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Active open‑loop control of elastic 
turbulence
Reinier van Buel* & Holger Stark

We demonstrate through numerical solutions of the Oldroyd-B model in a two-dimensional Taylor–
Couette geometry that the onset of elastic turbulence in a viscoelastic fluid can be controlled by 
imposed shear-rate modulations, one form of active open-loop control. Slow modulations display rich 
and complex behavior where elastic turbulence is still present, while it vanishes for fast modulations 
and a laminar response with the Taylor–Couette base flow is recovered. We find that the transition 
from the laminar to the turbulent state is supercritical and occurs at a critical Deborah number. In 
the state diagram of both control parameters, Weissenberg versus Deborah number, we identify the 
region of elastic turbulence. We also quantify the transition by the flow resistance, for which we derive 
an analytic expression in the laminar regime within the linear Oldroyd-B model. Finally, we provide an 
approximation for the transition line in the state diagram introducing an effective critical Weissenberg 
number in comparison to constant shear. Deviations from the numerical result indicate that the 
physics behind the observed laminar-to-turbulent transition is more complex under time-modulated 
shear flow.

Controlling the flow pattern of viscoelastic fluids is extremely challenging due to their inherent non-linear prop-
erties and their strong response to shear deformations1–3. Viscoelastic fluids, such as polymer solutions, exhibit 
transitions from steady to time-dependent non-laminar flows, which is useful for heat and mass transport at the 
micron scale1,2,4–9 whereas in Newtonian fluids transport on such small scales is dominated by diffusion. Tur-
bulent viscoelastic flow fields show similar properties as their counterparts in Newtonian fluids4. Consequently, 
the state of the occurring flow pattern is called elastic turbulence1. Since the discovery of this seminal effect at the 
beginning of the new millennium1, research is ongoing10–16. The transition to elastic turbulence is accompanied 
by an enhanced drag resistance in flowing polymer solutions1,2,4,15. In this work we report on the rich complex 
behaviour initiated in viscoelastic flows by applying an active open-loop control scheme in the form of a time-
modulated shear rate. This method reduces and ultimately suppresses elastic turbulence.

Active or dynamic control requires auxiliary energy, while passive or static control requires none17. Both con-
trol schemes applied to flow patterns and fluid instabilities in Newtonian fluids have extensively been studied18–25. 
Also, passive control of viscoelastic fluid flow has been examined26–31 using either geometric modifications28,29 
including spatially modulated cylinders in a Taylor–Couette geometry30 and disorder in microfluidic flows to 
inhibit elastic turbulence31, or soft boundaries27, as well as thermal control26. In contrast, the search for active 
control strategies appropriate for viscoelastic fluids has so far been limited. Different responses of a Poiseuille 
flow to periodically modulated driving were observed32, while additional axial flow in a Taylor-Couette geometry 
delays the onset of the elastic instability33.

In Newtonian fluids the transition to turbulence is solely driven by inertia and therefore characterized by 
the Reynolds number Re34. In the following we concentrate on small Reynolds numbers, where inertia can be 
neglected. Then the transition from steady laminar flow to elastic turbulence is determined by the Weissenberg 
number Wi , the product of an intrinsic fluid relaxation time and the fluid deformation rate35,36.

Importantly, the critical Weissenberg number, at which this transition occurs, depends on the geometry 
and the curvature of the stationary flow streamlines35. In experiments with curved streamlines a purely elastic 
instability has been observed in Taylor–Couette flow4,37, von Kármán swirling flow1,4,38–40, serpentine channel or 
Dean flow4,41, cone-and-plate flow38, cross-channel flow9,42, and lid-driven cavity flows35. Viscoelastic fluids flow-
ing through straight microchannels are linearly stable and non-linearly unstable43–45. Different numerical tech-
niques were employed to solve equations modeling viscoelastic fluids and thereby also revealed the purely elastic 
instability in similar geometries. Articles address unbounded flows with sinusoidal forcing6,46,47, Kolmogorov 
flow48,49, as well as wall-bounded flows, including sudden-expansion flow50, channels with cross-slot geometry51 
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or serpentines52 and the Taylor–Couette geometry53–55. Thus, demonstrating the importance of numerical tech-
niques in understanding the underlying physical principles in complex fluid flows.

