acti-
vating the PI3K-AKT pathway [27]. LncRNA CCAT1
promotes cell proliferation and metastasis in human

Table 1 Top 10 up-regulated lncRNAs in WNT subgroup of MB

Gene Symbol Fold Change P-val FDR P-val

EMX2OS 38.18 9.01E-14 4.92E-10

OTX2-AS1 37.84 1.14E-09 3.93E-07

PGM5-AS1 30.26 9.54E-09 1.63E-06

DSCR8 24.56 0.0001 0.0013

LOXL1-AS1 21.06 1.03E-08 1.73E-06

HAND2-AS1 18.51 9.37E-07 3.59E-05

TMEM51-AS1 16.9 3.88E-09 8.82E-07

RMST 13.92 1.14E-07 8.49E-06

LINC01305 11.11 0.0001 0.001

PART1 10.94 1.89E-05 0.0003

Table 2 Top 10 down-regulated lncRNAs in WNT subgroup of MB

Gene Symbol Fold Change P-val FDR P-val

LINC00461 −62.39 1.16E-06 4.17E-05

MEG3 −58.9 9.41E-07 3.60E-05

LINC00844 −24.94 0.0003 0.0024

LINC00643 −13.3 6.95E-06 0.0001

SOX2-OT −12.13 0.0003 0.0024

PEG3-AS1 −10.02 3.49E-07 1.84E-05

TUNAR −7.72 2.04E-12 5.87E-09

MALAT1 −7.39 1.65E-07 1.10E-05

LINC01105 −7.39 3.77E-05 0.0005

LINC01351 −6.48 2.24E-05 0.0003
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MB by regulating the MAPK pathway [28]. Silencing
of ANRIL in MB cell lines significantly lowered cell
viability and migration. ANRIL promoted the apop-
tosis of MB cell lines through miR-323-mediated
regulation of BRI3, which activates p38 MAPK, ERK,
and AKT as well as the WNT signaling pathway [29].
LINC-NeD125 expression is upregulated in Group 4
MB and after interacting to miRNA-induced silencing
complex(MISC), it directly binds to miR-19a-3p, miR-
19b-3p and miR-106a-5p. Functionally, LINC-NeD125
acts by sequestering the three miRNAs, which leads
to the de-repression of major driver genes (CDK6,
MYCN, SNCAIP, and KDM6A) of Group 4MB [30].
LncRNA CRNDE expression is elevated in MB and
knockdown of CRNDE significantly reduced cell pro-
liferation and inhibited colony formation in MB cell
lines, Daoy and D341 [31].

In the current study, we have identified the lncRNAs
expression profile of pediatric MB subgroups and associ-
ated molecular pathways. We have also identified the
unique lncRNAs associated with each subgroup.

Methods
We searched the Gene Expression Omnibus (GEO) data-
base for MB related microarray datasets and found two
relevant studies, GSE37418 [for pediatric MB subgroups
expression data] and GSM1094863, GSM1094864,
GSM1094865, GSM1094866, GSM1094867 [for pediatric
primary cerebellum expression data from GSE44971] for
our analyses. We further used large GSE124814 datasets
for the validation of lncRNAs expression profiles of MB
subgroups obtained from our original analyses. We se-
lected the age < 18 years as an inclusion criteria for select-
ing pediatric MB samples. We selected the datasets which

Fig. 1 a: Heatmap of top 10 upregulated and downregulated lncRNAs in WNT subgroup. Expression value of different lncRNAs was clustered
using correlation distance method. b: Differentially expressed lncRNAs in a non-canonical biological network in WNT subgroup. The important
nodes in this biological network are CCND1, AKT, SOX2, POU5F1, DNMT3B, and CTNNB1. c: Differentially expressed lncRNAs in another non-
canonical biological network in WNT subgroup. The important nodes in this biological network are TP53, MYC, EZH2, and MDM2. Green indicates
downregulated and red indicates upregulated lncRNAs

