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Abstract: Poly-γ-glutamate/apatite (PGA-AP) nanoparticles were prepared by chemical coprecip-
itation method in the presence of various concentrations of poly-γ-glutamate (γ-PGA). Powder
X-ray diffraction pattern and energy-dispersive spectroscopy revealed that the main crystal phase of
PGA-AP was hydroxyapatite. The immobilization of γ-PGA on PGA-AP was confirmed by Fourier
transform infrared spectroscopy and the relative amount of γ-PGA incorporation into PGA-AP was
determined by thermal gravimetric analysis. Dynamic light scattering measurements indicated
that the particle size of PGA-AP nanoparticles increased remarkably with the decrease of γ-PGA
content. The adsorption of aqueous Cu(II) onto the PGA-AP nanoparticles was investigated in
batch experiments with varying contact time, solution pH and temperature. Results illustrated
that the adsorption of Cu(II) was very rapid during the initial adsorption period. The adsorption
capacity of PGA-AP nanoparticles for Cu(II) was increased with the increase in the γ-PGA content,
solution pH and temperature. At a pH of 6 and 60 ◦C, a higher equilibrium adsorption capacity of
about 74.80 mg/g was obtained. The kinetic studies indicated that Cu(II) adsorption onto PGA-AP
nanoparticles obeyed well the pseudo-second order model. The Langmuir isotherm model was
fitted well to the adsorption equilibrium data. The results indicated that the adsorption behavior
of PGA-AP nanoparticles for Cu(II) was mainly a monolayer chemical adsorption process. The
maximum adsorption capacity of PGA-AP nanoparticles was estimated to be 78.99 mg/g.

Keywords: poly-γ-glutamate; apatite; nanoparticles; adsorption; copper ions

1. Introduction

Heavy metal water pollution is a severe environmental issue in the developed and
developing countries. Copper, one of the main heavy metal pollutants in the water, is
produced from different industries like electroplating, mining, copper wire mills, coal,
tanning, refining, etc. High concentration of copper is toxic to human and animals due
to its high redox activity [1]. It can damage the proteins, DNA, and lipids in the cells [2].
Therefore, it is critical to explore effective and safe approaches to remove copper from
polluted water.

Adsorption technique is frequently applied for removing the heavy metal pollutants
from contaminated water because of its simple operation, relatively low cost, and high
removal efficiency [3]. Various adsorbents are available to the removal of copper ions in
wastewater, such as zeolites, clays, fly ash, apatite, activated carbons, chitosan, sodium
alginate, cellulose, agricultural wastes, etc. [4]. Apatite is a calcium phosphate mineral with
composition and structure similar to those of the mineral phase of natural bones and teeth.
There are many types of apatite including hydroxyapatite, fluoroapatite, chloroapatite,
and carbonated apatite [5]. Apatite has been utilized in wastewater treatment owing to
its low water solubility, good adsorption characteristics, stable in reducing and oxidizing
environments, easy preparation, facile modification, environmental-friendly, and low
secondary pollution. Therefore, several studies have used apatites to remove aqueous
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heavy metals via ion exchange, surface complexation and dissolution/precipitation [6,7].
Nanoparticles have been studied extensively for heavy metal removal due to their high
specific surface area and excellent adsorption ability [8]. There are many methods to
synthesize apatite nanoparticles, such as chemical precipitation, hydrothermal treatment,
emulsion method, sol-gel technique, electrodeposition, and plasma spraying process [9].

Enhanced removal of heavy metal ions through surface modification of apatite par-
ticles with carboxylic groups have been shown previously [10–12]. Moreover, it could
increase the stability of particles in the aqueous solution. Poly-γ-glutamate (γ-PGA), a natu-
ral and biodegradable anionic polypeptide, is produced from various microorganisms such
as Bacillus subtilis [13]. It has been widely used in medicine, cosmetics, food, agriculture,
and water treatment [14]. Previous studies reported that the carboxyl and amide groups of
γ-PGA can complex with various metal ions, including Cu(II), Pb(II), Hg(II), Ni(II), Mn(II),
Cd(II), Fe(III), Al(III), Cr(III), and U(VI) [15–17]. Some researchers have synthesized apatite
by wet chemical method in the presence of amino acid and polypeptide, including aspartic
acid, glutamic acid poly-L-aspartate, and γ-PGA, to introduce carboxylic groups onto the
apatite surface [12,18–20].

