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Transcriptome Sequencing of a Large Human Family
Identifies the Impact of Rare Noncoding Variants

Xin Li,1,* Alexis Battle,2,3,5 Konrad J. Karczewski,2 Zach Zappala,2 David A. Knowles,3 Kevin S. Smith,1

Kim R. Kukurba,2 Eric Wu,1 Noah Simon,4 and Stephen B. Montgomery1,2,3,*

Recent and rapid human population growth has led to an excess of rare genetic variants that are expected to contribute to an individual’s

genetic burden of disease risk. To date, much of the focus has been on rare protein-coding variants, for which potential impact can be

estimated from the genetic code, but determining the impact of rare noncoding variants has been more challenging. To improve our

understanding of such variants, we combined high-quality genome sequencing and RNA sequencing data from a 17-individual,

three-generation family to contrast expression quantitative trait loci (eQTLs) and splicing quantitative trait loci (sQTLs) within this fam-

ily to eQTLs and sQTLs within a population sample. Using this design, we found that eQTLs and sQTLs with large effects in the family

were enrichedwith rare regulatory and splicing variants (minor allele frequency< 0.01). Theywere alsomore likely to influence essential

genes and genes involved in complex disease. In addition, we tested the capacity of diverse noncoding annotation to predict the impact

of rare noncoding variants. We found that distance to the transcription start site, evolutionary constraint, and epigenetic annotation

were considerably more informative for predicting the impact of rare variants than for predicting the impact of common variants. These

results highlight that rare noncoding variants are important contributors to individual gene-expression profiles and further demonstrate

a significant capability for genomic annotation to predict the impact of rare noncoding variants.
Introduction

Studies using deep and population-scale sequencing have

reported large numbers of rare variants (minor allele fre-

quency [MAF] < 1%) present as a consequence of recent

and rapidhumanpopulation expansion.1–6However, inter-

preting the impact of rare variation remains an ongoing

challenge. Several exome sequencing studies have sug-

gested that rare variants are of broad importance with the

finding that they represent the majority of potentially

deleterious and damaging protein-coding alleles2 and can

contribute to complex disease risk.7–11 In contrast, popula-

tion-genetic models have indicated that rare alleles are un-

likely to be large overall contributors to heritable variation

for many complex diseases.12 Indeed, large population

studies of rare variants in autoimmune disorders have so

far found negligible impact,13 and analyses of personal

genomes have reported multiple rare and protein-code-

disrupting sites in presumably healthy individuals.14,15

Further compounding the challenge of understanding the

impact of rare variation has been that most studies have

focusedononlyprotein-codingalleleswhose interpretation

is facilitated by the genetic code. For rare variants in non-

coding regions, there is no analogous code to aid in the pre-

diction of their impact even though these regions harbor

considerable complex-disease-associated variation16,17 and

most likely contain an abundance of important rare alleles.

Currently, genetic studies of gene expression provide a

systematic means of identifying functional noncoding
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variants; such studies have identified noncoding variants

associated with gene expression, splicing, and allele-spe-

cific expression (ASE).18–20 However, insight into the

impact of rare noncoding variants has been limited.

Few studies have had the advantage of full genome

sequencing data and, even when these data are available,

they have only assayed unrelated individuals, providing

limited power to describe rare-variant effects.18,21,22 To

overcome this challenge and provide more systematic

insight into the impact of rare noncoding variants, we

coupled high-quality genomes with transcriptomes

within a large family (n ¼ 17 individuals). The advantage

of this design is that the large number of children (n ¼ 11)

provides high-confidence rare variants established

through both deep sequencing and Mendelian segrega-

tion as well as sufficient power to test for cis-expression

quantitative trait loci (eQTLs) present within a single hu-

man family. Furthermore, eQTLs from the family can

be compared to eQTLs from a cell-type- and ethnicity-

matched population sample recently reported by the

Geuvadis Consortium,18 providing the unique ability to

identify large genetic effects specific to the family and

test their relationship to rare variants.23 Indeed, we report

that rare regulatory variants are enriched near genes that

exhibit large-effect cis-eQTLs for gene expression, splicing,

and ASE within the family. Furthermore, the family eQTL

genes are more evolutionarily constrained than compara-

ble eQTL genes in the population, and several of the genes

have established relationships with complex disease,
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indicating a potential for rare variants to further influence

genetic risk.