Table 3 Top 10 upstream regulators involved in DE lncRNAs in WNT subgroup

Upstream Regulator Molecule Type P-val of overlap Target molecules in dataset

MAX transcription regulator 5.53E-03 DLEU1,DLEU2

miR-150-5p (and other miRNAs w/seed CUCCCAA) mature microRNA 5.54E-03 MIAT

miR-133a-3p (and other miRNAs w/seed UUGGUCC) mature microRNA 7.38E-03 MALAT1

mir-133 microRNA 9.22E-03 MALAT1

FOLR1 transporter 1.31E-02 GAS5,PVT1

E2f group 1.37E-02 DLEU1,DLEU2

ATF5 transcription regulator 1.47E-02 GAS5

NCAM1 other 1.84E-02 MALAT1

mir-150 microRNA 2.56E-02 MIAT

GAS2L3 other 2.92E-02 PVT1

Kesherwani et al. BMC Medical Genomics           (2020) 13:87 Page 3 of 14



used the Affymetrix U133 Plus2 array for probe level RNA
expression studies. For data analyses, we first did back-
ground correction, normalization (RMA), quality control
checks, intensity and batch effect corrections of each data-
set. Following that, we did probe level differential analyses
of datasets using the limma package (ANOVA with eBayes)
with criteria of p < 0.001 and fold change greater than two
folds. We then annotated the probe sets with the Affyme-
trix U133 Plus2 library and filtered out lncRNA genes. The
lncRNA gene database used is verified and approved by
HGNC. Functional analysis of differentially expressed
lncRNAs was done by Ingenuity pathway analysis (IPA)
software from BioRad, Inc. We used default parameters
and checked all the node types, all species (except un-
charted), and all tissue types for core analysis in IPA.

Results
Differentially expressed lncRNAs in the WNT subgroup
and their functional roles
Comparative analyses of WNT MB (N = 8) and normal
cerebellum tissue (N = 5) datasets with p < 0.05 and fold

changes > 2 provided 199 differentially expressed
lncRNAs with approved status. Tables 1 and 2 show the
fold change in the top 10 upregulated and downregu-
lated lncRNAs. Heatmap of top 10 upregulated and
downregulated lncRNAs is shown in Fig. 1a. The
complete list of lncRNAs can be seen in Additional file
1. We found 73% overlap with lncRNAs in validation
datasets [WNT N = 31, Control = 5] (Additional file 2).
We found all the top 10 upregulated and downregulated
lncRNAs present in validation datasets. We mostly see
non-overlap in lncRNAs at lower expression values.
We did functional analysis of differentially expressed

(DE) lncRNAs of the WNT subgroup using IPA. We
identified different functional parameters involved in this
subgroup. MAX (a MYC interacting partner), miR-150,
miR-133a, FOLR1, E2F NCAM1, GAS2L3 and ATF5 are
the most significantly associated upstream regulators,
while cancer, neurogenesis, metastasis and cellular devel-
opment are the most important biological functions

Table 4 Top 10 disease and function identified by IPA from DE lncRNAs in WNT subgroup

Categories Diseases or Functions Annotation P-val Activation z-score

Cellular Development, Cellular Growth and Proliferation, Nervous
System Development and Function

Neurogenesis of nervous tissue cell lines 3.38E-06

Cellular Movement Cell movement of tumor cell lines 1.12E-05 1.324

Cellular Movement Migration of tumor cell lines 1.14E-05 1.498

Cellular Movement Invasion of tumor cell lines 1.55E-04 1.083

Cell Cycle Arrest in G0 phase of tumor cell lines 3.83E-04

Cancer, Organismal Injury and Abnormalities Metastasis of tumor cell lines 4.26E-04 −0.277