No investigation has been performed on Cu(II) adsorption using γ-PGA/apatite
composite nanoparticles. In this study, biocompatible and environmental-friendly apatite
nanoparticles were synthesized by coprecipitation method in the presence of γ-PGA to
remove Cu(II) species from aqueous solution. The physical and chemical properties
of the synthesized poly-γ-glutamate/apatite (denoted as PGA-AP) nanoparticles were
characterized through Fourier transform infrared spectroscopy (FTIR), thermal gravimetric
analysis (TGA), powder X-ray diffraction (XRD), energy-dispersive spectrometer (EDS)
and dynamic light scattering (DLS). This influences of the contact time, solution pH and
temperature on Cu(II) removal from aqueous solution by PGA-AP nanoparticles were
studied in batch experiments. The adsorption kinetics was investigated with pseudo-first-
order and pseudo-second-order models. The adsorption equilibrium was further evaluated
by Langmuir and Freundlich isotherms.

2. Materials and Methods
2.1. Materials

γ-PGA with a molecular weight of about 1.2 MDa was provided by Vedan Enterprise
Corporation (Taichung, Taiwan). Calcium nitrate tetrahydrate and copper nitrate trihydrate
were purchased from Showa Chemical Co. (Tokyo, Japan). Diammonium phosphate,
ammonia solution and nitric acid were obtained from Katayama Chemical Co. (Osaka,
Japan). Sodium hydroxide was from Riedel-de Haën (Seelze, Germany). Copper standard
solution (1000 mg/L) was bought from Merck (Darmstadt, Germany). All chemicals were
used as received without further purification.

2.2. Synthesis of PGA-AP Nanoparticles

The PGA-AP nanoparticles were synthesized by coprecipitation of calcium nitrate and
diammonium phosphate in the presence of γ-PGA, as reported by Boanini et al., with slight
modification [21]. Briefly, 0.05 g of γ-PGA was dissolved in 50 g of deionized water and the
pH of solution was adjusted to 10 with ammonia solution. Aqueous solutions of calcium
nitrate and diammonium phosphate were separately prepared in concentrations of 1.08
and 0.65 M, respectively; in each was added ammonia solution to adjust pH to 10. Calcium
nitrate and diammonium phosphate solutions were dropped simultaneously into the γ-
PGA solution according to Ca/P molar ratio of 1.67 under magnetic stirring, and ammonia
solution was added continuously to maintain the pH at 10. After dropping, the mixture
was transferred to and sealed in a glass bottle, heated to 90 ◦C for 24 h and then cooled to
room temperature. The precipitate was collected by centrifugation at 10,000 rpm for 10 min
and washed three times with deionized water. Finally, the PGA-AP nanoparticles were
dried at 60 ◦C for 24 h. The theoretical weight ratios of γ-PGA to AP were 1:20 (G1H20),
1:40 (G1H40) and 1:60 (G1H60).
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2.3. Characterizations

The functional groups of PGA-AP were identified by a Bio-Rad FTS-40 spectropho-
tometer (Hercules, CA, USA) using KBr discs. A total of 64 scans within the range of
4000–500 cm–1 at a resolution of 2 cm−1 were collected and averaged for each sample.

The actual weight fraction of γ-PGA in the PGA-AP nanoparticles was roughly es-
timated by TGA on a TA 2050 (TA Instruments, New Castle, DE, USA). An amount of
5–10 mg of sample was heated from room temperature to 100 ◦C, maintained at 100 ◦C
for 5 min and then heated to 650 ◦C with a heating rate of 10 ◦C/min. The weight frac-
tion of γ-PGA in the nanoparticles were calculated as: (W2/W1) × 100%, where W1 and
W2 represent the weight losses of γ-PGA and PGA-AP, respectively, in the 300–650 ◦C
range [12].

