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Abstract
Ventilatory efficiency can be evaluated using the relationship between minute ventilation (V′E) and the rate
of CO2 production (V′CO2

). In accordance with the modified alveolar ventilation equation, this relationship
is determined by changes in dead space volume (VD) and/or the arterial CO2 tension (PaCO2

) equilibrium
point. In this review, we summarise the physiological factors that may account for normative ageing and
pregnancy induced increases in V′E/V′CO2

during exercise. Evidence suggests that age-related increases in
VD and pregnancy-related decreases in the PaCO2

equilibrium point are mechanistically linked to the
increased V′E/V′CO2

during exercise. Importantly, the resultant increase in V′E/V′CO2
(ratio or slope), with

normal ageing or pregnancy, remains below the critical threshold for prognostic indication in
cardiopulmonary disease, is not associated with increased risk of adverse health outcomes, and does not
affect the respiratory system’s ability to fulfil its primary role of eliminating CO2 and maintaining arterial
oxygen saturation during exercise.

Introduction
The ventilatory response to exercise is well coordinated and matched to the rate of CO2 production (V′CO2

).
The strength of the relationship between minute ventilation (V′E) and V′CO2

is marked by relative
homeostasis of the arterial CO2 tension (PaCO2

) even in the context of the large increases in V′CO2
that

occur during exercise [1]. Ventilatory efficiency can be evaluated using this relationship, whereby an
increase in V′E/V′CO2

has been suggested to indicate less efficiency [2].

As summarised by the modified alveolar ventilation equation: V′E=(V′CO2
×863)/(PaCO2

×(1−VD/VT)) (figure 1),
V′E/V′CO2

is dependent on both the PaCO2
equilibrium point and the fraction of dead space, which is expressed

as the ratio of dead space volume to tidal volume (VD/VT). According to established models of ventilatory
control [3–5], resting steady-state V′E and PaCO2

are determined by chemoreflex (central and peripheral) and
non-chemoreflex (“wakefulness”) drives to breathe and their intersection with the metabolic hyperbola
(figure 2), which represents the curvilinear relation between V′E and PaCO2

at any given V′CO2
and VD/VT. This

point of intersection, often referred to as the respiratory control system’s PaCO2
equilibrium point, is inversely
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related to the V′E/V′CO2
response to exercise at a constant VD/VT. For example, at a VD/VT of 0.20, a decrease in

the respiratory control system’s PaCO2
equilibrium point from 40 mmHg to 32 mmHg would increase V′E from

∼40 to ∼50 L·min−1 at a V′CO2
of 1.5 L·min−1, which corresponds to moderate intensity exercise (figure 1).

Accordingly, a lowering of the PaCO2
equilibrium point, such as occurs during pregnancy, results in a higher

V′E/V′CO2
(e.g. at any given VD/VT, V′E/V′CO2

will increase as PaCO2
decreases), while an increase in relative

VD/VT, such as occurs with normative ageing, results in a higher V′E/V′CO2
(e.g. at any given PaCO2

, V′E/V′CO2

will increase as VD/VT increases).

The three most common ways of assessing exercise ventilatory efficiency are: 1) using the V′E/V′CO2
slope

(i.e. ΔV′E/ΔV′CO2
) in the aerobic working range; 2) the value of V′E/V′CO2

at the anaerobic threshold (V′E/
V′CO2AT); and/or 3) the V′E/V′CO2

nadir, which represents the lowest V′E/V′CO2
during exercise. While the

V′E/V′CO2
nadir has been shown to be the most reproducible index of exercise ventilatory efficiency, it is

nearly identical to V′E/V′CO2AT for a given age and sex, and both are slightly higher than the V′E/V′CO2

slope [6]. A V′E/V′CO2
slope during exercise between 21–31 [6] and a V′E/V′CO2

(V′E/V′CO2AT or nadir)
<34 [7] are considered normal. Of note, use of the V′E/V′CO2

slope alone should be made with caution as it
does not provide information on the orientation of this relationship relative to the V′E axis [8]. Proper
evaluation using this approach should also include the V′E intercept. An additional methodological
consideration is the subtraction of instrument dead space (e.g. mouthpiece, adapters, flow transducer, etc.)
multiplied by the breathing frequency from the measured V′E, which, when unaccounted for, has been
shown to artificially inflate both the V′E/V′CO2

slope and intercept [6].

