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Abstract

Background: A low-mass-ion discriminant equation (LOME) was constructed to
investigate whether systematic low-mass-ion (LMI) profiling could be applied to
ovarian cancer (OVC) screening.

Results: Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass
spectrometry was performed to obtain mass spectral data on metabolites detected
as LMIs up to a mass-to-charge ratio (m/z) of 2500 for 1184 serum samples collected
from healthy individuals and patients with OVC, other types of cancer, or several types
of benign tumor. Principal component analysis-based discriminant analysis and
two search algorithms were employed to identify discriminative low-mass ions
for distinguishing OVC from non-OVC cases. OVC LOME with 13 discriminative
LMIs produced excellent classification results in a validation set (sensitivity, 93.
10 %; specificity, 100.0 %). Among 13 LMIs showing differential mass intensities
in OVC, 3 metabolic compounds were identified and semi-quantitated. The relative
amount of LPC 16:0 was somewhat decreased in OVC, but not significantly so.
In contrast, D,L-glutamine and fibrinogen alpha chain fragment were significantly
increased in OVC compared to the control group (p = 0.001 and 0.002, respectively).

Conclusion: The present study suggested that OVC LOME might be a useful
non-invasive tool with high sensitivity and specificity for OVC screening. The
LOME approach could enable screening for multiple diseases, including various
types of cancer, based on a single blood sample. Furthermore, the serum levels
of three metabolic compounds—D,L-glutamine, LPC 16:0 and fibrinogen alpha chain
fragment—might facilitate screening for OVC.

Keywords: Ovarian cancer, Screening, Serum profiling, MALDI-TOF mass spectrometry,
Pattern recognition

Background
The 5-year survival rate of ovarian cancer is high (~90 %) if detected in the early

stages, but this rate drops sharply to nearly 30 % with diagnosis at an advanced

stage. The problem remains that more than two thirds of ovarian cancer patients

present with advanced-stage disease [1]. Effective screening methods to facilitate

early detection of ovarian cancer at a curable stage would reduce the mortality

rate of this disease.

Previous studies have shown that screening for serum cancer antigen 125 (CA-125),

transvaginal ultrasonography, or a combined strategy have failed to reduce the risk of
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diagnosis at an advanced stage or to improve the survival of female patients participat-

ing in clinical trials [2]. Due to the location of the ovaries, invasive surgery and removal

of the ovaries are necessary for definitive diagnosis of ovarian cancer. Therefore, high

specificity is mandatory in screening tests because false positivity can cause unneces-

sary operations and surgical complications. Furthermore, the low incidence of ovarian

cancer makes it essential for screening tests to have a high degree of specificity [3]. At

present, there are no screening methods that are accredited and recommended by a

professional society for ovarian cancer in the general population [1]. Identification of

biomarkers with high sensitivity and higher specificity would facilitate development of

effective screening methods for ovarian cancer.

We analyzed low-mass ions (LMIs) in serum, which can provide information regard-

ing metabolic disturbance, using matrix-assisted laser desorption/ionization-time of

flight (MALDI-TOF) mass spectrometry. The metabolome is essentially an accumula-

tion of all metabolites and the final products of cellular processes [4]. Understanding

metabolic changes in body fluids is important for detecting and monitoring disease [5].

Based on the LMI profiles, we developed the LOw-Mass-ion discriminant Equation

(LOME) as a novel method for ovarian cancer screening. Here, we describe use of the

LOME for detection of ovarian cancer.

Methods
Study population

A total of 1,184 serum samples (Table 1, Additional file 1) were collected from healthy

female control subjects (controls) and female patients with ovarian cancer (OVC), colo-

rectal cancer (CRC), gastric cancer (GC), benign uterine tumor (BUT), benign ovarian

tumor (BOT), precancerous cervical lesion (PCL), breast cancer (BRC), benign breast

tumor (BBT), uterine cervical cancer (UCC), or endometrial cancer (EMC). Serum was

collected before surgery or chemotherapy to prevent any effects of anesthetic or anti-

cancer agents on serum low-mass ions (LMIs). UCC and EMC cases were not included

Table 1 Number, disease stage, and age information of the study population

Number Stage Age (years)