Here, we realize active open-loop control, meaning control without feedback, by modulating the applied 
shear rate in time. We characterize the modulation through the Deborah number De , the ratio of the intrinsic 
fluid relaxation time to the typical time of deformation. Hence, De describes the degree of elastic response to an 
external forcing applied over a given time frame36,56.

We present first results on actively controlling elastic turbulence in a viscoelastic fluid and thereby provide 
an important step towards applying further active control strategies to viscoelastic fluids. We obtain numerical 
solutions of the Oldroyd-B model in a 2D Taylor–Couette geometry. We explicitly choose the Oldroyd-B model 
for its simplicity to reduce the number of free parameters and have no shear dependency on the viscosity. Since 
our analysis is restricted to two spatial dimensions, we can provide a thorough and careful analysis of how elastic 
turbulence is reduced and ultimately vanishes by tuning the oscillation frequency in the simplest implementation 
of a wall-bounded flow. Although our setting does not access the three dimensions of experimental flows, we 
can gain general insight into controlling viscoelastic fluids and their response to time-dependent shear. We have 
shown an elastic instability towards elastic turbulence at Wi = 10 in earlier work, where we applied a shear rate 
constant in time in the same geometry55. In this work, we use two kinds of time-modulated shear rates in the form 
of a square or sine wave, which display similar results. We demonstrate how elastic turbulence is significantly 
reduced with increasing modulation frequency and ultimately vanishes at a critical Deborah number Dec . Here, 
the flow field assumes the radially symmetric base flow of the non-turbulent case.

Results
We examine the flow field u(r, t) of an incompressible viscoelastic fluid in a 2D Taylor–Couette geometry. The 
inner cylinder, at radius ri , is fixed and the outer cylinder, at radius ro = 4 ri , rotates with a periodically modu-
lated angular velocity � with period δ , see Fig. 1b. We distinguish between two modulations: a square wave with 
amplitude �0 and a sine wave with amplitude �sin

0  , see Fig. 1a. These amplitudes are chosen such that the Weis-
senberg numbers defined with |�| averaged over one period are equal, Wi = 1/δ

∫ δ

0 �|�|dt = ��0 , with � the 
elastic relaxation time of the fluid. The Deborah number is determined by the rate of change in the shear flow 
and thus is given by De = �/δ . We use dimensionless quantities and rescale lengths by ro and time by 2π�−1.

To model the viscoelastic fluid, we use the Oldroyd-B model. It uses the constitutive relation for the polymeric 
stress tensor,

where β = ηp/ηs is the ratio of the polymeric and solvent shear viscosities, and ∇τ  denotes the upper convective 
derivative of τ defined as

The hydrodynamic continuity equations for density ρ and momentum read

(1)τ +Wi
∇
τ = β

[

∇ ⊗ u + (∇ ⊗ u)T
]

,

(2)
∇
τ =

∂τ

∂t
+ (u · ∇)τ − (∇ ⊗ u)Tτ − τ (∇ ⊗ u) .

(3)∇ · u = 0 ,

Figure 1.   (a) Angular velocity � versus time of the outer cylinder for different driving protocols. (b) Schematic 
of the 2D Taylor–Couette geometry. The outer cylinder rotates with angular velocity � . (c) Color-coded radial 
velocity field component ur normalized by the maximum velocity umax for Wi = 21.4 . Left: at time t = 225 , 
where � is constant. Right: at t = 375 after the square-wave modulated driving with De = 0.28 has been 
switched on.
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We always set the Reynolds number Re = ρ�0r
2
o/ηs ≈ 10−4 such that fluid inertia is negligible.