Cell Death and Survival Cell death of eye cell lines 5.07E-04

Cellular Movement Migration of cells 6.27E-04 0.573

Cellular Movement Cell movement 6.75E-04 0.453

Cellular Movement Migration of hepatoma cell lines 1.34E-03

Table 5 Top 10 up-regulated lncRNAs in SHH subgroup of MB

Gene Symbol Fold Change P-val FDR P-val

NEAT1 23.48 0.0003 0.0022

DLEU2 13.24 5.79E-11 2.41E-08

PRR34-AS1 8.07 1.58E-07 8.49E-06

LINC01355 8.05 2.93E-09 5.15E-07

MIRLET7BHG 7.49 1.79E-07 9.34E-06

CKMT2-AS1 6.23 1.86E-09 3.59E-07

SLC16A1-AS1 5.65 8.13E-08 5.36E-06

TPT1-AS1 5.28 4.44E-08 3.50E-06

LINC01000 4.96 1.10E-08 1.32E-06

ANP32A-IT1 4.94 9.36E-07 3.07E-05

Table 6 Top 10 down-regulated lncRNAs in SHH subgroup of
MB

Gene Symbol Fold Change P-val FDR P-val

LINC00844 −33.36 1.08E-08 1.32E-06

MIR124-2HG −28.13 0.0005 0.0032

SOX2-OT −13.83 2.39E-07 1.15E-05

PEG3-AS1 −12.94 5.12E-08 3.88E-06

LINC00643 −11.76 3.97E-06 8.83E-05

HCG11 −11.26 0.0012 0.0065

RMST −9.43 0.0036 0.0155

CCEPR −8.93 1.49E-06 4.27E-05

MEG3 −8.53 0.0002 0.0018

MALAT1 −8.25 2.82E-06 6.86E-05
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affected in this subgroup (Tables 3 and 4). Heatmap of 5
upstream regulators is shown in supplementary Fig. 1
(Additional file 3). The two most important non-
canonical networks enriched with DE lncRNAs are
shown in Fig. 1b and c. In networks 1; CCND1, AKT,
SOX2, POU5F1, DNMT3B, and CTNNB1, in network 2;
TP53, MYC, EZH2, and MDM2 are the central regula-
tors linked with DE lncRNAs.

Differentially expressed lncRNAs in the SHH subgroup
and their functional roles
Comparative analyses of the SHH subgroup (N = 10) and
normal cerebellum tissue (N = 5) datasets with p < 0.05
and fold change > 2 provided 145 differentially expressed
lncRNAs with approved status. Tables 5 and 6 show the
fold change in the top 10 upregulated and downregu-
lated lncRNAs. Heatmap of top 10 upregulated and
downregulated lncRNAs is shown in Fig. 2a. The

complete list of lncRNAs can be seen in Additional file
1. We found 50% overlap with lncRNAs in validation
datasets [SHH N = 65, Control = 5] (Additional file 2).
We found all the top 10, upregulated and downregulated
lncRNAs, present in validation datasets except DLEU2
and PRR34-AS1.
Functional analysis of DE lncRNAs of SHH MB sub-

group using IPA predicts, MAX (a MYC interacting
partner), miR-133a, FOLR1, E2F, ATF5, AM1, E2F3,
GAS2L3 and ACSL5 as most significantly associated up-
stream regulators, while cancer, neurogenesis, cell prolif-
eration, metastasis and cellular development are the
most important biological functions affected in this sub-
group (Tables 7 and 8). Heatmap of 5 upstream regula-
tors is shown in supplementary Fig. 1 (Additional file 3).
The two most important non-canonical networks
enriched with DE lncRNAs are shown in Fig. 2b and c.
In network 1; CCND1, TP53, MYC, MALAT1,

Fig. 2 a: Heatmap of top 10 upregulated and downregulated lncRNAs in SHH subgroup. Expression value of different lncRNAs was clustered
using correlation distance method. b: Differentially expressed lncRNAs in a non-canonical biological network in SHH subgroup. The important
nodes in this biological network are CCND1, TP53, MYC, MALAT1, CTNNB1, and SP1. c: Differentially expressed lncRNAs in another non-canonical
biological network in SHH subgroup. The important nodes in this biological network are Histone H3, MDM2, CCNA2, SOX2, POU2F1, SP1, and
ESR1. Green indicates downregulated and red indicates upregulated lncRNAs