The assessment of V′E/V′CO2
during cardiopulmonary exercise testing can distinguish pathologies as well as

elucidate mechanisms of exertional dyspnoea [9]. With less ventilatory efficiency, mechanical ventilatory
constraints may be attained at a lower V′E, and neural respiratory neural drive may be increased, both of
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FIGURE 1 Minute ventilation (V′E) required for various rates of metabolic production of carbon dioxide
production (V′CO2

) as modified by the carbon dioxide tension (PCO2
) in the arterial blood and the physiological

dead space volume to tidal volume ratio (VD/VT). Adapted and modified from [82] with permission from the
publisher.
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which can contribute to dyspnoea and exercise intolerance. For example, an elevated V′E/V′CO2
in the

context of a preserved PaCO2
equilibrium point suggests high dead space ventilation (V′D) due to

ventilation–perfusion mismatching. A low PaCO2
equilibrium point could be attributed to chronic

respiratory alkalosis. Importantly, a lower ventilatory efficiency has been identified as a predictor of
mortality for patients with cardiopulmonary disease including, but not limited to, COPD, pulmonary
hypertension and chronic heart failure [10–12].

Given this guiding framework, the purpose of this narrative review is to summarise the physiological
factors that may account for a higher V′E/V′CO2

during exercise with advancing age and in healthy
pregnancy, both of which are progressive life stages.

Normal ageing
The respiratory system reaches maturity around 20–25 years, after which there is a progressive decline in
pulmonary function [13]. Despite this regression, the respiratory system is capable of maintaining adequate
pulmonary gas exchange throughout the lifespan in the absence of cardiopulmonary disease [13–15].
Significant structural changes to the lungs, airways, chest wall and respiratory muscles result in a lower
ventilatory capacity in healthy individuals above the age of 60 years when compared to individuals aged
20–30 years [13] as demonstrated by the size and shape of their maximum expiratory flow–volume curves
(figure 3) [16]. Accordingly, older individuals have a reduced ability to accommodate increases in
ventilatory demand during exercise relative to their younger counterparts, and are subject to greater
mechanical ventilatory constraints and associated exertional symptoms (i.e. dyspnoea) [17]. A more
detailed summary of the implications of these age-related structural and functional changes to the
respiratory system on the ventilatory response to exercise have been presented elsewhere [13].

Ventilatory efficiency is lower for any given work-rate during exercise [18, 19], and also when assessed as
the V′E/V′CO2

slope [6, 8, 20–25], the V′E/V′CO2AT [6, 19, 23, 26] or the V′E/V′CO2
nadir [6] in healthy

older compared to younger individuals. These observations are independent of cardiorespiratory fitness
[27] and unrelated to oxygen saturation or metabolic acidosis [20, 21]. Lower ventilatory efficiency in
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FIGURE 2 Graphical representation of the physiological determinants of the respiratory control systems’ resting
arterial carbon dioxide tension (PaCO2

) equilibrium point. Briefly, resting steady-state minute ventilation (V′E)
and PaCO2

depend on chemoreflex as well as “other” non-chemoreflex (wakefulness) drives to breathe and their
intersection with the metabolic hyperbola, which represents the curvilinear relation between V′E and PaCO2

at a
constant rate of CO2 production (V′CO2

) and fraction of dead space to tidal volume ratio (VD/VT), as defined by
the modified alveolar ventilation equation: V 0

E ¼ (V 0
CO2 � 863)=(PaCO2 � (1–(VD=VT))). PaO2

: arterial PO2
; VRTCO2

:
ventilatory recruitment threshold for CO2; PaO2

: arterial oxygen tension; PaCO2
: carbon dioxide tension;

△: change. Reproduced from [52] with permission from the publisher.
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healthy older compared to younger individuals in the context of an isocapnic response to exercise supports
the idea that the higher V′E/V′CO2

associated with normal ageing is a compensatory response to an increase
in V′D and not a lowering of the PaCO2

equilibrium point [15, 20, 21, 28]. This is further supported by a
widening of the difference in measured PaCO2

and end-tidal CO2 tension (PETCO2
) in healthy older

individuals compared to their younger counterparts [29].