Total 0 I II III IV Mean ± SD Range

Control 276 50.3 ± 10.7 19 – 86

OVC 89 18 9 51 11 55.5 ± 10.3 27 – 77

CRC 237 2 67 70 87 11 63.4 ± 11.8 30 – 87

GC 139 2 96 11 15 15 59.1 ± 13.8 28 – 86

BUT 83 45.8 ± 8.2 25 – 70

BOT 71 42.0 ± 13.4 20 – 83

PCL 88 42.1 ± 11.9 22 – 79

BRC 93 11 40 34 8 47.8 ± 9.2 29 – 69

BBT 65 45.4 ± 10.0 19 – 62

UCC 33 20 10 1 2 50.7 ± 14.8 26 – 82

EMC 10 8 2 53.6 ± 7.9 40 – 66

More detailed information for individual samples was tabulated in Additional file 1
SD standard deviation, OVC ovarian cancer, CRC colorectal cancer, GC gastric cancer, BUT benign uterine tumor, BOT
benign ovarian tumor, PCL precancerous cervical lesion, BRC breast cancer, BBT benign breast tumor, UCC uterine cervical
cancer and EMC endometrial cancer
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in the training process, because the numbers of cases were relatively small. Table 2

shows the locations of sample collection and the number of samples collected at each

site. Informed consent was obtained from all healthy individuals and patients, and the

institutional review board of each participating institution approved the research proto-

col. The part of research source was provided by Korea gynecologic cancer bank

through Bio & Medical Technology Development program of the MSIP, Korea.

Construction of a LOME for OVC screening

The procedures for constructing a LOME for OVC screening were similar to those

described in our previous report [6]. They are briefly repeated here, with an emphasis

on major changes.

MALDI-TOF sample preparation & analysis

MALDI-TOF (Autoflex Speed, Buker Daltonik GmbH, Bremen, Germany) analysis was

performed as described previously [6]. Serum samples (25 μL) were extracted using

100 μL of methanol/chloroform mixture (2:1, v/v) for 10 min at room temperature after

vigorous vortexing. The mixture was centrifuged at 6000 × g for 10 min at 4 °C. The

supernatant was dried completely in a concentrator for 1 h and resolved in 30 μL of

50 % acetonitrile/0.1 % trifluoroacetic acid (TFA) on a vortex mixer for 30 min. The

methanol/chloroform extract was mixed (1:12, v/v) with an α-cyano-4-hydroxycinnamic

acid solution in 50 % acetonitrile/0.1 % TFA, and 1 μL of the mixture was spotted on

the MALDI target for analysis. For fixed focus mass and laser intensity, each sample

was analyzed six times using different extractions and data acquisition times.

Table 2 Institutions from which samples were collected

Number Institution (Address)

Control 193 National Cancer Center Hospital (323 Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do,
410–769, Korea)

83 Dong-A University Medical Center (26 Daesingongwon-ro, Seo-gu, Busan, 602–715, Korea)

OVC 8 Seoul National University Hospital (101 Daehak-ro, Jongno-gu, Seoul, 110–744, Korea)

22 Samsung Medical Center (81 Irwon-ro, Gangnam-gu, Seoul, 135–710, Korea)

31 National Cancer Center Hospital

28 Ewha Woman’s University Mokdong Hospital (1071, Anyangcheon-ro, Yangcheon-gu,
Seoul, 158–710, Korea)

CRC 74 National Cancer Center Hospital

32 Daehang Hospital (2151 Nambusunhwan-ro, Seocho-gu, Seoul, 137–820, Korea)

131 Dong-A University Medical Center

GC 139 Dong-A University Medical Center

BUT 83 Ewha Woman’s University Mokdong Hospital

BOT 71 Ewha Woman’s University Mokdong Hospital

PCL 88 Ewha Woman’s University Mokdong Hospital

BRC 93 National Cancer Center Hospital

BBT 65 National Cancer Center Hospital

UCC 33 Ewha Woman’s University Mokdong Hospital

EMC 10 Ewha Woman’s University Mokdong Hospital

OVC ovarian cancer, CRC colorectal cancer, GC gastric cancer, BUT benign uterine tumor, BOT benign ovarian tumor, PCL
precancerous cervical lesion, BRC breast cancer, BBT benign breast tumor, UCC uterine cervical cancer and EMC
endometrial cancer
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Two-stage training scheme

Serum samples were approximately trisected into Sets A1, A2, and B (Table 3). The

samples of each clinical stage were divided almost evenly into these three sets. Sets A

(A1∪A2) and B are the training and validation sets, respectively. The weighting factors

for individual LMIs were calculated based on Set A1 only. The training set was then

expanded to reduce overfitting by incorporating Set A2, which was independent of Set

A1. The discriminative LMIs were determined based on Set A.

Weighting factors for individual LMIs

MALDI-TOF measurements were carried out six times on each sample. Principal com-

ponent analysis-based discriminant analysis (PCA-DA) was performed to separate the

OVC group from the Non-OVC group in Set A1 using the MarkerView software (AB

SCIEX, Foster City, CA). The six measurements of Set A1 were analyzed individually,

and one measurement with the highest separation performance was assigned as the

reference mass spectrum. PCA-DA on the reference mass spectrum yielded a weighting

factor vector termed a loading vector.