The crystalline phase of PGA-AP was examined by a Rigaku MiniflexII X-ray diffrac-
tometer (Tokyo, Japan) equipped with Cu Kα radiation at 30 kV and 15 mA. Data were
collected from 20◦ to 60◦ (2θ) at a scanning speed of 1◦/min.

The calcium to phosphorus ratio of PGA-AP was measured by an EDS system con-
nected to the field-emission scanning electron microscopy (JEOL JSM-6701F, Tokyo, Japan).

The particle size of PGA-AP nanoparticles was conducted by DLS (Brookhaven In-
struments Co., 90Plus particle size analyzer, Holtsville, NY, USA) with deionized water as
the dispersion medium.

2.4. Adsorption Experiments
2.4.1. Procedure

The adsorption of copper ions by PGA-AP nanoparticles was performed using the
batch method. An amount of 0.025 g of PGA-AP nanoparticles was contacted with 50 mL
of 100 ppm of copper solutions in a shaking bath at 100 rpm. The conditions affecting
copper ions adsorption onto PGA-AP nanoparticles were studied by varying pH (4, 5 and
6), temperature (30, 45 and 60 ◦C) and contact time (1, 3, 5, 10, 30, 60, 180 and 720 min). The
pH of the solution was adjusted with nitric acid and sodium hydroxide. After adsorption
experiment, the suspension was centrifuged and the supernatant was taken to determine
the residual concentration of copper ions by a flame atomic absorption spectrophotometer
(model AA-400, Perkin Elmer, Waltham, MA, USA). A calibration curve was obtained by
measuring different concentrations of the standard copper solutions (2, 3, 4, 5 and 6 ppm) at
pH values of 4, 5 and 6, which were prepared by dilutions of the stock solution (1000 mg/L)
with deionized water. The amount of copper ions adsorbed by PGA-AP nanoparticles at
time t (qt (mg/g)) was calculated from the following mass balance equation:

qt =
(C0 − Ct)V

m
(1)

where C0 and Ct (mg/L) are the concentrations of copper ions in solutions initially and
at time t, respectively, V (L) is the volume of copper solution, and m (g) is the mass of
PGA-AP nanoparticles (adsorbent). When t is equal to the equilibrium time, the amount of
copper ions adsorbed by PGA-AP nanoparticles at equilibrium (qe) can be calculated using
the above equation (i.e., Ct = Ce, qt = qe).

2.4.2. Adsorption Kinetics

To understand the mechanism and kinetics of copper ions adsorption onto PGA-AP
nanoparticles, the experimental data were fitted with two most common adsorption kinetic
models, pseudo-first-order and pseudo-second-order model [22]. The deviation of the
model from experimental data was evaluated by coefficient of determination (R2).
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The pseudo-first-order model assumes that the diffusion is the rate-limiting step of
the adsorption process. The rate of adsorption is proportional to the number of unoccupied
sites. It can be expressed as follows:

dqt

dt
= k1(qe − qt) (2)

The linear form is as follows:

ln(qe − qt) = ln qe − k1t (3)

where k1 (1/min) is pseudo-first-order rate constant. The values of k1 and qe can be
determined from the linear plot of ln(qe − qt) versus t.

The pseudo-second-order model assumes that the chemical adsorption is the rate-
limiting step. The rate of adsorption is proportional to the square of the number of
unoccupied sites. It can be presented as follows:

dqt

dt
= k2(qe − qt)

2 (4)

The linear form is given as:
t
qt

=
1

k2q2
e
+

t
qe

(5)

where k2 (g/(mg min)) is pseudo-second-order rate constant. The values of k2 and qe can
be determined from the linear plot of t/qt versus t.