There is a greater non-uniformity of V′A relative to perfusion (V′A/Q′) in healthy older compared to
younger individuals [30–34]. The resultant increase in physiological dead space is likely the most
significant contributor to the higher V′E/V′CO2

response to exercise observed in the former. However, the
precise mechanism(s) responsible for the progressive rise in V′A/Q′ inequality with age remains equivocal.
Age-related loss in elastic recoil of the lungs causes the sigmoidal pressure-volume relationship of the
lungs to shift to the right (i.e. increased lung compliance) [35], which can lead to dynamic narrowing or
closure of the airways at lower lung volumes, reduced maximal expiratory flows and alveolar gas
trapping [13]. Nonetheless, evidence does not support a role of decreased closing volume in the
aged-related increase in V′A/Q′ inequality [33]. The increase in diameter of the larger airways with normal
ageing causes an ∼55% greater anatomical dead space, assuming a dead space volume of 150 mL in a
healthy younger individual [34]. However, even though the VD/VT has been shown to be elevated in older
individuals (⩾60 years old) compared with younger individuals (∼30 years old) by 15–20%, abnormally
high VD/VT values are not observed [13]. The age-related increase in anatomical dead space is therefore
unlikely to contribute meaningfully to the lower exercise ventilatory efficiency (higher V′E/V′CO2

response)
in healthy older individuals compared with younger individuals [32]. Other potential contributors to an
increased physiological dead space include the age-related losses in alveolar-capillary surface area [34] as
well as pulmonary capillary blood volume [36]. In addition to an increased physiological dead space, we
cannot discount potential age-related differences in neural, mechanical, or humoral stimuli in increasing
V′E/V′CO2

, which are known to stimulate V′E during exercise [20]. For example, there is evidence for
factors linked to alterations in central motor-neuron drive [37, 38], regulation of muscle contraction as a
result of fibre type shifts [39], and higher blood lactate concentrations [19] with advancing age.
Importantly, despite the potential for greater ventilatory mechanical constraints and inefficiencies in gas
exchange observed in healthy older individuals compared with younger individuals, the respiratory system
nevertheless fulfils its primary role of eliminating CO2 and maintaining arterial oxygen saturation.
Accordingly, the normal age-related decline in exercise ventilatory efficiency is generally not a primary
cause of exercise limitation in older healthy individuals and is of little clinical significance [40].

The normal decline in exercise ventilatory efficiency with advancing age is more prominent in men than
women [20, 24]. For example, POULIN et al. [20] showed that the slope of the V′E/V′CO2

response to
exercise rises at a rate of 1.23% versus 0.93% per year in healthy men and women, respectively. Whether
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FIGURE 3 Changes in the maximal expiratory flow–volume curve with normal ageing. Curves from an older
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capacity; RV: residual volume. Reproduced from [14] with permission from the publisher.
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this sex difference relates to a relatively larger increase in V′D or a lower PaCO2
equilibrium point in men

compared with women has not been determined [24]. Interestingly, despite a slower decline with age,
women tend to have a slightly higher V′E/V′CO2AT compared to age-matched men [6, 23, 26, 41]. This
higher V′E/V′CO2AT in women was shown to be significantly associated with a lower PETCO2

, rather than a
more tachypnoeic breathing pattern [41]. Therefore, a relatively greater V′D in healthy women compared to
men is an unlikely explanation. An alternative explanation is that leg strength is inversely related to V′E/V
′CO2AT in healthy older women but not in men during exercise, independent of age and cardiorespiratory
fitness [41]. GONZALES et al. [41] therefore speculated that the lower muscular strength in women could
result in a greater metabolic stress with attendant increased activation of group III and IV sensory afferents,
which could stimulate a disproportionate increase in V′E relative to V′CO2

, as has been shown in people
with heart failure [42–44] or chronic obstructive pulmonary disease [45]. Additionally, V′E/V′CO2

is
elevated in the presence of expiratory flow limitation (EFL) at higher levels of V′E during exercise [46],
which reflects greater mechanical ventilatory constraints. Older individuals are more likely to develop EFL
compared with younger individuals due to the loss of ventilatory capacity with normal ageing, and older
women are more likely to develop EFL compared with older men due to relatively smaller lungs and
disproportionately narrower airways [17]. Further research on the mechanisms of sex differences in
ventilatory efficiency is warranted.

Healthy pregnancy
Human pregnancy is characterised by a series of well-orchestrated progressive adaptations to several
integrated physiological systems (i.e. respiratory, cardiovascular, metabolic, renal and thermoregulatory)
that are initiated and maintained by gestational hormones, which are almost fully established by the end of
the first trimester and are critical to fetal growth and development [47]. The respiratory effects of human
pregnancy are well documented [48–51], and include adaptations in static and dynamic pulmonary
mechanics as well as increases in the drive to breathe both at rest and during exercise. In this section of
our review, we focus specifically on the physiological determinants of the exaggerated V′E/V′CO2

response
to exercise in healthy human pregnancy uncomplicated by co-existing pathology (e.g. pulmonary
hypertension, pre-eclampsia).