Data preprocessing

Importing mass spectra into the MarkerView software produces a peak table, which

consists of one mass-to-charge ratio (m/z) column and one intensity column per

sample. To obtain the discriminant score (DS) of a sample by assigning the weighting

factors derived from the reference mass spectrum, the mass spectrum of the sample

should be aligned with the reference mass spectrum, i.e., the m/z column of the former

should be identical to that of the latter. The preprocessing steps were as follows: 1)

The mass spectra of all samples (five measurements per sample) were aligned with the

reference mass spectrum by importing each mass spectrum together with the reference

mass spectrum into the MarkerView software (import settings: mass tolerance,

300 ppm; minimum required response, 10.0; and maximum number of peaks, 10000).

But the resulting peak table was not completely aligned: that is, the m/z column of the

Table 3 Sample sets

Total Training set Validation set

Set A1 Set A2 Set B

Control 276 92 92 92

OVC 89 30 30 29

CRC 237 79 79 79

GC 139 47 46 46

BUT 83 27 28 28

BOT 71 23 24 24

PCL 88 30 29 29

BRC 93 31 31 31

BBT 65 22 21 22

UCC 33 33

EMC 10 10

OVC ovarian cancer, CRC colorectal cancer, GC gastric cancer, BUT benign uterine tumor, BOT benign ovarian tumor, PCL
precancerous cervical lesion, BRC breast cancer, BBT benign breast tumor, UCC uterine cervical cancer and EMC
endometrial cancer

Lee et al. BioData Mining  (2016) 9:32 Page 4 of 14



reference mass spectrum plus a mass spectrum was not identical to that of the refer-

ence mass spectrum only. 2) The aligned mass spectra were realigned with the refer-

ence mass spectrum with a mass tolerance of 300 ppm. 3) The realigned mass

spectra were normalized using the “Normalization Using Total Area Sums” scheme

(See MarkerView Software Reference Manual for details). 4) The normalized mass

spectra were Pareto-scaled. 5) The Pareto-scaled mass spectra were multiplied by

the weighting factors. 6) The five weighted mass spectra obtained per sample were

averaged.

Preliminary LMI candidates

PCA-DA DS was calculated as the weighted sum of the Pareto-scaled intensities of all

LMIs (≤ 10000 LMIs). However, most LMIs made trivial contributions to the DS.

Search algorithm 1 revealed the P preliminary LMI candidates with the following two

criteria: 1) LMIs with weighted intensities that have a magnitude > 0.1 for each inten-

sity column in the weighted reference mass spectrum. 2) LMIs selected simultaneously

in more than half of the intensity columns in the reference mass spectrum.

Discriminative LMIs

The discriminative LMIs were searched based on the averaged mass spectra of Set A

and the P preliminary LMI candidates. Search algorithm 2 (Fig. 1) consisted of the

following steps. 1) Whether there was a single LMI with a sensitivity and specificity of

100 % for Set A was determined. 2) The sums of the sensitivity and specificity for PC2

and PC3 combinations were calculated. 3) The combination of two or three LMIs with

the maximum sum of sensitivity and specificity was put aside and Step 2) was iterated

with the remaining LMIs until one or no LMI remained. 4) A combination of two or

three LMIs was considered a single LMI and Steps 2) – 3) were iterated. 5) Step 4) was

Fig. 1 Search algorithm 2
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iterated. The combination put together at the preceding iteration was considered a sin-

gle LMI at the subsequent iteration. 6) The combination of S LMIs with the maximum

sum of sensitivity and specificity was assigned as a seed set. 7) The RC1, RC2, and RC3

combinations were added to the seed set, where R = P – S. 8) The enlarged seed set

with the maximum sum of sensitivity and specificity was assigned as a new seed set if

the enlarged seed set was better than the former seed set in terms of the sum of sensi-

tivity and specificity, and Step 7) was iterated with the remaining LMIs. 9) The last up-

dated seed set was assigned as the discriminative LMIs. The LOME with discriminative

LMIs can be expressed as follows:

DS ¼
X

disciminative LMIs
Pareto−scaled intensity �Weighting factorð Þ

When the number of combinations with the maximum sum of sensitivity and specifi-

city was > 1, one was selected using the following two criteria: Priority 1) When the

numbers of LMIs in the combinations showing the same sum of sensitivity and specifi-

city were different, the combination with the fewest LMIs was selected. This choice re-

sulted in a better performance in this study. Priority 2) When the numbers of LMIs in

the combinations were equal, the combination with the largest Fisher’s discriminant

ratio was selected.

Validation of LOME for OVC screening

Set B was reserved for the validation process. Sets A and B were mutually exclusive.

The mean DSs for Set B were calculated based on the averaged mass spectra of Set B

and the discriminative LMIs derived from Set A. The mean DS of a sample was the

sum of the averaged intensities of the discriminative LMIs. A decision was made

based on the sign of the mean DS, i.e., plus/minus DS indicated screen-positive/

negative, respectively.