Table 7 Top upstream regulators involved in DE lncRNAs in SHH subgroup

Upstream Regulator Molecule Type P-val of overlap Target molecules in dataset

MAX transcription regulator 2.74E-03 DLEU1,DLEU2

miR-133a-3p (and other miRNAs w/seed UUGGUCC) mature microRNA 5.17E-03 MALAT1

mir-133 microRNA 6.46E-03 MALAT1

FOLR1 transporter 6.58E-03 GAS5,PVT1

E2f group 6.85E-03 DLEU1,DLEU2

ATF5 transcription regulator 1.03E-02 GAS5

NCAM1 other 1.29E-02 MALAT1

E2F3 transcription regulator 1.49E-02 MALAT1,NEAT1

GAS2L3 other 2.05E-02 PVT1

ACSL5 enzyme 2.18E-02 ST7-AS1
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CTNNB1, and SP1, in network 2; Histone H3, MDM2,
CCNA2, SOX2, POU2F1, SP1, and ESR1 are the central
regulators linked with DE lncRNAs.

Differentially expressed lncRNAs in the Group 3 subgroup
and their functional roles
Comparative analyses of the Group 3MB (N = 16) and
normal cerebellum tissue (N = 5) datasets with p <
0.05 and fold change > 2 provided 149 differentially
expressed lncRNAs with approved status. Tables 9
and 10 show the fold change in the top 10 upregu-
lated and downregulated lncRNAs. Heatmap of top 10
upregulated and downregulated lncRNAs is shown in
Fig. 3a. The complete list of lncRNAs can be seen in
Additional file 1. We found 86% overlap with
lncRNAs in validation datasets [Group 3 N = 46, Con-
trol N = 5] (Additional file 2). We found all the top
10 upregulated and downregulated lncRNAs in the
validation dataset, except NEAT1.

Functional analysis of DE lncRNAs of Group 3 MB
using IPA predicted C17orf98, ZNF426, RNF165,
FBXO8, CTCF, LAYN, PYGO1, Firre, TSIX and miR-
150-5pa as most significantly associated upstream regu-
lators, while activation/inactivation of X-chromosome,
cell movement, and metastasis are the most important
biological functions affected in this subgroup (Tables 11
and 12). Heatmap of 5 upstream regulators is shown in
supplementary Fig. 2 (Additional file 3). The two most
important non-canonical networks enriched with DE
lncRNAs are shown in Fig. 3b and c. In network 1;
CCND1, EP300, CREBBP, ESR1, CTNNB1, and PRKCD,
in network 2; Histone H3, TP53, MYC, XIST, and EZH2
are the central regulators linked with DE lncRNAs.

Differentially expressed lncRNAs in the Group 4MB and
their functional roles
Comparative analyses of Group 4MB (N = 39) and nor-
mal cerebellar tissue (N = 5) datasets with p < 0.05 and

Table 9 Top 10 up-regulated lncRNAs in Group 3 of MB

Gene Symbol Fold Change P-val FDR P-val

OTX2-AS1 80.96 1.03E-14 1.38E-11

BLACAT1 24.59 6.32E-08 3.32E-06

LINC00348 19.06 0.0013 0.0077

LINC01355 9.91 1.54E-08 1.09E-06

DLEU2 8.97 2.31E-09 2.49E-07

PGM5-AS1 7.73 4.32E-05 0.0005

NEAT1 7.27 0.0082 0.0315

DSCR8 6.73 0.0104 0.0378

PRR34-AS1 6.63 1.37E-06 3.58E-05

MIRLET7BHG 6.32 0.0004 0.003

Table 10 Top 10 down-regulated lncRNAs in Group 3 of MB

Gene Symbol Fold Change P-val FDR P-val

XIST −315.1 0.0066 0.0267

MEG3 −58.01 0.0001 0.0011

SOX2-OT −50.3 1.15E-14 1.44E-11

LINC00844 −37.6 6.71E-08 3.47E-06

MIR100HG −16.61 1.16E-06 3.15E-05

HCG11 −12.99 1.93E-05 0.0003

MIAT −10.36 0.0002 0.0016

LINC00461 −9.38 0.002 0.0105

LINC00643 −9.34 0.0005 0.0036

TRHDE-AS1 −7.59 7.27E-09 6.14E-07

Table 8 Top 10 disease and function identified by IPA from DE lncRNAs in SHH subgroup

Categories Diseases or Functions Annotation P-val Activation z-score

Cellular Development, Cellular Growth and Proliferation,
Nervous System Development and Function