We obtain numerical solutions of the model equations using the open-source program OpenFOAM®. Fur-
ther details are presented in the Methods section. The simulations with a time-modulated driving of the outer 
cylinder are either started from rest (velocity and stress tensor fields are zero) or from a turbulent state, which is 
obtained starting with a constant shear rate �0 for the first 250 rotations. The flow field is characterized through 
its fluctuations relative to the base flow u0(r, t) = u0φeφ by the secondary-flow strength

The azimuthal base-flow component is u0φ = Ar + Br−1 , A =
r2o

r2o−r2i
� , and B = −

r2i r
2
o

r2o−r2i
�37, where for � we take 

the periodically modulated angular velocity. It solves the Oldroyd-B model in the laminar case without turbu-
lence. Here, 〈...〉r,φ denotes the spatial average over coordinates r,φ . For constant � and Wi > Wic = 10 , the 
secondary-flow strength is increasingly irregular with increasing Wi . The radial symmetry of the flow is broken, 
a radial velocity component ur(r,φ) emerges [see Fig. 1c, left, and Movie S1], and a supercritical transition is 
observed55. We add a remark here. We did not observe a multi-stage transition from laminar to turbulent flow 
neither in55 nor in this work as might be expected similar to viscous fluids. While several states are reported in 
the inertial regime of the elastic instability both in experiments57,58 and theory53, at Re ≪ 1 only disordered 
oscillations are observed in the experiments, which can be closely associated with elastic turbulence4,53. Further-
more, the linear stability analysis of the Oldroyd-B model for axisymmetric modes in Ref.59 demonstrates that 
a broad band of wavelengths becomes unstable for small increases in the Weissenberg number. Similar behavior 
could be the reason that a multi-stage transition cannot be resolved in our simulations.

The secondary-flow strength σ can be significantly lowered by applying a square-wave driving to the outer cyl-
inder as a comparison to the case of constant rotational velocity shows in Fig. 2 [see also Fig. 1c, right, and Movie 
S2]. For Weissenberg number Wi = 21.4 we present σ for driving frequencies in the range 0.17 ≤ De ≤ 0.85 and 
observe that it decreases with increasing De . For lower frequencies ( De = 0.21 or De = 0.17 ) σ exhibits irregular 
peaks in time, which have magnitudes comparable to the case of constant rotation (also see Movie S3). However, 
in between the irregular peaks the magnitude of σ is much smaller and fluctuations in the flow are suppressed. 
For high frequencies σ strongly tends to zero. It shows oscillations with a period equal to the driving period 
δ [see Fig. 2b], before the flow ultimately becomes laminar. Moreover, at De = 0.28 , the amplitude of the fast 
oscillations of the secondary-flow strength seems to be modulated periodically. However, the power spectrum 
of σ(t) does not reveal such a regular modulation. It can be well fitted by a Lorentzian

(4)Re

[

∂u

∂t
+ (u · ∇)u

]

= −∇p+∇2
u +∇τ .

(5)σ(t) ≡
√

〈

[u(r, t)− u0(r, t)]2
〉

r,φ

/

u0max .

(6)P ∼
1

1+ (�f /�fc)2
,

Figure 2.   (a, b) Secondary-flow strength σ as a function of time t. The outer cylinder rotates with a constant 
angular velocity �0 for the first 250 rotations. Then the modulated square-wave driving with amplitude �0 
and different De is switched on. The Weissenberg number is Wi = 21.4 . (c) Temporal power spectrum of σ , 
P = |F (σ )|2 , for De = 0.28 . The observed spectrum scales as P ∼ f −2 and the dotted line is a Lorentzian fit, 
given by Eq. (6), with �fc = 0.15.
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which corresponds to an exponential decay of the auto-correlation function of the order parameter, 〈σ(0)σ (t)〉 . 
The critical frequency fc is directly related to the decay time tc = (2π fc)

−1 of the autocorrelations and from Fig. 2c 
we roughly find tc/� = (2π�fc)

−1 ≈ (2π · 0.15)−1 = 1.06 , i.e., tc is close to � . Superimposed on the power-law 
decay of P are peaks at frequencies, which are multiples of δ−1 as a closer insprection of Fig. 2c shows. They 
correspond to the fast modulations seen in σ(t).