Identification of LMIs

The methanol/chloroform extract was dried, and then reconstituted in 0.1 % formic

acid (FA) and subjected to liquid chromatography - mass spectrometry (LC-MS) ana-

lysis, using Eksigent ultraLC 110-XL system coupled to an AB Sciex Triple TOF 5600+

system, equipped at the front end with a DuoSpray ion source. For the ultraLC separ-

ation, the sample was loaded into an Atlantis T3 sentry guard cartridge (3 μm, 2.1 ×

10 mm; Waters), and then separation was performed in an Atlantis T3 column (3 μm,

2.1 × 100 mm; Waters) in a two-step linear gradient (solvent A, 0.1 % FA in water;

solvent B, 100 % Acetonitrile; with 1 % solvent B for 2 min, 1 to 30 % B for 6 min, 30

to 90 % B for 8 min, 90 % B for 4 min, 90 to 1 % B for 1 min and 9 min in 1 % B). The

MS system was set to perform one full scan (50 to 1,200 m/z range) followed by

tandem mass spectrometry (MS/MS) of the 10 most-abundant parent ions (mass toler-

ance, 50 mDa; collision energy, 35 %). The MS and MS/MS spectra were submitted to

the Formula Finder computational tools (Sciex) that proposes probable elemental com-

positions within a specified mass tolerance of a given mass-to-charge ratio using the

PeakView software (Sciex). Using metabolite databases comprising Human Metabolome

Database (HMDB), specific compounds were found for the given m/z, listed in rank
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order based on the MS and MS/MS data. A proteomic MS/MS analysis was performed

using the ProteinPilot software (Sciex).

Statistical analysis

Between-group differences were analyzed using the non-parametric Mann–Whitney

U-test, and significance was set at P < 0.05.

Results
Preliminary LMI candidates

The results of classification for the reference mass spectrum using PCA-DA and the

preliminary LMI candidates are shown in Fig. 2a and b, respectively. Excellent separ-

ation performance was observed with the threshold DS of the solid horizontal line. A

total of 10000 LMIs were involved in the PCA-DA DSs. Search algorithm 1 selected

176 preliminary LMI candidates. Although only 1.76 % of LMIs were used to compute

the DSs, the separation capability remained unchanged. Further, comparison of Fig. 2a

and b indicated that the marked reduction in number of LMIs did not lead to marked

variation in the DS range.

Discriminative LMIs

Search algorithm 2 yielded 13 discriminative LMIs for separating OVC from Non-OVC

(Table 4). The classification results for all samples using the discriminative LMIs are

shown in Fig. 3, and Table 5 presents a summary of the classification performance.

Sensitivity was 93.10 % and specificity was 100.0 % for Set B, whereas low specificities

were observed for UCC and EMC cases that were not included in the training process.

Addition of LPC 16:0, LPC18:0 and fibrinogen α-chain fragment

The effect of the three identified LMIs—lysophosphatidylcholine (LPC) 16:0 (496.5220 m/

z), LPC 18:0 (524.5837 m/z), and fibrinogen α-chain fragment (1466.7073 m/z)—on the

classification performance was investigated. A LOME incorporating only the three LMIs

did not provide good classification performance (sensitivity, 41.38 %; specificity, 77.49 % for

Fig. 2 Classification results for the reference mass spectrum. a Principal component analysis-based discriminant
analysis. b Preliminary low-mass-ion candidates. DS, discriminant score; OVC, ovarian cancer; CRC, colorectal
cancer; GC, gastric cancer; BUT, benign uterine tumor; BOT, benign ovarian tumor; PCL, precancerous
cervical lesion; BRC, breast cancer; and BBT, benign breast tumor
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Set B; specificity of UCC, 72.73 %; specificity of EMC, 70.00 %). As a next step, a LOME

augmented with the three LMIs was evaluated. Figure 4 presents the classification results

using the 13 discriminative plus the 3 identified LMIs, and Table 6 shows the corresponding

classification performance. A threshold score was trained based on Set A and all decisions

were made on Set B with the trained threshold score. While the sensitivity and specificity

for Set B worsened slightly, the specificities of UCC and EMC were greatly improved.

Identification and semi-quantification of LMIs

To predict molecular formulas that match LMIs, the Formula Finder computational

tools and ProteinPilot software (Sciex) were used. The resulting MS and MS/MS

spectra were compared with compound details, and D,L-glutamine and LPC 16:0 were

identified (Figs. 5 and 6). The LMI with 147.1699 m/z selected for composing OVC

LOME was shifted to 147.0764 m/z on the Triple-TOF mass spectrum (Fig. 5a).