Neurogenesis of nervous tissue cell lines 1.79E-06

Cellular Development, Cellular Growth and Proliferation Proliferation of kidney cancer cell lines 3.01E-06 −0.095

Cellular Development, Cellular Growth and Proliferation Cell proliferation of tumor cell lines 3.90E-04 0.933

Cellular Movement Migration of carcinoma cell lines 5.25E-04 0.762

Cellular Movement Migration of kidney cancer cell lines 6.63E-04

Cellular Movement Cell movement of tumor cell lines 6.65E-04 0.751

Cellular Movement Migration of tumor cell lines 1.14E-03 1.033

Cellular Development, Cellular Growth and Proliferation Cell proliferation of carcinoma cell lines 1.30E-03 0.277

Cellular Development, Connective Tissue Development
and Function, Tissue Development

Osteogenic differentiation of nucleus pulposus cells 1.36E-03

Cancer, Gastrointestinal Disease, Organismal Injury and
Abnormalities

Stage I colorectal adenocarcinoma 1.36E-03
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fold change > 2 provided 150 differentially expressed
lncRNAs with approved status. Tables 13 and 14 show
the fold change in the top 10 upregulated and downreg-
ulated lncRNAs. Heatmap of top 10 upregulated and
downregulated lncRNAs is shown in Fig. 4a. The
complete list of lncRNAs can be seen in Supplementary
file 1. We found 82% overlap with lncRNAs in validation
datasets [Group 4N = 95, Control = 5] (Additional file 2).
We found all the top 10 upregulated and downregulated
lncRNAs in validation datasets.
Functional analysis of DE lncRNAs of Group 4MB

using IPA predicted C17orf98, ZNF426, RNF165,
FBXO8, CTCF, LAYN, PYGO1, Firre, TSIX and miR-
150-5pa as most significantly associated upstream regu-
lators, while activation/inactivation of X-chromosomes,
cell movement, methylation of DNA and metastasis are
the most important biological functions affected in this

subgroup (Tables 15 and 16). Heatmap of 5 upstream
regulators is shown in supplementary Fig. 2 (Additional
file 3). The two important non-canonical networks
enriched with DE lncRNAs are shown in Fig. 4b and c.
In network 1; AR, MYC, XIST, SP1, CCND1, and EZH2,
in network 2; Histone H3, SP1, ESR1, MYC, SOX2,
POU5F1, CDH1, and CEBPB are the central regulators
linked with DE lncRNAs.

Prognostic significance of lncRNAs in different subgroups
of MB
We used a publicly available dataset GSE85217 (Cavalli
dataset) to understand the prognostic significance of DE
lncRNAs of different MB subgroups. As shown in Fig. 5,
high expression of HAND2-AS1 is associated with poor
prognosis in WNT MB. Similarly, low expression of
MEG3 in SHH, high expression of DLEU2 and DSCR8

Fig. 3 a: Heatmap of top 10 upregulated and downregulated lncRNAs in Group 3 MB. Expression value of different lncRNAs was clustered using
correlation distance method. b: Differentially expressed lncRNAs in a non-canonical biological network in Group 3 MB. The important nodes in
this biological network are CCND1, EP300, CREBBP, ESR1, CTNNB1, and PRKCD. c: Differentially expressed lncRNAs in another non-canonical
biological network in Group 3 MB. The important nodes in this biological network are Histone H3, TP53, MYC, XIST, and EZH2. Green indicates
downregulated and red indicates upregulated lncRNAs

Table 11 Top 10 upstream regulators involved in DE lncRNAs in Group 3 MB

Upstream Regulator Molecule Type P-val of overlap Target molecules in dataset

C17orf98 other 1.11E-03 XIST

ZNF426 transcription regulator 1.11E-03 XIST

RNF165 enzyme 1.11E-03 XIST

FBXO8 other 1.11E-03 XIST

CTCF transcription regulator 2.08E-03 TSIX,XIST

LAYN other 2.22E-03 XIST

PYGO1 other 2.22E-03 XIST

Firre other 3.33E-03 XIST

TSIX other 3.33E-03 XIST

miR-150-5p (and other miRNAs w/seed CUCCCAA) mature microRNA 3.33E-03 MIAT
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in Group 3 and high expression of DLEU2 and low ex-
pression of XIST in Group 4 are associated with poor
prognosis in MB (p < 0.05).