2.4.3. Adsorption Isotherms

The adsorption isotherm describes the relation between the amounts of metal ion
adsorbed onto adsorbent surface and the concentration of the metal ion remaining in the
solution at a particular temperature when the adsorption process reaches equilibrium
conditions. Various amounts of G1H20 nanoparticles (0.025, 0.035, 0.045, 0.055, 0.065 and
0.075 g) were added to 50 mL of 100 ppm of copper solutions at pH of 6 and 60 ◦C. The
mixture was agitated in a shaking bath at 100 rpm for 720 min. The adsorption data were
fitted with two commonly used isotherm models, Langmuir and Freundlich, to understand
the adsorption behavior of copper ions onto PGA-AP nanoparticles.

The Langmuir isotherm model is based on monolayer adsorption onto a homoge-
neous adsorbent surface without any interactions between adsorbed molecules [23]. The
Langmuir equation is given by:

qe =
qmKLCe

1 + KLCe
(6)

The linear form is as follows:

Ce

qe
=

1
KLqm

+
Ce

qm
(7)

where qm (mg/g) corresponds to the maximum amount of copper ions adsorbed per gram
of adsorbent to form a complete monolayer on the surface. KL (L/mg) is the Langmuir
equilibrium constant related to the bonding-energy of the adsorbate to the adsorbent. The
constants qm and KL can be determined from the slope and intercept of the linear plot
between Ce/qe and Ce.

The important characteristic of the Langmuir isotherm is the dimensionless separation
factor (RL), which confirms the favorability of the adsorption process and is expressed
as follows:

RL =
1

1 + KLC0
(8)

where C0 (mg/L) corresponds to the highest initial copper ion concentration in the solution.
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The Freundlich isothermal model indicates the heterogeneity of the adsorbent surface
and describes multilayer adsorption with an energetic nonuniform distribution [24]. The
adsorption capacity is related to the concentration of copper ions at equilibrium and can be
expressed as:

qe = KFC1/n
e (9)

The linear form is as follows:

ln qe = ln KF +
1
n

ln Ce (10)

where KF [(mg/g)/(mg/L)–1/n] and 1/n are the Freundlich constants related to the capacity
and intensity of the adsorption, respectively. The constants KF and 1/n can be determined
from the intercept and slope of the linear plot between lnqe and lnCe.

3. Results and Discussion
3.1. PGA-AP Characteristics

The nucleation and growth of three PGA-AP nanoparticles in the presence of γ-PGA
was performed by varying the theoretical weight ratios of γ-PGA to AP. The chemical
composition and crystal structure of PGA-AP were characterized by FTIR, EDS, TGA and
XRD analyses.

The FTIR spectrum of γ-PGA exhibited a strong and broad band around 3400 cm–1

(Figure 1), which could be attributed to both N–H and O–H stretching vibrations of amide
groups and absorbed water, respectively [25]. The band around 2935 cm–1 belonged to C–H
stretching vibration of alkyl chains. The N–H bending of amide II and stretching vibration
of carboxylate salt group (COO−) appeared at around 1589 and 1635 cm–1, respectively [26].
The absorption band due to C=O stretching (amide I) was overlapped by that of COO− [27].
In comparison of the FTIR spectra of PGA-AP and γ-PGA, PGA-AP exhibited additional
strong and sharp bands at 564, 603, 634, 962, 1031 and 1095 cm–1 corresponding to stretching
and bending vibrations of phosphate groups [28]. A sharp absorption band at 3570 cm−1

was due to hydroxyl ions (OH−) stretching vibration. The weak absorption bands at
874, 1421 and 1455 cm–1 attributable to CO3

2− ions, revealing that carbonate groups were
incorporated into the apatite structure by substituting B-site of phosphate groups during
synthesis [29,30]. The characteristic bands of γ-PGA were also shown in all the PGA-AP
nanoparticles, indicating that γ-PGA was immobilized on the nanoparticles. Moreover,
the relative intensities of the absorption bands at 2935, 1589 and 1635 cm–1 decreased with
decreasing the γ-PGA content, indicating that less amount of γ-PGA was immobilized on
the G1H60.