Fibrinogen alpha chain fragment also predicted possible metabolites with accurate

masses and isotopic patterns at 147.0764, 496.3398 and 1464.64 m/z (Fig. 7). Although

LPC 16:0 and fibrinogen alpha chain fragment were not included in the OVC LOME,

additional information on LPC 16:0 and fibrinogen alpha chain fragment increased its

discrimination power (Table 6).

To obtain more information on the relative levels of the three identified LMIs in

OVC, control (n = 73), OVC (n = 13), and GC (n = 9) samples were further analyzed

using Triple-TOF MS. Peak areas responsible for the three identified LMIs—D,l-glutam-

ine (Fig. 8a), LPC 16:0 (Fig. 8b), and fibrinogen alpha chain fragment (Fig. 8c)—were

calculated in individual samples. The mass peak areas of D,L-glutamine and fibrinogen

alpha chain fragment were significantly increased in the OVC group compared to the

control group (p = 0.001 and p = 0.002, respectively) (Fig. 8a, c). The mass peak area for

LPC 16:0 was smaller in the OVC groups, albeit not significantly so (p = 0.523) (Fig. 8b).

However, the LPC 16:0 level facilitated separation of OVC from other types of cancer,

such as GC (Fig. 8b, right panel).

Table 4 Discriminative LMIs for separating OVC from Non-OVC

Mass value in m/z

21.1873 37.5142 38.6222 147.1669 175.1585 190.7493 709.7879

37.0311 37.7989 84.8716 171.4024 188.8544 230.0197

Fig. 3 Classification results using the 13 discriminative low-mass ions. a Set A1. b Set A2. c Set B. Sets A1
and A2 are the training sets for the two-stage training scheme. Set B is the validation set. DS, discriminant
score; OVC, ovarian cancer; CRC, colorectal cancer; GC, gastric cancer; BUT, benign uterine tumor; BOT,
benign ovarian tumor; PCL, precancerous cervical lesion; BRC, breast cancer; and BBT, benign breast tumor
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Discussion
Metabolomics is the global assessment of endogenous small molecule metabolites

within a biological system, and altered metabolism is well established as a hallmark of

cancer, which contributes to tumorigenicity and malignancy [6, 7]. Many studies have

shown increased rates of glycolysis, glutaminolysis, and lipid synthesis in cancers, sug-

gesting that altered metabolism promotes tumor growth [8]. Metabolomics has been

utilized to identify novel biomarkers that could be used to distinguish cancer patients

from their counterparts without neoplasms [6, 7, 9–11]. Exploring metabolic signatures

of biological specimens would aid in the early diagnosis of ovarian cancer and also

clarification of disease pathogenesis. The advantages of this technology in the search

for ovarian cancer screening methods also include the ability to identify numerous new

potential biomarkers present at low concentrations in serum.

Search algorithm 2 for discriminative LMIs was newly devised in the present study.

The previous algorithm [6] employed the sensitivity and specificity of each LMI, i.e.,

each LMI was sorted in descending order of the sum of sensitivity and specificity and

then examined in that order in the search process. However, all decisions were made

using the sensitivity and specificity of a combination of LMIs, rather than each LMI, in

the present study. This novel algorithm checked many more combinations of LMIs

than in our previous work before determining the discriminative LMIs.

Using MS/MS pattern analysis and calculation of mass peak area we identified

and semi-quantitated three metabolic compounds in OVC (Figs. 5, 6, 7, 8). The

mass peak area of LPC 16:0 was significantly decreased in the OVC group (Fig. 8b),

whereas the relative amounts of D,L-glutamine and fibrinogen alpha chain fragment were

Table 5 Classification performance using the 13 discriminative LMIs

Training set Validation set

Set A1 Set A2 Set B

Sensitivity (%) 100.0 100.0 93.10

Specificity (%) 99.15 100.0 100.0

PPV (%) 90.91 100.0 100.0

NPV (%) 100.0 100.0 99.43

Specificity of UCC (%) 48.48

Specificity of EMC (%) 50.00

PPV positive predictive value, NPV negative predictive value

Fig. 4 Classification results using the 13 discriminative and 3 identified low-mass ions. a Set A1. b Set A2. c
Set B. Sets A1 and A2 are the training sets for the two-stage training scheme. Set B is the validation set.
DS, discriminant score; OVC, ovarian cancer; CRC, colorectal cancer; GC, gastric cancer; BUT, benign uterine tumor;
BOT, benign ovarian tumor; PCL, precancerous cervical lesion; BRC, breast cancer; and BBT, benign breast tumor
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significantly higher in the OVC group compared to the control group (Fig. 8a, c). Unfor-

tunately, we were not able to determine the amounts of three metabolites in all samples

listed in Table 3 because of the limited amount of individual samples. Therefore, further

study needs to clarify an effect of small sample number of OVC. Glutamine is one of the

major amino acids used by tumor cells for biosynthesis. Targeted inhibition of glutamine

metabolism in cancers such as OVC and BRC has anti-tumorigenic effects [12–17].