In Fig. 3 we plot the order parameter, defined as the time average of the secondary-flow strength, � = σ  , 
versus the inverse Deborah number for different Weissenberg numbers under square wave driving. It sharply 
increases above a critical value De−1

c  , which depends on Wi . The transition scales as (De−1 − De−1
c )1/2 implying 

that it is supercritical. This result is further tested by applying the modulated driving directly to the rest state 
(open square symbols for Wi = 21.4 in Fig. 3). The different initial conditions do not lead to different values of 
� , as is expected for a supercritical transition. We also checked that the supercritical transition occurs for sinu-
soidal driving. The order parameter � displays qualitatively similar behavior. However, the critical values De−1

c  
are smaller compared to the square wave driving for the same Wi and � quickly reaches a maximum value. The 
results are presented in the supplemental material. Another striking feature is that the order parameter displays 
universal behavior around the transition. Indeed, as the inset of Fig. 3 demonstrates, all curves for different Wi 
fall on a single master curve when we normalize � by Wi3/2 and plot them versus De−1 − De−1

c  . To illustrate 
how the transition towards elastic turbulence depends on both dimensionless numbers ( De , Wi ), we have plot-
ted the state diagram in Fig. 4 for both modulation types. It clearly demonstrates how the critical Weissenberg 
number, at which the elastic instability occurs, increases upon increasing the Deborah number, meaning when 
the frequency of the modulated driving is increased.

The elastic nature of the transition to elastic turbulence can also be monitored by the polymeric shear stress 
τrφ , which, when calculated at the outer cylinder, serves as an experimentally accessible measure for the flow 
resistance. For the steady azimuthal base flow the shear stress component becomes τ 0rφ = −2ηpBr

−237. Note that 
it does not depend on � or Wi . Thus for the azimuthal flow the non-linear terms in the constitutive relation (1) 
of the polymeric stress tensor are not relevant. Now, we introduce the flow resistance using the shear stress at 
the outer cylinder ( r = ro),

For the steady laminar base flow, Ŵ = 1 , as defined. Under constant driving for Wi > Wic , elastic turbulence 
with a radial secondary flow develops55. Through the non-linear terms in Eq. (1) all polymeric stress components 
couple to each other and one has Ŵ > 1 . This is illustrated in Fig. 5 until time t = 250 . Then the square-wave 
driving is switched on. For De = 0.17 < Dec , Ŵ is reduced but still reaches values above one and its time evolu-
tion is still irregular, as expected for the turbulent state. In contrast, for De = 0.28 > Dec , Ŵ becomes regular 
and can be fit well by the linear version of the Oldroyd-B model (see next paragraph). Thus the laminar state of 
the base flow is recovered as also indicated in Fig. 3.

We can now add some understanding for the control of elastic turbulence under modulated driving. For suf-
ficiently large period δ or De−1 , the polymer elastic stress has sufficient time to build up, generate the necessary 
“hoop stress”4,35, and thereby ultimately induce elastic turbulence (also see Movies S4–S6). However, this is no 
longer possible for fast switching between negative (clockwise) and positive (counter clockwise) driving. The 
dissolved polymers can only react with small elongations similar to the fast driving of a harmonic oscillator and 
the generated stress is not sufficient for elastic turbulence to occur.

To quantify this argument further, we compare the polymeric shear stress to the shear stress of the linear 
Oldroyd-B, which is equivalent to the Maxwell model. Note again, the linear model applies to τrφ when calculated 

(7)Ŵ ≡
〈∣

∣τrφ(ro)/τ
0
rφ(ro)

∣

∣

〉

φ
.