TGA was performed to quantitatively calculate the actual weight fraction of γ-PGA
in the nanoparticles. Figure 2 shows TGA curves of γ-PGA and PGA-AP nanoparticles.
A considerable amount of weight loss (35%) from 300 to 400◦C was noticed for γ-PGA.
The smaller weight loss (<6%) observed below 250 ◦C was attributed to water desorption
because of the hydrophilic nature of γ-PGA. All PGA-AP exhibited a similar thermal
behavior. The major weight loss occurred between 300 and 400 ◦C due to the thermal
decomposition of γ-PGA present in the particles, which increased with increasing the
γ-PGA content. The relative amounts of γ-PGA incorporation into G1H20, G1H40 and
G1H60 were found to be about 6.0, 3.6 and 2.2 wt%, respectively.
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Figure 1. FTIR absorption spectra of poly-γ-glutamate (γ-PGA) and poly-γ-glutamate/apatite (PGA-AP) nanoparticles. 
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Figure 2. Thermal gravimetric analysis (TGA) curves of γ-PGA and PGA-AP nanoparticles. 

XRD analysis was performed to identify the crystal phase of the synthesized precip-
itates. The XRD patterns of PGA-AP nanoparticles are illustrated in Figure 3. PGA-AP 
exhibited characteristic crystalline peaks at 2θ = 25.9°, 28.9°, 31.8°, 32.9°, 34.1°, 39.8°, 46.8°, 
49.5° and 53.3° corresponding to (002), (210), (211), (112), (300), (310), (222), (321) and (004) 
crystallographic planes, respectively, which are the major reflections of hydroxyapatite 
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of G1H20, G1H40 and G1H60 nanoparticles were 1.62, 1.58 and 1.76, respectively, which 
were close to the stoichiometric value for hydroxyapatite (1.67). 

Figure 2. Thermal gravimetric analysis (TGA) curves of γ-PGA and PGA-AP nanoparticles.
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XRD analysis was performed to identify the crystal phase of the synthesized precip-
itates. The XRD patterns of PGA-AP nanoparticles are illustrated in Figure 3. PGA-AP
exhibited characteristic crystalline peaks at 2θ = 25.9◦, 28.9◦, 31.8◦, 32.9◦, 34.1◦, 39.8◦, 46.8◦,
49.5◦ and 53.3◦ corresponding to (002), (210), (211), (112), (300), (310), (222), (321) and (004)
crystallographic planes, respectively, which are the major reflections of hydroxyapatite
crystals [19]. Therefore, the crystallographic data indicated the formation of hydroxyapatite
crystals in the presence of γ-PGA. EDS analysis showed that the Ca/P atomic ratios of
G1H20, G1H40 and G1H60 nanoparticles were 1.62, 1.58 and 1.76, respectively, which were
close to the stoichiometric value for hydroxyapatite (1.67).
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Figure 3. Powder X-ray diffraction (XRD) patterns of PGA-AP nanoparticles. 
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curred until equilibrium was reached at around 60 min. Several previous studies also 
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Figure 3. Powder X-ray diffraction (XRD) patterns of PGA-AP nanoparticles.

The particle sizes of G1H20, G1H40 and G1H60 measured by DLS were 79.7 ± 1.6,
88.5 ± 0.8 and 92.8 ± 2.3 nm, respectively, indicating they increased significantly with
decreasing the γ-PGA content (P < 0.05).

3.2. Adsorption Study

The adsorption experiments were carried out to investigate the influence of different
parameters, such as contact time, solution pH and temperature, on the adsorption of
Cu(II) in a batch system. Figure 4 presents the adsorption capacity of Cu(II) onto PGA-
AP nanoparticles with different weight ratios of γ-PGA to AP at a pH of 6 and 30 ◦C.
The rapid adsorption was observed in the first 10 min. After that, a slight decrease was
occurred until equilibrium was reached at around 60 min. Several previous studies also
showed that heavy metal ions can be rapidly adsorbed by hydroxyapatites [31]. Moreover,
the adsorption experiments demonstrated that the equilibrium adsorption capacity, qe
(mg/g), of Cu(II) onto PGA-AP nanoparticles was increased by increasing the γ-PGA
content. The surface charges of hydroxyapatite particles is positive in acid solutions
due to positively charged ≡CaOH2