In addition, as genome-interpretation approaches are

becoming increasingly informed by diverse noncoding

genome annotation,24–26 genome and transcriptome anal-

ysis within a single large family provides unique insight

into the predictive power of diverse noncoding annotation

for rare variants. In our study, we demonstrated that the

combination of variant location, epigenomic information,

and evolutionary constraint is considerably more infor-

mative for predicting the impact of rare noncoding vari-

ants than for predicting the impact of common variants.

Likewise, we observed equivalent increases in predictive

strength for rare splicing variants. This suggests that many

rare noncoding variants are likely to be interpretable via

existing noncoding annotation and supports their more

routine integration in rare-variant association studies.
Material and Methods

Cell Culture and RNA Sequencing
Epstein-Barr-virus-transformed peripheral blood B lymphocytes

(catalog no. XC01463) from families from the CEU population

(Utah residents with ancestry from northern and western Europe

from the CEPH collection) were purchased from the Coriell Insti-

tute and grown in RPMI 1640 supplemented with 10% fetal calf

serum and penicillin and streptomycin in humidified 5% CO2 at

a concentration of ~1 3 106 cells/ml. Total RNA was isolated

with Trizol. RNA quality was assessed with the Agilent Bioanalyzer

2100, and RNA integrity numbers above 9 were used for cDNA

production. One microgram of total RNA was used for isolating

polyA-purified mRNA and subsequently used for cDNA-library

construction with the Illumina TruSeq RNA Preparation Kit.

Strand specificity was performed with 2’-deoxyuridine 5’-triphos-

phate during second-strand synthesis.27 All samples were indexed

with Illumina adapters and sequenced with an Illumina HiS-

canSQ. We subsequently sequenced each cDNA library on an

Illumina HiSeq to obtain 30 million 75 bp paired-end reads per

individual. We performed RNA sequencing (RNA-seq) for all 17 in-

dividuals (all three generations); however, for eQTL association,

we only used the 11 children, and for ASE analysis, we used the

two parents and 11 children. All RNA-seq data for all 17 individ-

uals are freely available at the Gene Expression Omnibus under

accession number GSE56961.
Quantification of Gene Expression, Splicing, and ASE
We used Tophat and Cufflinks to obtain gene-expression levels

from RNA-seq. We used Tophat to map RNA reads to the human

reference genome (UCSC Genome Browser, hg19) and Cufflinks

to quantify transcript-expression levels. Gene-expression levels

were the sum of transcript-expression levels. Gencode28 v.12

was used as the input annotation for Cufflinks. We calculated

transcript ratios to quantify alternative splicing patterns. Gene-

expression and transcript-ratio data for Geuvadis samples were

downloaded from the Geuvadis website; we used quantified

gene-level reads per kilobase per million both before (for assessing

effect sizes) and after (for eQTL mapping) normalization via prob-

abilistic estimation of expression residuals.29 We assessed ASE by

counting RNA read depth at heterozygous sites. We performed
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multiple quality-control steps to reduce known technical artifacts

(see Figure S2). We obtained read counts at each heterozygous

site by using SAMtools30 mpileup and our own ASE pipeline based

on a binomial test modified for reference-mapping bias with a

filter for observing at least five reads for each allele and aminimum

read depth of 203 per site.21,31 To assess the quality of ASE esti-

mates, we compared ASE correlation between double-IBD (iden-

tical-by-descent) siblings, half-IBD siblings, and non-IBD siblings.

Indeed, we observed an expected increase in correlation between

degree of IBD and allelic ratio measured across all sites (Figures

S28–S30).

Whole-Genome Sequencing Data
Whole-genome sequencing data for the family were downloaded

from the Complete Genomics website. Family members were orig-

inally sequenced to an average genome-wide coverage of 803. We

used variants called by the Complete Genomics Analysis Pipeline

(v.2.0.0). We performed an additional filtering step testing for

Mendelian inconsistency to obtain a high-confidence set of vari-

ants, and we eventually retained 5,546,682 out of the original

6,181,281 SNPs. We further compared our selected variants to

those assessed by long-fragment read (LFR) technology (N50s

400–1,500 kb).32 LFR has a claimed error rate of 1 in 10 Mb. Our

comparison showed that variant concordance between the 803

shotgun-sequencing approach and LFR technology was 99.91%

to 99.95% (Table S2). In addition, the same family was also

sequenced to 503 by Illumina Platinum Genomes, and the geno-

typing concordance with Complete Genomics was found to be

99.62% to 99.83% (Table S4).