Addition of glutamine to culture medium increases the proliferation rate of OVC cell lines

[12, 13], whereas its absence induces reactive oxygen species and expression of endoplas-

mic reticulum stress proteins [12]. In the present study, we identified LMI with

147.0764 m/z as D,L-glutamine, and the mass peak area of D,L-glutamine was lower in

OVC (Fig. 8). Our result suggests that the glutamine concentration in blood may be a

useful index for screening OVC.

Table 6 Classification performance using the 13 discriminative and 3 identified LMIs

Training set Validation set

Set A1 Set A2 Set B

Sensitivity (%) 90.00 90.00 89.66

Specificity (%) 97.15 96.57 98.01

PPV (%) 72.97 69.23 78.79

NPV (%) 99.13 99.12 99.14

Specificity of UCC (%) 90.91

Specificity of EMC (%) 100.0

PPV positive predictive value, NPV negative predictive value
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Fig. 5 Selection of candidate metabolites for the LMI with 147.0764 m/z. a Mass spectra of 147.0764 m/z.
MS and MS/MS pattern analyses were performed using a Triple-TOF mass spectrometer. The LMI with
147.1699 m/z in the MALDI mass spectrum was shifted to 147.0764 m/z in the Triple-TOF mass spectrum. The
intensity of the LMI with 147.0764 m/z was significantly higher in the control group (peaks in blue) compared
to the OVC group (peaks in red). b MS/MS analysis of the LMI with 147.0764 m/z. c Structure of HMDB00641
(L-glutamine), HMDB02031 (ureidoisobutyric acid) and HMDB03423 (D-glutamine). d HMDB number of
the LMI with 147.0764 m/z. Based on the MS/MS analytic pattern, three metabolic compounds—HMDB00641
(L-glutamine), HMDB02031 (ureidoisobutyric acid) and HMDB03423 (D-glutamine)—for the LMI with
147.0764 m/z were selected
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Recent studies have suggested that lysophospholipids bind to activate G protein-

coupled receptors to initiate growth, proliferation, and survival pathways in cancer cells

[18]. If lysophospholipids were released to the bloodstream, they might serve as cancer

screening markers. Among lysophospholipids, LPC 16:0 has been reported as a poten-

tial biomarker not only for OVC but also for other types of cancer [19], and our previ-

ous and present studies confirmed its potential screening power for OVC [9] (Figs. 6

and 8). Although the relative concentration of LPC 16:0 in OVC was not significantly

different from that in the control group, it enabled separation of OVC from other types
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Fig. 6 Identification of the LMI with 496.3398 m/z. a Mass spectra of 496.3398 m/z. MS and MS/MS pattern
analyses were performed using a Triple-TOF mass spectrometer. The intensity of the LMI with 496.3398 m/z
was significantly higher in the control group (peaks in blue) compared to the OVC group (peaks in red).
b MS/MS analysis of the LMI with 496.3398 m/z. c Structure of HMDB10382 (LPC 16:0). d HMDB number
of the LMI with 496.3398 m/z. Based on the MS/MS analytic pattern, the metabolic compound with 496.3398
m/z was identified as HMDB10382 (LPC 16:0)
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Fig. 7 Identification of the LMI with 1464.64 m/z. a Mass spectra of 1464.64 m/z. MS and MS/MS pattern
analyses were performed using a Triple-TOF mass spectrometer. The intensity of the LMI with 1464.64 m/z
was significantly higher in the OVC group (peaks in red) compared to the control group (peaks in blue). b
MS/MS analysis of the LMI with 1464.64 m/z. c Peptide sequence analysis demonstrating that the LMI with
1464.64 m/z was the fibrinogen alpha chain fragment. Protein identification based on the MS/MS analytic
pattern. d The LMI with 1464.64 m/z was identified as the fibrinogen alpha chain fragment
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of cancer, such as GC (Fig. 8b, right panel). However, the molecular mechanism(s)

linked to downregulation of LPC 16:0 in OVC blood samples remain to be elucidated.

Our recent MALDI-TOF analysis revealed that increased fibrinogen alpha chain frag-

ment in blood was an important factor for screening for CRC [6]. In the present study,

upregulation of fibrinogen alpha chain fragment was also found in blood from OVC pa-

tients (Fig. 8). Fibrinogen alpha chain fragment is considered an important regulator of

inflammation [20]. Therefore, an increased level of fragmented fibrinogen alpha chain

fragment in blood may be common to many types of cancer that are accompanied by

inflammation [6, 21–23].

Despite the screening power of the OVC LOME, three points should be considered

in further studies. First, the number of OVC samples was relatively small in this study.