Compared with the non-pregnant control condition, both V′E and V′A are higher by 3–5 L·min−1 at rest
during pregnancy [52–68]. Pregnancy-induced increases in V′E and V′A are proportionally greater than
concomitant increases in V′CO2

[61, 65]. As a result, resting measures of PaCO2
and cerebrospinal fluid PCO2

(PCSFCO2
) are reduced by 6–10 mmHg: from ∼38–40 mmHg to ∼30–34 mmHg for PaCO2

, and from ∼41–
47 mmHg to ∼37–42 mmHg for PCSFCO2

[52, 54–57, 59, 62, 65, 68–71]. This maternal hyperventilation
and attendant respiratory alkalosis are only partially compensated for by the kidneys via lowering of
plasma and cerebrospinal fluid (CSF) bicarbonate concentrations such that arterial and CSF hydrogen ion
concentrations are reduced by 2–5 nEq·L−1 at rest [52, 54–57, 59, 60, 65, 68, 70, 71]. According to more
contemporary quantitative acid–base theory [72], pregnancy-induced reductions in arterial and CSF
hydrogen ion concentrations reflect the alkalinising effect of reductions in PaCO2

and PCSFCO2
, which are

partially offset by the acidifying effect of reductions in plasma and CSF strong ion difference [54, 55, 57,
60, 69, 73], where the strong ion difference represents the concentration difference of strongly dissociated
positive (e.g. sodium, potassium, calcium and magnesium) and negative ions (e.g. chloride and lactate) in
solution.

A detailed description of the complex physiological mechanisms underlying maternal hyperventilation is
beyond the scope of this review and has been presented elsewhere [47, 49, 73]. Briefly, evidence suggests
that the hyperventilation and attendant hypocapnia/alkalosis of human pregnancy results from a complex
interaction between alterations in acid–base balance (arterial and CSF) and several other factors that affect
the control of breathing, including increased circulating levels of female sex steroid hormones
(i.e. progesterone and oestrogen), decreased plasma osmolality, augmented circulating levels of angiotensin
II and arginine vasopressin, increased non-chemoreflex (wakefulness) drives to breathe, increased central
and peripheral chemoreflex sensitivity, increased V′CO2

, and decreased cerebral blood flow [52, 54, 55, 57,
69, 74–78].

JENSEN et al. [74] were the first to show that pregnancy-induced changes in arterial and CSF acid–base
balance lowered the central chemoreflex’s ventilatory recruitment threshold for CO2 (VRTCO2

), which
subsequently decreased the respiratory control system’s resting PaCO2

equilibrium point from ∼40 mmHg
whilst non-pregnant to ∼32 mmHg in the third pregnancy trimester (figure 4). In moving forward, the
influence of these changes in the VRTCO2

and PaCO2
equilibrium point on the V′E/V′CO2

response to
maternal exercise will be discussed.
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There is universal agreement that the V′E/V′CO2
response to both weight-bearing (e.g., treadmill walking)

and weight-supported exercise (e.g. cycling) is elevated by as much as ∼30% in the pregnant compared to
non-pregnant state (figure 5) [52–59, 61, 62, 65–67, 69, 79] and largely unaffected by aerobic
conditioning [64, 66, 79]. Typical values of the V′E/V′CO2

slope during exercise in late pregnancy range
from ∼31–34 compared to postpartum values of ∼26–28 (figure 5) [52, 63], while typical V′E/V′CO2

values during exercise in late pregnancy compared to the non-pregnant control state range from: ∼32–36
compared to ∼27–30 at the ventilatory/anaerobic threshold [53, 63]; ∼28–41 versus ∼24–39 at any
standardised submaximal exercise intensity (figure 5) [54–59, 62, 65, 67, 69]; and ∼32–39 versus ∼26–34
at peak exercise (figure 5) [53, 56, 58, 59, 61, 63]. As a consequence of the exaggerated V′E/V′CO2

response to exercise, both PaCO2
and PETCO2

are ∼4–8 mmHg lower during maternal exercise [52, 54–57,
60, 62, 69, 79]. However, neither pregnancy nor advancing gestation has an effect on the exercise-induced
change in PaCO2

or PETCO2
from rest [52, 55, 57, 69]. The collective results of controlled longitudinal

studies suggest that pregnancy-induced increases in the V′E/V′CO2
response to exercise are evident by

7 weeks gestation and almost fully established by the end of the first trimester, with only modest
progressive increases occurring thereafter in parallel with modest progressive decreases in the PaCO2

equilibrium point and its major physiological determinants [54, 58, 61, 63, 66, 67, 79].