Discussion
LncRNAs are known regulators of gene expression. Dis-
ruptions in gene regulatory pathways in cancers dictate
the aberrant LncRNAs expression [11–13]. Notably, al-
most 40% of lncRNAs are aberrantly expressed in the
brain-related disorders including brain tumors. However,
lncRNA expression profile in MB is largely unexplored.
In this study, we have identified the lncRNA expression
profile of pediatric MB subgroups and associated mo-
lecular pathways. The identified key lncRNAs require
further functional validation in vitro and in vivo to ex-
plore their potential role in MB subgroup-specific man-
ner. Here, we discuss the known cancer-relevant
function of the key lncRNAs identified in MB
subgroups.

EMX2OS is the most differentially expressed lncRNA
in the WNT subgroup. This lncRNA is known to regu-
late EMX gene expression in the brain development [32,
33]. OTX2-AS1 (antisense strand of the OTX2 gene) is
predominantly involved in eye development [34]. High
PGM5-AS1 (antisense strand of the PGM5 gene) expres-
sion is associated with development and poor prognosis
of colorectal cancer (CRC) [35]. Increased expression of
DSCR8 is associated to malignant pathology and poor
survival in hepatocellular carcinoma (HCC) patients
[36]. LOXL1-AS1 (antisense strand of the LOXL1 gene)
is involved in the progression and metastasis of MB by
regulating the PI3K-AKT signaling [27]. In addition, it is
also known to play roles in the proliferation and survival
of prostate cancer (PC) cells via miR-541-3p and cell
cycle gene CCND1 [37] as well as aggressive nature of
glioblastoma by activating NF-kB pathway [38].
HAND2-AS1 (antisense strand of the HAND2 gene) is
overexpressed in esophageal squamous cell carcinoma
(ESCC) [39] while it is downregulated in non-small cell

Table 12 Top 10 disease and function identified by IPA from DE lncRNAs in Group 3 MB

Categories Diseases or Functions Annotation P-val Activation z-score

Gene Expression Inactivation of mouse X chromosome 5.74E-06

Gene Expression Activation of mouse X chromosome 5.74E-06

Cellular Movement Cell movement of tumor cell lines 2.36E-05 0.783

Cellular Movement Migration of tumor cell lines 3.60E-05 0.955

Cell Cycle Arrest in G0 phase of tumor cell lines 1.65E-04

Cellular Movement Invasion of tumor cell lines 6.99E-04 0.495

Cellular Movement Cell movement 1.30E-03 0.804

Gene Expression Imprinting 1.31E-03

Cancer, Organismal Injury and Abnormalities Metastasis of tumor cell lines 1.32E-03 0.152

Hereditary Disorder, Organismal Injury and Abnormalities Familial skewed X inactivation 1.41E-03