Haplotyping and Verification by Long-Fragment

Sequencing
We inferred recombination positions and haplotypes of the family

by using our software tool Ped-IBD.33 Haplotype blocks are defined

by recombination positions. We identified a total of 813 recombi-

nation positions over 22 chromosomes. Haplotype blocks range in

size from 0.02 to 12 Mb (90% interval) and have a median length

of 1.65 Mb.We further confirmed haplotyping results with molec-

ular haplotypes from the LFR technology in three individuals

(NA12877, NA12885, and NA12886; Table S3). The comparison

showed that phasing was 99.84% to 99.92% concordant between

inferred and molecular haplotypes.

Linkage Mapping of cis-eQTLs in the Family
We used linear regression to evaluate correlation of gene-expres-

sion levels within local haplotype blocks. We measured effect

size by using the regression slope, b, and the coefficient of determi-

nation, R2. The linear model we used considers additive effects of

two haplotype blocks. More specifically, for each block, the two

parental haplotypes of each child are encoded with two covariates,

p and m. The maternal haplotype mi of child i, for example, is

either 0 or 1, depending on which of the two possible maternal

alleles is present. Then, an expression trait is regressed as the sum-

mation of effects of two parental haplotypes, Ti ~ m þ bjpi þ bkmi,

where Ti is the trait of individual i, the effects of two parental al-

leles k and j are expressed by bj and bk, and m is the intercept.

Each sibling has two choices of parental haplotypes on each

side—p,m˛{0,1}—to yield four total combinations. Gene expres-

sion Ti uses log2(FPKM [fragments per kilobase per million]

values). For splicing quantifications, we used relative transcript

abundances, which we calculated by dividing the FPKM of each
er 4, 2014



isoform by the FPKM of the whole gene (see Table S5). For cis-

eQTLs, we only tested the local haplotypes containing the genes,

which is sufficient for includingmost cis-eQTL signals (Figures S3–

S5). Furthermore, we confirmed gene-expression levels and eQTL

effect sizes with existing microarray data on the same family

(Figures S6 and S7).
Comparison of cis-eQTL Effect Sizes between

Population and Family
To compare cis-eQTL effect sizes, b, between the population and

family, we sought to first correct for the overestimation of effect

sizes (such discoveries exhibit characteristic regression to the

mean). To address this in the population eQTLs, we divided the

European-descended Geuvadis samples (n ¼ 373) in half and par-

titioned them into discovery (n ¼ 180) and replication (n ¼ 193)

panels. Within the discovery panel, we identified the strongest

cis-associated variant per gene (by p value and within the same in-

terval tested in the family). This allowed us to use the replication

panel to more accurately measure the effect size of each cis-eQTL

variant. However, to account for the difference in sample sizes be-

tween the replication panel (n ¼ 193) and the family (n ¼ 11), we

further sought to estimate how much variance in effect-size mea-

surements (b) could be obtained from sampling 11 people in the

population at random. In this way we controlled for chance obser-

vations of larger effect sizes for some genes in the family. To

achieve this, we repeatedly subsampled (100 times) 11 individuals

from the replication panel while maintaining the exact same ge-

notypes of the best associated variant between the subsample

and the family. Figure S8 illustrates this subsample scheme. Effect

sizes were then measured with the same regression formula,

Ti ~ m þ bjp þ bkm, for both the family and the subsample; note

that two regressors, p and m, match segregating patterns of both

the haplotypes of the family and the best SNP of the population

subsample. We note that estimation of b in the population was

highly correlated independently of the use of a one- or two-regres-

sor model (Figure S9). This allowed us to create a distribution of

measured effect sizes that would be expected from randomly

measuring the same number of individuals and genotypes in

both the family and the population. Using this approach, we iden-

tified empirical p values representing how often measured effect

sizes in the family were greater than that of the best associated

SNP in the population. We also repeated this analysis by using

fit (R2) given that we observed differences in the distribution of

raw b values between the family and population and also observed

higher variance in gene expression in Geuvadis overall (see

Figure S17).