Figure 3.   Order parameter � as a function of the inverse Deborah number De−1 = δ/� in the case of square 
wave modulations for four Weisenberg numbers. The time average of the secondary-flow strength is taken over 
at least 500 rotations in the turbulent regime; after the flow has been driven for 250 rotations with a constant 
velocity. Open blue squares: the modulated driving starts from the beginning. The dashed lines are square root 
fits to � ∼

√

De−1 − De−1
c  . Inset: the rescaled data collapse onto a single master curve.
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for the azimuthal base flow. Thus we solve �τ̇Mrφ + τMrφ = ηpγ̇ (t) for a shear rate switching periodically between 
±γ̇0 . Using the formalism of Green’s function, as detailed in the supplemental material, we arrive at

where ± means that the applied shear rate has switched to ±γ̇0 at time ts and τ0 = ηpγ̇0 is the shear stress of 
the base flow. Now we consider the time-averaged flow resistance Ŵ , with Ŵ defined in Eq. (7). The corre-
sponding quantity for the linear Oldroyd-B model can be calculated using the periodic solution from Eq. (8): 
Ŵlin = 2

δ

∫ ts+δ/2
ts

|τMrφ(t)/τ0|dt = 1+ 4De ln
(

[1+ exp(−De−1/2)]/2
)

.
Figure 6 plots Ŵ versus De−1 for different Wi together with the analytic result Ŵlin for the linear Oldroyd-

B model as the dashed line. Below the critical De−1
c  the data fall on Ŵlin clearly indicating that for sufficiently 

fast modulation the linear response of the laminar base flow is recovered. Above De−1
c  we observe a significant 

increase in the stress response Ŵ due to the turbulent flow. In contrast, for Wi = 8.8 < Wic the flow remains 
laminar and Ŵ ≈ Ŵlin . The slightly larger values of the numerical stress data result from the non-linear terms in 
the constitutive relation of the stress tensor so that the simulated flow field deviates from the base flow. Again, 

(8)
τMrφ(t)

τ0
= ±

(

1− 2
e−(t−ts)/�

1+ e−De−1/2

)

, ts ≤ t ≤ ts + δ/2

Figure 4.   Stability diagram of the viscoelastic fluid as a function of Weissenberg number Wi = �� and 
Deborah number De = �/δ for square wave modulation. The transition between the laminar and turbulent 
states is demarcated by the dashed-dotted line De = 0.02(Wi − 10) . The critical effective Wieffc = Wic = 10 
from Eq. (9) is indicated with the black solid line. Inset: Stability diagram for sine wave modulation. Note, for 
the sine wave modulation the value Wic = 9.4 for De → 0 is an approximation. The dashed line indicating the 
transition Wieffc = Wic is presented in the supplemental material.

Figure 5.   The flow resistance at the outer cylinder, Ŵ =

〈
∣

∣

∣
τrφ(ro)/τ

0
rφ(ro)

∣

∣

∣

〉

φ
 , plotted versus t at Wi = 21.4 . 

The square wave driving with De = 0.17 starts at t = 250 s . Inset: De = 0.28 . The dashed line indicates the 
analytic result |τMrφ(t)/τ0| , where τMrφ(t) is given by Eq. (8).
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similar behavior is observed in the case of sinusoidal driving (presented in the supplemental material). However, 
Ŵ increases more rapidly with De−1 than for square-wave driving.