Table 13 Top 10 up-regulated lncRNAs in Group 4 of MB

Gene Symbol Fold Change P-val FDR P-val

LINC01419 139.78 0.0047 0.0175

OTX2-AS1 60.12 9.95E-16 2.03E-13

BLACAT1 27.67 1.13E-18 4.59E-16

DLEU2 11.58 2.25E-15 4.16E-13

LINC01355 7.09 2.23E-07 3.85E-06

MIRLET7BHG 7.01 2.03E-06 2.55E-05

PRR34-AS1 6.82 8.84E-12 6.11E-10

LINC01000 6.29 4.10E-12 3.13E-10

CKMT2-AS1 6.19 5.04E-11 2.82E-09

MIR99AHG 5.27 9.82E-07 1.38E-05
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lung cancer (NSCLC) cells [40]. TMEM51-AS1 (anti-
sense strand of the TMEM51 gene) is associated with
renal cell carcinoma (RCC) [41]. RMST acts as a tumor
suppressor in triple-negative breast cancer (TNBC) by
inducing apoptosis and inhibiting proliferation/invasion
and migration [42]. PART1 promotes gefitinib-resistance
in ESCC by regulating the miR-129/Bcl-2 pathway [43]
and also associated with PC tumorigenesis [44].
LINC00461 is involved in glioma tumorigenesis via
MAPK/ERK and PI3K/AKT signaling pathways [45].
Downregulation of MEG3 is involved in the proliferation
and apoptosis of PC cells by regulating miR-9-5p and its
target gene QKI-5 [46]. Downregulation of LINC00844
is associated with poor clinical outcomes and suppressed
tumor progression/metastasis in PC [47]. SOX2-OT is
overexpressed and promotes tumorigenesis by upregu-
lating SOX2 gene and activating PI3K/AKT signaling

pathway in cholangiocarcinoma (CCA) [48]. SOX2-OT
is also a prognostic biomarker for osteosarcoma (OS)
and involved in cell survival and cancer stem cells [49].
TUNAR plays a tumor suppressive role in glioma cells
by upregulating miR-200a and inhibiting Rac1 [50].
MALAT1 promotes the chemo-resistance of cervical
cancer via BRWD1-PI3K/AKT pathway [51]. MALAT1
is a well-studied lncRNA in several solid and
hematological cancers [52].
NEAT1 is overexpressed in most cancer types, except

leukemia and myeloma, where it is down-regulated [53–
55]. DLEU2 exhibits role in the proliferation and survival
of laryngeal cancer cells via miR-16-1 [56]. DLEU2 is also
significantly overexpressed in gastric cancer and contrib-
utes to cell proliferation [57]. TPT1-AS1 (antisense strand
of the TPT1 gene) expression is upregulated in cervical
cancer and has influence on proliferation and migration

Table 14 Top 10 down-regulated lncRNAs in Group 4 of MB

Gene Symbol Fold Change P-val FDR P-val

XIST − 343.06 0.0287 0.0745

SOX2-OT −31.6 1.90E-13 2.06E-11

MALAT1 −13.08 5.80E-10 2.34E-08

LINC00643 −11.64 4.39E-13 4.32E-11

LINC00844 −9.89 1.26E-05 0.0001

LRRC75A-AS1 −9.53 1.52E-08 3.87E-07

MIAT −7.87 2.15E-10 9.90E-09

PRKAG2-AS1 −7.8 4.29E-07 6.75E-06

NR2F1-AS1 −5.98 8.89E-11 4.63E-09

PEG3-AS1 −5.74 1.92E-08 4.73E-07

Fig. 4 a: Heatmap of top 10 upregulated and downregulated lncRNAs in Group 4 MB. Expression value of different lncRNAs was clustered using
correlation distance method. b: Differentially expressed lncRNAs in a non-canonical biological network in Group 4 MB. The important nodes in
this biological network are AR, MYC, XIST, SP1, CCND1, and EZH2. c: Differentially expressed lncRNAs in another non-canonical biological network
in Group 4 MB. The important nodes in this biological network are Histone H3, SP1, ESR1, MYC, SOX2, POU5F1, CDH1, and CEBPB. Green indicates
downregulated and red indicates upregulated lncRNAs
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[58]. HCG11 is significantly overexpressed in hepatocellu-
lar carcinoma (HCC) and genetic-silencing of HCG11 in
HCC cells leads to decreased proliferation [59]. HCG11
expression is downregulated in PC and associated with
poor prognosis of patients [60]. CCEPR contributes sig-
nificantly in promoting cell proliferation and inhibiting
apoptosis in bladder cancer [61].
BLACAT1 is overexpressed in chemo-resistant