We analyzed several features that could result in over- or under-

estimation of effect-size measurements between the family and

population (see Figures S17–S19). First, because effect-size mea-

surements can be influenced by differences in quantification

pipelines, we repeated the experiment by using different quantifi-

cation approaches (Tophat þ Cufflinks and GEM34 þ Flux Capac-

itor;31 Figures S13 and S14). Second, effect sizes in the population

could potentially be underestimated if the best associated SNP in

the discovery panel is not causal given that subsequent effect-

size measurements, in the replication panel, might not accurately

measure the largest effect. To address this, we examined different

discovery-panel sizes (Table S6 and Figure S15) and different

criteria (Figure S16) for selecting the best SNP from the population.

In addition, we observed through permutation that levels of noise

in measurements of effect size (b) were different between the fam-
The American
ily and the population (Figure S17). To better gauge confidence

intervals (CIs) of family effect sizes, we estimated the degree of

inflation through permutation and adjusted effect-size CIs by

scaling. These adjusted CIs were only applied to comparisons of

b values and are denoted by CIadjusted (see Figure S17–S19). For

the main manuscript, we report only unadjusted CIs. Further-

more, without using subsampling or permutation, we also directly

compared effect sizes with Welch’s t test by applying analytic

estimation of SEs of b. As a correctness check of the subsampling

method, we compared and verified that analytic p values by

Welch’s t test and empirical p values by subsampling were concor-

dant (Figure S19).

We applied the same subsampling method to identify large-ef-

fect splicing quantitative trait loci (sQTLs) and ASE. To compare

ASE between the family and population, we focused on a subset

of genes that had substantial data for the measurement and

comparison of allelic ratios (n ¼ 1,777 genes). For a gene to be

included, allelic ratios at a single site had to be measurable for

at least five siblings and at least 30 population samples. We tested

each gene once and excluded genes that were not tested for

eQTLs, such as pseudogenes or genes within high-complexity re-

gions (human leukocyte antigen and immunoglobulin loci). For a

site to be considered measurable, it needed to be covered by a

minimum of 20 reads with at least five reads for each allele. We

then took the maximum allelic ratio in the family and compared

it with the maximum allelic ratio found in 1,000 subsamples of

the Geuvadis; each subsample was matched to the number of

heterozygous individuals found in the family for that site.

This approach generated an empirical p value that we used to

assess whether an ASE effect in the family was greater than

that in the population. To account for ASE biases caused by

differing read depths between the family and population, we

downsampled (hypergeometric) Geuvadis reads by a factor of

1.97—we calculated this scaling factor by measuring the average

level of read-depth differences between Geuvadis and family sam-

ples at those selected heterozygous sites for each gene. To exclude

the possibility that large-effect ASE was due to technical artifacts

such as mapping biases or sequencing errors, we also looked at

ASE for the second-largest-effect siblings and IBD siblings

(Figure S25).
Variant Annotation
We obtained annotations (missense, synonymous, regulatory, and

splice region) by using the Variant Effect Predictor tool,35 which

queries annotation from the Ensembl website. ENCODE transcrip-

tion factor (TF) binding and DNase I hypersensitivity peaks were

obtained from RegulomeDB.24 Conservation scores obtained

from PhyloP36 (phyloP100way) software were downloaded from

the UCSC Genome Browser. Motif-disrupting sites were down-

loaded from HaploReg (v.2).37 Variant allele frequency was based

on phase 1 of the 1000 Genomes Project38 as calculated across

European populations.
Conservation and Network Annotation
We examined the conservation of family eQTL genes between hu-

mans and chimpanzees (Pan Troglodytes) by using the dN/dS ratios;