Mechanistically, the exaggerated V′E/V′CO2
response to exercise during pregnancy cannot be explained, in

whole or in part, by concurrent pregnancy-induced increases in V′D [65]. For example, PIVARNIK et al. [65]
calculated V′D from direct measures of PaCO2

obtained via radial artery cannulation at rest and during both
constant-load cycling (at 50 and 75 Watts) and treadmill walking exercise (4.0 km·h−1 at 2.5% and 12%
grade) in seven healthy normal primigravid women studied late in the third trimester and again ∼3 months
postpartum. In that study, V′E, V′A and V′E/V′CO2

were significantly increased at rest (by ∼4 L·min−1,
∼3 L·min−1 and ∼6 units, respectively) and during exercise (by ∼8–13 L·min−1, ∼8–10 L·min−1 and ∼3–
8 units, respectively) in late pregnancy compared to postpartum, despite no statistically significant effect of
pregnancy status or exercise condition on V′D. The notion that the exaggerated V′E/V′CO2

response to
exercise during pregnancy is not mechanistically linked to increased V′D is further supported, albeit
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indirectly, by an apparent lack of effect of pregnancy and advancing gestation on pulmonary diffusing
capacity for carbon monoxide [56, 77, 80, 81].

In the setting of an unchanged V′D during maternal exercise, the modified alveolar ventilation equation
predicts that pregnancy-induced changes in the respiratory control systems’ PaCO2

equilibrium point (and
its physiological determinants) are most likely responsible for the increased V′E/V′CO2

response to exercise
during pregnancy. Indeed, a study of 25 healthy women found that the magnitude of the
pregnancy-induced increase in the V′E/V′CO2

response to exercise was inversely related to the magnitude of
fall in the VRTCO2

and, by extension, the respiratory control systems’ PaCO2
equilibrium point [52] (figure 5).

By all accounts, an exaggerated V′E/V′CO2
response to exercise is a normal physiological adaptation that

accompanies healthy human pregnancy and that is of little clinical significance. However, to our
knowledge, no study has examined the impact of comorbid conditions on the V′E/V′CO2

response to
maternal exercise and whether pathophysiological increases in the V′E/V′CO2

response to exercise above and
beyond those expected in a normal pregnancy predict adverse maternal and/or fetal health outcomes. It is
certainly reasonable to assume that any comorbid condition that has an adverse effect on cardiac,
pulmonary and/or circulatory function (e.g. pulmonary arterial hypertension, heart failure, cystic fibrosis,
interstitial lung disease, chronic kidney disease) would be associated with an abnormally high V′E/V′CO2

response to maternal exercise. Further research is needed in this regard. Moreover, we are unaware of
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studies that have examined the potential use of cardiopulmonary exercise testing with measurement of
V′E/V′CO2

for early detection and diagnosis of potentially adverse pregnancy-induced adaptions in cardiac,
pulmonary and/or circulatory function. Again, it is reasonable to hypothesise that a V′E/V′CO2

response to
exercise above and beyond that expected for an otherwise healthy pregnant woman might help identify
the existence of pregnancy related cardiopulmonary complication(s), especially those that might increase
V′E/V′CO2

by increasing VD/VT (e.g. abnormally high pulmonary vascular resistance due to pulmonary
hypertension, abnormally low cardiac output due left ventricular dysfunction) in the setting of a PaCO2

that
is within the normal expected range.

Conclusion
The ventilatory equivalent for CO2 (V′E/V′CO2

) is an index of ventilatory efficiency that is determined by
changes in VD and/or PaCO2

. While the V′E/V′CO2
response to exercise is higher with normal ageing and

during healthy pregnancy, these are anticipated consequences of age-related increases in VD and
pregnancy-related decreases in the PaCO2

equilibrium point. Importantly, the resultant increase in V′E/V′CO2

during exercise is not in the pathological range (i.e. identified as being associated with increased risk of
adverse health outcomes, including premature death), and on average, is well below the critical threshold
identified for prognostic indication in cardiopulmonary disease.
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