NSCLC and induces autophagy by regulating miR-17
and ATG7 pathway [62]. It also triggers proliferation/
survival by regulating WNT signaling in cervical cancer
[63].
XIST is elevated in bladder cancer and inhibits p53

function via binding to TET1 [64]. XIST also binds to
miR-34a and elicits proliferation and tumor development
in thyroid cancer [65]. XIST is an important regulator of
progression and oxaliplatin-resistance in malignant mel-
anoma [66]. MIR100HG is known to be involved in
cetuximab-resistance in CRC via the β-catenin cellular

pathway [67]. In addition, elevated expression of
MIR100HG is correlated with poor prognosis of osteo-
sarcoma [68]. MIAT is overexpressed in clear cell renal
cell carcinoma (CCRCC) and associated with poor prog-
nosis [69]. MIAT associates with miR-133 and contrib-
utes a role in the progression pancreatic cancer
development [70]. MIAT also plays a key role in CRC
tumorigenesis via miR-132/Derlin-1 axis [71]. NR2F1-
AS1 (antisense strand of the NR2F1 gene) promotes
chemotherapy-resistance in HCC by regulating miR-
363-ABCC1 drug-transporter pathway [72].

Conclusions
We propose that the majority of DE lncRNAs in MB
might have oncogenic properties as seen in other can-
cers (Supplementary Table S1 in Additional file 3) [73–
82]. We found approximately 25% of these DE lncRNAs
in MB are tumor suppressive. Also, each MB subgroup
has unique and common lncRNAs in their expression

Table 15 Top 10 upstream regulators involved in DE lncRNAs in Group 4 MB

Upstream Regulator Molecule Type P-val of overlap Target molecules in dataset

C17orf98 other 1.34E-03 XIST

ZNF426 transcription regulator 1.34E-03 XIST

RNF165 enzyme 1.34E-03 XIST

FBXO8 other 1.34E-03 XIST

LAYN other 2.68E-03 XIST

PYGO1 other 2.68E-03 XIST

CTCF transcription regulator 3.03E-03 TSIX,XIST

Firre other 4.02E-03 XIST

TSIX other 4.02E-03 XIST

miR-150-5p (and other miRNAs w/seed CUCCCAA) mature microRNA 4.02E-03 MIAT

Table 16 Top 10 disease and function identified by IPA from DE lncRNAs in Group 4 MB

Categories Diseases or Functions Annotation P-val Activation z-score

Cellular Movement Cell movement of tumor cell lines 4.56E-06 −0.938

Gene Expression Inactivation of mouse X chromosome 6.13E-06

Gene Expression Activation of mouse X chromosome 6.13E-06

Cellular Movement Migration of tumor cell lines 6.36E-06 −0.877

Gene Expression Imprinting 2.27E-05

Cell Death and Survival Apoptosis of kidney cancer cell lines 3.30E-05

Cancer, Organismal Injury and Abnormalities Metastasis of tumor cell lines 1.28E-04 0.555

Cellular Movement Invasion of tumor cell lines 1.36E-04 0.031

Cellular Development, Cellular Growth and Proliferation Proliferation of kidney cancer cell lines 1.68E-04

DNA Replication, Recombination, and Repair, Gene Expression Methylation of DNA 1.82E-04

Cell Death and Survival Cell death of eye cell lines 3.08E-04
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Fig. 5 Kaplan Meier survival curves of different lncRNAs expressed in different subgroups of MB (Cavalli dataset) obtained using scan cut-off
method on hgserver (https://hgserver1.amc.nl). a: High expression of HAND2-AS1 is associated with poor prognosis in WNT MB. b: Low
expression of MEG3 is associated with poor prognosis in SHH MB. c: High expression of DLEU2 and DSCR8 are associated with poor prognosis in
Group 3 MB. d: High expression of DLEU2 and low expression of XIST in Group 4 MB are associated with poor prognosis (p < 0.05)
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profile (Fig. 6). We performed a unique lncRNAs ana-
lysis in both original datasets and validation datasets
(Additional files 1 and 2). Unique lncRNAs can be vali-
dated for differential diagnosis and prognosis of MB sub-
groups. Common lncRNAs and associated molecules in
pathways can be important therapeutic targets. We iden-
tified important lncRNAs DELU2, CASC15, LINC01355
and GAS5 are present in each subgroup and can be fur-
ther explored for functional analyses in different MB
subgroups. We also found SOX2, Protein kinase C delta
(PRKCD), and EZH2 associated with functional net-
works of each subgroup and could be important drug
targets. We also identified the prognostic significance of
lncRNAs in different subgroups of MB.
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