+ and neutral ≡P–OH species on the surface [32].
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Therefore, Cu(II) adsorption onto hydroxyapatite is related to other mechanisms. The main
mechanisms of Cu(II) adsorption onto hydroxyapatite include ion exchange with Ca2+ of
the hydroxyapatite, surface complexation with the P–OH groups of the hydroxyapatite,
and partial dissolution of hydroxyapatite followed by the precipitation of a Cu-containing
hydroxyapatite [33]. On the other hand, γ-PGA possesses abundant negatively charged
carboxylates (pKa = 4.25) [34]. Moreover, the nitrogen atom of the amide group of γ-PGA
can also complex with Cu(II) [17]. Therefore, the modification of hydroxyapatite with
γ-PGA can provide additional active sites for Cu(II) adsorption. More carboxylate groups
were available on the surface of the nanoparticles when the γ-PGA content increased. As
expected, the qe was increased from 54.99 mg/g for G1H60 to 63.29 mg/g for G1H20
(Figure 4). Similar results have been found by other investigators. Yang et al. reported that
the adsorption capacity of the hydroxyapatite nanoparticles for Cu(II) was significantly
enhanced through modification with humic acid, mainly because of the introduction of
phenol and carboxylic groups on the surface of the nanoparticles [11]. Bachoua et al.
found that the Pb(II) adsorption capacity was improved due to grafting of aspartic acid
and glutamic acid onto hydroxyapatite [12]. Moreover, the higher adsorption capacity of
G1H20 could be also attributed to its smaller particle size with increased surface area, which
provided more adsorption sites for the removal of Cu(II). In the following experiments, the
effect of temperatures and pH values on the adsorption of Cu(II) by G1H20 nanoparticles
was investigated.
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Figure 4. Comparison of Cu(II) adsorption onto PGA-AP nanoparticles with different weight ratios of γ-PGA to AP at a pH
of 6 and 30 ◦C.

The effect of temperature on Cu(II) adsorption by G1H20 nanoparticles was evaluated
over the range from 30 to 60 ◦C at a pH of 6 and 100 ppm of initial Cu(II) concentration.
Figure 5 demonstrates that a rapid adsorption of Cu(II) by G1H20 was occurred within the
first 10 min of contact time, followed by a gradual increase until reaching an equilibrium
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value. Moreover, it was observed that increasing temperature had a positive effect on the
adsorption capacity of G1H20 nanoparticles. The qe was increased from 63.29 to 74.80 mg/g
as the temperature rose from 30 to 60 ◦C, indicating that adsorption removal of Cu(II) by
PGA-AP nanoparticles favored a high temperature. Similar results have been observed by
other investigators [35].
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The pH of the solution is an important parameter in the removal of heavy metals from
wastewater and aqueous solutions because it affects not only the degree of ionization of
metal ions in solution but also the charge of adsorbents [36]. The chemical forms of Cu(II)
present in aqueous solution, such as Cu(II), Cu(OH)+, Cu2(OH)2

2+, Cu(OH)2, Cu(OH)3
−,

and Cu(OH)4
2−, are known to depend on the pH of the aqueous solution [37]. Cu(II) is