To validate and refine the current procedures and results, a larger set of serum samples

is being collected from multiple centers in the Republic of Korea, and will be tested in

a future study. Second, a decision of “indeterminate” may be introduced for subjects

with a DS near the threshold score, so that an appropriate recommendation can be

made. We expect also that the linkage between accumulated clinical data and LMI

information will reduce the rate of indeterminate cases. Search algorithm 2 consisted of

the germination (Steps 1–6) and growth (Steps 7–9) modules. It will be revised again

to yield a more compact set of discriminative LMIs by including a shrinkage module. It
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Fig. 8 Semi-quantitative analysis of D,L-glutamine, LPC 16:0 and fibrinogen alpha chain fragment using peak
areas in Triple-TOF mass spectra. Control (n = 73), OVC (n = 13), and GC (n = 9) samples were further analyzed
using Triple-TOF MS for semi-quantitation of the three identified LMIs [a D,l-glutamine, b LPC 16:0, and c fibrinogen
alpha chain fragment]. Left panels show the peak areas of D,l-glutamine, LPC 16:0, and fibrinogen alpha chain
fragment from individuals. Right panels are the results of statistical analysis demonstrating differential
levels of the three molecules in the OVC group
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was not of primary concern to compare several classifiers until now. But it would be

one of future works. Third, fibrinogen alpha chain fragment is an important metabolite

to discriminate disease group accompanied by inflammation. But it also shows very

variable range depending on cancer type (e.g. it is higher in biliary tract cancer com-

pared to CRC, lung cancer and inflammatory bowel disease, unpublished data), cancer

stage [6] and so on. Therefore, fibrinogen alpha chain fragment might have a different

weighting factor in construction of LOME depending on a type of disease, or might be

ignored because of other strong discriminative metabolic factors.

Conclusions
In conclusion, we developed a cancer-screening tool by profiling LMIs in the blood and

applied it to CRC, BRC, and GC in our previous work [6]. This method showed high

sensitivity and specificity, and could be applicable for OVC screening. Three metabolic

compounds—D,L-glutamine, LPC 16:0 and fibrinogen alpha chain fragment—might be

included in a metabolic index to screen for OVC, but three main points considered in

this study should be clarified in further studies.

Additional file

Additional file 1: More detailed information for individual samples. Table S1.Healthy Control Individuals
Providing Sera for LMI Profiling. Table S2. Patients with OVC Providing Sera for LMI Profiling. Table S3. Patients
with CRC Providing Sera for LMI Profiling. Table S4. Patients with GC Providing Sera for LMI Profiling. Table S5.
Patients with BUT Providing Sera for LMI Profiling. Table S6. Patients with BOT Providing Sera for LMI Profiling.
Table S7. Patients with PCL Providing Sera for LMI Profiling. Table S8. Patients with BRC Providing Sera for LMI
Profiling. Table S9. Patients with BBT Providing Sera for LMI Profiling. Table S10. Patients with UCC Providing Sera
for LMI Profiling. Table S11. Patients with EMC Providing Sera for LMI Profiling. (DOCX 145 kb)

Abbreviations
BBT: Benign breast tumor; BOT: Benign ovarian tumor; BRC: Breast cancer; BUT: Benign uterine tumor; CA-125: Cancer
antigen 125; CRC: Colorectal cancer; DS: Discriminant score; EMC: Endometrial cancer; FA: Formic acid; GC: Gastric
cancer; HMDB: Human Metabolome Database; LC-MS: Liquid chromatography - mass spectrometry; LMI: Low-mass-ion;
LOME: Low-mass-ion discriminant equation; LPC: Lysophosphatidylcholine; m/z: Mass-to-charge ratio; MALDI-TOF: Matrix-
assisted laser desorption/ionization-time of flight; MS/MS: Tandem mass spectrometry; NPV: Negative predictive value;
OVC: Ovarian cancer; PCA-DA: Principal component analysis - based discriminant analysis; PCL: Precancerous cervical lesion;
PPV: Positive predictive value; TFA: Trifluoroacetic acid; UCC: Uterine cervical cancer

Acknowledgements
Not applicable.

Funding
This study was supported by a grant of the Korean Health Technology R&D Project, Ministry of Health &Welfare,
Republic of Korea (HI12C0050).

Availability of data and materials
Unfortunately, the authors are not able to provide raw data, its related information etcetera, becuase it is out of scope
for the informed consent and is not allowed by our participant institutions.

Authors’ contributions
JHL, BCY, KHK, and SCK participated in the study design. All authors provided study material and were involved in the
manuscript writing. All read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
This study was approved by Ewha Womans University Mokdong Hospital institutional Review Board (EUMC2015-04-050-001).
Participants were enrolled successively after receiving informed written consent.