In the end, we motivate the solid line in Fig. 4, which approximates the transition from laminar to turbulent 
flow. The Weissenberg number was originally defined as the ratio of normal stress difference to shear stress36,56. 
If we calculate the time average of these stresses within the linear Oldroyd-B model for the oscillating base flow 
(see the supplemental material), we obtain an effective Weissenberg number

Here α = γ̇ /� is a geometric constant which is introduced to obtain Wieff = Wi for constant rotation and . . . 
denotes the time average taken over half a period. The prefactor of Wi on the right-hand side decreases from 
1 at De = 0 to 0 for De → ∞ , where stresses in the polymer cannot build up anymore to induce elastic turbu-
lence. The solid line in Fig. 4 then follows from setting Wieff = Wic = 10 , where Wic is the critical Weissenberg 
number for steady rotation. Our theoretical prediction qualitatively describes the transition between laminar 
and turbulent states but also deviates from the transition line obtained in the simulations. This indicates that the 
transition from laminar to turbulent flow under modulated shear is more complex. It cannot be fully treated by 
rescaling the critical Weissenberg number for constant rotation using time-averaged stress components.

Discussion and conclusion
Two limitations of our approach deserve special attention. The choice of the constitutive equation, the Oldroyd-B 
model, and our two-dimensional geometry. A drawback of the Oldroyd-B model is the possibility of infinitely 
extended polymers, which is unphysical. We have checked the maximum extension of our dissolved polymers 
(see supplemental material) and conclude that the maximum extension of our polymers remains bounded and 
physical. Furthermore, the Oldroyd-B model has only a single relaxation time, whereas real polymer solutions 
possess a broad spectrum of relaxation times. Nevertheless, the characteristics of elastic turbulence are observed 
in numerical simulations of this model16,55, indicating that the above simplifications do not qualitatively change 
the physical behavior. Therefore, numerical simulations provide physical insight in the complex behavior of 
viscoelastic fluids.

The second limitation is the two-dimensional geometry. Unfortunately, our thorough analysis, combined 
with the long simulation times required, is unfeasible at the moment in three-dimensional setups. In this work 
we focus on instabilities in the azimuthal plane, implying non-axisymmetric modes drive the instability. In the 
case of Re ≪ 1 , stability analysis of the Oldroyd-B fluid in a Taylor–Couette geometry with narrow gap shows 
that a non-axisymmetric mode governs the first instability60. Moreover, for increasing gap width the critical 
Weissenberg number of both instabilities is reduced, yet the reduction of Wic of the non-axisymmetric mode is 
greater60,61. If this is also the case for wide-gap flows, then the non-axisymmetric mode determines the instability. 
Furthermore, for wide-gap Taylor–Couette flow, stability analysis of the upper-convected Maxwell model shows 
that the most unstable modes are non-axisymmetric ribbon and spiral modes, which both exhibit a supercritical 
instability at sufficiently wide gaps62. Additionally, in experiments the aspect ratio of the Taylor–Couette cell influ-
ences the onset of the elastic instability. Due to high shear gradients created in the corner between the driving wall 
and the static wall, a secondary flow with curved streamlines arises in viscoelastic fluids28, which is influenced 
by the aspect ratio. As a consistency check, we have compared results from our two-dimensional simulations to 

(9)Wieff =
|τrr − τφφ |

2α |τrφ |
=

1− 4De tanh
(

1
4De

)

1− 4De ln
(

2
1+e−1/2De

)Wi .

Figure 6.   Time-averaged flow resistance or polymeric shear stress at the outer cylinder, Ŵ , plotted versus the 
inverse Deborah number De−1 = δ/� , for the same parameters as in Fig. 3. The dashed line indicates Ŵlin for the 
stress response of the linear Oldroyd-B model. The arrows indicate De−1

c  from right to left for Wi = 15.1 , 21.4, 
and 27.6. Inset: Ŵ − Ŵlin versus De−1.
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results of a simulation in a three-dimensional Taylor–Couette setup (see supplemental material). We conclude 
that the instability observed in the three-dimensional geometry is comparable to our two-dimensional geometry.