the dominant species at pH below 6.5 [38]. Solid Cu(OH)2 (Ksp = 2.2 × 10–20) starts to
precipitate above pH of 6.5 [39,40]. Thus, the adsorption capability at pH beyond 6 was not
studied. The influence of pH on Cu(II) adsorption by G1H20 nanoparticles was studied by
varying the pH from 4 to 6 at 60 ◦C and 100 ppm of initial Cu(II) concentration. As shown
in Figure 6, the adsorption rate of Cu(II) was rapid during the first 10 min and reached
equilibrium after 60 min. The qe was increased from 52.98 to 74.80 mg/g as solution pH
increased from 4 to 6. The carboxylate groups of the G1H20 nanoparticles were partially
protonated to generate carboxylic acid groups at lower pH, which results in competition
between Cu(II) and hydrogen ions for the same adsorption sites [41]. Yang et al. found that
the adsorbed amount of Cu(II) was increased with increasing the solution pH from 2.5 to
6.5 [11]. Siao et al. revealed that the maximum binding amounts of Pb(II) and Cd(II) by
γ-PGA were occurred in the pH range of 5 to 7 [42]. They also reported that an appreciable
adsorption of Hg(II) by γ-PGA was observed at pH beyond 3 and reached a maximum at a
pH of 6 [15]. Additionally, the surface of hydroxyapatite particles is net positively charged
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at low pH conditions, which is less favorable in complexing metal cations on the adsorbent
surface [43,44]. Therefore, the G1H20 nanoparticles can adsorb more Cu(II) at a pH of 6.
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3.2.1. Adsorption Kinetics

Two well-known kinetic models, a pseudo-first order equation of Lagergren based
on solid capacity and a pseudo-second order equation based on solid phase adsorption,
were applied to evaluate the mechanism of adsorption [43]. Figures 7–9 show the linear
plots of pseudo-first-order and pseudo-second-order models for the adsorption of Cu(II)
onto different PGA-AP nanoparticles at different temperatures and pH values, respectively.
The adsorption kinetic constants and correlation coefficients (R2) for both pseudo-first
and pseudo-second-order kinetics are presented in Table 1. As shown in Table 1, The
calculated qe values from the pseudo-first-order kinetic model were much different from
the experimental ones, indicating that it was not appropriate to describe the adsorption
process. It is clear from R2 values that the adsorption process of Cu(II) onto PGA-AP
nanoparticles obeyed the pseudo-second-order kinetic model better than the first-order
kinetic model. Most of previous studies reported that the adsorption kinetics of Cu(II)
by the hydroxyapatite-containing composites followed the pseudo-second-order kinetic
model [45]. The R2 values for the pseudo-second-order kinetic model were nearly equal
to 1 (>0.997), and the calculated qe values agreed very well with the experimental ones.
These results suggest that the rate-limiting step in the adsorption process may be chemical
adsorption involving valence forces via electrons sharing or exchange between the PGA-AP
nanoparticles and Cu(II) [46,47].
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Table 1. Pseudo-first-order and pseudo-second-order kinetic model constants for Cu(II) adsorption onto PGA-AP nanoparticles.

Materials Temperature pH
qe, exp
(mg/g)

Pseudo-First-Order Model Constants Pseudo-Second-Order Model Constants

(◦C) qe, cal (mg/g) k1 (1/min) R2 qe, cal (mg/g) k2 (g/(mg min)) R2

G1H20 30 6 63.29 12.79 2.78 × 10−2 0.7303 63.37 1.42 × 10−2 0.9971
G1H40 30 6 59.13 14.62 5.78 × 10−2 0.9348 59.77 1.63 × 10−2 0.9993
G1H60 30 6 54.99 20.77 8.86 × 10−2 0.9783 55.96 1.35 × 10−2 0.9997
G1H20 45 6 70.37 19.60 3.81 × 10−2 0.9298 70.92 9.52 × 10−3 0.9971
G1H20 60 4 52.98 9.42 3.65 × 10−2 0.9416 53.73 1.90 × 10−2 0.9983
G1H20 60 5 69.41 21.45 4.51 × 10−2 0.9866 69.20 9.93 × 10−3 0.9983
G1H20 60 6 74.80 23.62 7.39 × 10−2 0.9834 75.93 1.09 × 10−2 0.9995