Lee et al. BioData Mining  (2016) 9:32 Page 13 of 14

dx.doi.org/10.1186/s13040-016-0111-7


Author details
1Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Ewha Womans University Mokdong
Hospital, College of Medicine, Ewha Womans University, Seoul, Republic of Korea. 2Colorectal Cancer Branch, Research
Institute, National Cancer Center, Goyang, Gyeonggi, Republic of Korea. 3Department of Radiation Oncology,
Soonchunhyang University College of Medicine, Cheonan, Republic of Korea. 4Department of Genetic Engineering,
Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea. 5Omics Core Laboratory, Research Institute, National
Cancer Center, Goyang, Gyeonggi, Republic of Korea.

Received: 7 July 2016 Accepted: 30 September 2016

References
1. Clarke-Pearson DL. Clinical practice. Screening for ovarian cancer. N Engl J Med. 2009;361:170–7.
2. Reade CJ, Riva JJ, et al. Risks and benefits of screening asymptomatic women for ovarian cancer: a systematic

review and meta-analysis. Gynecol Oncol. 2013;130:674–81.
3. Lu KH, Skates S, et al. A 2-stage ovarian cancer screening strategy using the Risk of Ovarian Cancer Algorithm (ROCA)

identifies early-stage incident cancers and demonstrates high positive predictive value. Cancer. 2013;119:3454–61.
4. DeBerardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us? Cell. 2012;

148:1132–44.
5. Beger RD. A review of applications of metabolomics in cancer. Metabolites. 2013;3:552–74.
6. Lee JH, Kim KH, et al. Low-mass-ion discriminant equation: a new concept for colorectal cancer screening.

Int J Cancer. 2014;134:1844–53.
7. Ke C, Hou Y, et al. Large-scale profiling of metabolic dysregulation in ovarian cancer. Int J Cancer. 2015;136:516–26.
8. Benjamin DI, Cravatt BF, et al. Global profiling strategies for mapping dysregulated metabolic pathways in cancer.

Cell Metab. 2012;16:565–77.
9. Kim SC, Kim MK, et al. Differential levels of L-homocysteic acid and lysophosphatidylcholine (16:0) in sera of patients

with ovarian cancer. Oncol Lett. 2014;8:566–74.
10. Yoo BC, Kong SY, et al. Identification of hypoxanthine as a urine marker for non-Hodgkin lymphoma by low-mass-ion

profiling. BMC Cancer. 2010;10:55.
11. Zhang T, Wu X, et al. Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling.

J Proteome Res. 2013;12:505–12.
12. Yuan L, Sheng X, et al. Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway.

Endocr Relat Cancer. 2015;22:577–91.
13. Korangath P, Teo WW, et al. Targeting Glutamine Metabolism in Breast Cancer with Aminooxyacetate. Clin Cancer

Res. 2015;21:3263–73.
14. Kim MH, Kim H. Oncogenes and tumor suppressors regulate glutamine metabolism in cancer cells. J Cancer Prev.

2013;18:221–6.
15. Yang L, Moss T, et al. Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in

ovarian cancer. Mol Syst Biol. 2014;10:728.
16. Hensley CT, Wasti AT, et al. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest.

2013;123:3678–84.
17. Daye D, Wellen KE. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin

Cell Dev Biol. 2012;23:362–9.
18. Murph M, Tanaka T, et al. Liquid chromatography mass spectrometry for quantifying plasma lysophospholipids:

potential biomarkers for cancer diagnosis. Methods Enzymol. 2007;433:1–25.
19. Sutphen R, Xu Y, et al. Lysophospholipids are potential biomarkers of ovarian cancer. Cancer Epidemiol Biomarkers

Prev. 2004;13:1185–91.
20. Davalos D, Akassoglou K. Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol. 2012;34:

43–62.
21. Li XJ, Wu QF, et al. Proteomic profiling of serum from stage I lung squamous cell carcinoma patients. Asian Pac

J Cancer Prev. 2013;14:2273–6.
22. Tung CL, Lin ST, et al. Proteomics-based identification of plasma biomarkers in oral squamous cell carcinoma.

J Pharm Biomed Anal. 2013;75:7–17.
23. van Winden AW, van den Broek I, et al. Serum degradome markers for the detection of breast cancer. J Proteome

Res. 2010;9:3781–8.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Lee et al. BioData Mining  (2016) 9:32 Page 14 of 14


	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Study population
	Construction of a LOME for OVC screening
	MALDI-TOF sample preparation & analysis
	Two-stage training scheme
	Weighting factors for individual LMIs
	Data preprocessing
	Preliminary LMI candidates
	Discriminative LMIs

	Validation of LOME for OVC screening
	Identification of LMIs
	Statistical analysis

	Results
	Preliminary LMI candidates
	Discriminative LMIs
	Addition of LPC 16:0, LPC18:0 and fibrinogen α-chain fragment
	Identification and semi-quantification of LMIs

	Discussion
	Conclusions
	Additional file
	show [a]
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