Moreover, our results also provide insight into how elastic turbulence is reduced through passive control. 
For example, in Ref.31, geometric disorder is introduced in a microfluidic flow, which leads to a disordered local 
shear rate and thereby delays the occurence of elastic turbulence to larger Wi. This corresponds to spatial shear 
rate modulations, where increased disorder is equivalent to faster modulations. Our work demonstrates how 
elastic turbulence is removed under modulations of the shear rate, whether temporal or spatial, and provides a 
simple explanation of the physical origin.

In conclusion, by modulating the shear rate of a Taylor–Couette flow using a square- or sine-wave driving of 
the outer cylinder, we are able to control the onset of elastic turbulence. While at small frequencies (small Debo-
rah numbers) irregular flow patterns are still observed in our simulations of the Oldroyd-B model, we recover 
the regular base flow at large frequencies beyond a critical De. Here the linear Oldroyd-B model accurately 
describes the rheological response of our system. Thus our work demonstrates how sensitive elastic turbulence 
is to oscillating shear. We consider our work to be a stepping stone for active control of elastic turbulence and 
hope to inspire further experimental and theoretical investigations on active open-loop or feedback control of 
viscoelastic fluid flow, for example, in microfluidic systems.

Methods
All our numerical results are obtained with the open-source finite-volume solver OpenFOAM® for computational 
fluid dynamics simulations performed on polyhedral grids63. We give all parameters in Si units, as required by 
OpenFOAM®, and adopt a specialised solver for viscoelastic flows called rheoTool64,65. The rheoTool solver has 
been tested for accuracy in benchmark flows and it has been shown to have second-order accuracy in space and 
time65.

Our 2D geometry consists of two coaxial cylinders and we use a mesh refinement towards the inner cylinder, 
where velocity gradients become larger. Figure 1b shows the grid mesh resembling a spokes wheel, which we 
employed, with Nr = 100 cells in the radial direction and Nφ = 120 cells in the angular direction. The mesh 
refinement is such that the ratio of the radial grid size at the inner cylinder to the one at the outer cylinder is 
10. The width �r of the grid cells in the radial direction is 2.0×10−3 ro at the inner cylinder and increases to 
1.9·10−2 ro at the outer cylinder. The time step of the simulation is δt = 10−5s , where the velocity, pressure, 
and stress fields are extracted every 5000 steps. At the two bounding cylinders we choose the no-slip boundary 
condition for the velocity, zero gradient for the pressure field, and an extrapolated zero gradient for the poly-
meric stress field, following Ref. 65. We use a biconjugate gradient solver combined with a diagonal incomplete 
LU preconditioner (DILUP-BiCG) to solve for the components of the polymeric stress tensor and a conjugate 
gradient solver coupled to a diagonal incomplete Cholesky preconditioner (DIC-PCG) to solve for the velocity 
and pressure fields65. Further details on the algorithm can be found in Ref.65 and details on the stability of the 
mesh can be found in Ref.55.

The simulations start with the viscoelastic fluid at rest, where pressure, flow, and stress fields are uniformly 
zero. The following geometric parameters are chosen from the viewpoint of microfluidic settings in such a way 
as to set a low Reynolds number. We are interested in wide-gap flow, with a focus on microfluidic devices that 
could be designed for mixing. The inner cylinder at radius ri = 2.5µm is fixed and the outer cylinder at radius 
ro = 4 ri = 10µm rotates with either a periodically modulated square wave with amplitude �0 = 2π s−1 or a 
sine wave with amplitude �sin

0 = π2 s−1 . The period of the modulation is δ . The Weissenberg number is defined 
by averaging the rotational frequency over one period:

We adjust the Weissenberg number by varying the polymeric relaxation time � and we set the polymeric shear vis-
cosity to ηp = 0.0015 kg/ms , the solvent shear viscosity to ηs = 0.001 kg/ms , and the density to ρ = 1000 kg/m3 . 
The ratio of the polymeric to the solvent viscosity is then β = ηp/ηs = 1.5 . The fluid flow is simulated up to a 
1000 s.
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