3.2.2. Adsorption Isotherms

Langmuir and Freundlich isotherm models were used to investigate the adsorption
equilibrium of the PGA-AP nanoparticles for Cu(II) adsorption. The absorption data were
fitted to the linear forms of the Langmuir and Freundlich isotherms for Cu(II) adsorption
onto G1H20 nanoparticles at a pH of 6 and 60 ◦C and are illustrated in Figure 10. The
obtained isotherm model constants and R2 values are summarized in Table 2. The maxi-
mum adsorption capacity (qm) calculated from Langmuir equation (78.99 mg/g) was close
to the experimental value (74.80 mg/g). The Langmuir equilibrium constant (KL) was
2.23 × 10−1 L/mg. The dimensionless separation factor (RL) was 0.0429, which was in the
range of 0 to 1, indicating favorable adsorption of Cu(II) onto PGA-AP nanoparticles. The
Freundlich adsorption capacity (KF) was determined to be 50.41. The adsorption intensity
(1/n) was 0.0904, which was less than 1, indicating that Cu(II) was easily adsorbed by
PGA-AP nanoparticles. The R2 value of the Langmuir isotherm (0.9978) is higher than the
obtained value from the Freundlich isotherm (0.9066), suggesting that the adsorption of
Cu(II) form a monolayer onto the surface of PGA-AP nanoparticles. The result is consistent
with other previous studies [5,45,48].

Table 2. Langmuir and Freundlich isotherm constants for Cu(II) adsorption onto G1H20 nanoparticles at a pH of 6 and
60 ◦C.

Langmuir Isotherm Model Freundlich Isotherm Model

qm (mg/g) KL (L/mg) RL R2 KF [(mg/g)/(mg/L)–1/n] 1/n R2

78.99 2.23 × 10−1 4.29 × 10−2 0.9978 50.41 9.04 × 10−2 0.9066
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4. Conclusions 
PGA-AP nanoparticles with 2.2 to 6.0 wt% of γ-PGA were synthesized as adsorbents 

for removing Cu(II) from aqueous solution. The composition and structure of PGA-AP 
were confirmed by FTIR, TGA, XRD and EDS. The particle size of PGA-AP nanoparticles 
decreased significantly with the increase of γ-PGA content. It was also found that the 
Cu(II) adsorption amount of PGA-AP nanoparticles was increased with increasing the 
immobilized amount of γ-PGA. The equilibrium adsorption capacity of about 74.80 mg/g 
was achieved at pH of 6 and 60 °C after 60 min of contact time. The adsorption kinetics 
and isotherms investigations demonstrated that the Cu(II) adsorption by PGA-AP nano-
particles followed well the pseudo-second-order kinetics and the Langmuir isotherm 
equation, respectively. It suggests that the Cu(II) adsorption process was mainly chemical 
adsorption and monolayer adsorption. 

Author Contributions: Conceptualization, investigation, and writing, K.-Y.C.; methodology and 
formal analysis, W.-Y.Z. All authors have read and agreed to the published version of the manu-
script. 

Funding: We like to thank the Ministry of Science and Technology of the Republic of China, Tai-
wan (contract No. MOST 103-2221-E-224-011) for financially supporting this research. 

b) 

Figure 10. (a) Langmuir and (b) Freundlich isotherms for the adsorption of Cu(II) by G1H20 nanoparticles at a pH of 6 and
60 ◦C.



Polymers 2021, 13, 962 16 of 18

4. Conclusions

PGA-AP nanoparticles with 2.2 to 6.0 wt% of γ-PGA were synthesized as adsorbents
for removing Cu(II) from aqueous solution. The composition and structure of PGA-AP
were confirmed by FTIR, TGA, XRD and EDS. The particle size of PGA-AP nanoparticles
decreased significantly with the increase of γ-PGA content. It was also found that the
Cu(II) adsorption amount of PGA-AP nanoparticles was increased with increasing the
immobilized amount of γ-PGA. The equilibrium adsorption capacity of about 74.80 mg/g
was achieved at pH of 6 and 60 ◦C after 60 min of contact time. The adsorption kinetics and
isotherms investigations demonstrated that the Cu(II) adsorption by PGA-AP nanoparticles
followed well the pseudo-second-order kinetics and the Langmuir isotherm equation,
respectively. It suggests that the Cu(II) adsorption process was mainly chemical adsorption
and monolayer adsorption.
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