dNmeasures the rate of amino acid substitutions, and dSmeasures

the background rate of neutral DNA subsitutions.39 The dN and dS

values were obtained from BioMart40 (Ensembl v.70), and the dN/

dS ratios were computed. dN/dS is negatively correlated with the

conservation status of a gene, so higher dN/dS ratios indicate
Journal of Human Genetics 95, 245–256, September 4, 2014 247
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Figure 1. Large-Effect eQTLs and ASE in the Family
(A) Large-effect cis-eQTLs. Effect sizes are shown as b, the regression slope. The distribution of family effect sizes (black) is compared to
the distribution of population effect sizes (gray).We show cis-eQTL genes for which family effect sizes are greater than 95% of population
effect sizes. Here, we only plot the distribution of paternal effect sizes (maternal effects have a very similar distribution).
(B) Large-effect ASE genes. ASE effect sizes were assessed by allelic imbalance (0 is balanced, and 0.5 is monoallelic expression).We picked
the maximum ASE effect out of 11 siblings and compared it to the maximum ASE effect out of the subsampled population. Plotted are
family ASE effects greater than 95% of population ASE effects. To exclude outlier effects, we further tested this for the second-strongest
ASE effect in the siblings (Figure S22).
lower conservation of a gene.We also compared centrality of eQTL

genes by using the protein-protein interaction (PPI) network as

another indication of the biological importance of the affected

genes.19 We computed connectivity of family and population

eQTL genes in the PPI network. The PPI network was integrated

from BioGRID,41 the Molecular Interaction database,42 the Hu-

man Protein Reference Database,43 and IntAct,44 all data obtained

from the GeneMANIA45 data repository (downloaded on January

4, 2012).

Rare-Variant Enrichment Analyses
To control for site discovery and genotyping differences between

the population (1000 Genomes Project) and family (Complete Ge-

nomics) genomes, we performed enrichment analyses only for

variants in the family genomes. Using these data, we calculated

enrichment of rare variants at large-effect-size genes by dividing

the proportion of large-effect-size genes with a rare variant by

the proportion of all tested genes with a rare variant.
Results

We set out to develop an improved understanding of the

impact and interpretability of rare noncoding variants.

Our approach involved combining high-quality genomes

and transcriptomes within a single large family to identify

cis-eQTLs and compare these to cis-eQTLs discovered in a

large population sample. Through the use of RNA-seq

data, we were also able to conduct comparable analyses

for alternative splicing and ASE. Our analyses focused on

the enrichment of rare and potentially regulatory variants

in large-effect eQTLs and sQTLs in the family, and we

sought to identify the properties of genes that exhibit

such effects. Furthermore, we investigated the degree to

which family transcriptome data enable the detection of
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noncoding annotation relevant to interpreting rare non-

coding variants genome-wide.
Family Transcriptome Sequencing Identifies

Large-Effect cis-eQTLs

Wehypothesized that rare variants acting either alone or in

combination with common variants can cause an eQTL to

exhibit a larger effect size in the family than in the popula-

tion. To identify such cases, we applied a ranking scheme in

which we compared gene-expression cis-eQTLs between

the family and the population to find genes that exhibited

larger effect sizes within the family (see Material and

Methods). At CI > 0.95 (or empirical p value < 0.05), we

found that 319 (including both paternal and maternal

b measurements) of the 7,341 genes we tested had effect

sizes exceeding that of the best population cis-eQTL SNP

(false-discovery rate [FDR] ¼ 7,341 3 0.05 3 2 / 319 > 1;

Figure 1A). Using comparisons of b, we did not find more

relatively large-effect eQTLs than we would expect by

chance; however, we identified that this FDR is likely over-

conservative primarily because of differences in noise be-

tween the family and population (see Figures S17–S19),

and we therefore also discuss less conservative estimates

of FDR (see Figures S17–S19). It is important to note that

FDR here measures whether there are more large effects in

the family than in the population; however, ranking

relative effect sizes by empirical p values is biologically

meaningful whether there is an excess or a depletion.

Such relative effects overlap (to a degree) genes measured

only by absolute effect size in the family; for instance,

when comparing genes at the 95% percentile for absolute

b versus relative b, we observed an overlap of 52%

(Figure S12). However, we chose to use in all subsequent
er 4, 2014



A B C

0%-20% 20%-40% 40%-60% 60%-80%

Figure 2. Enrichment of Rare Variants in Large-Effect eQTLs
(A) Enrichment of rare and potentially regulatory variants near the TSS of large-effect (b) cis-eQTL genes. Variants are restricted to those
with aMAF< 0.01, within ENCODE TF binding and DNase I hypersensitivity peaks, and with a PhyloP score> 1.We observed increased
enrichment of rare regulatory variants near the TSS of larger-effect-size genes in the family.
(B) Enrichment of potentially regulatory variants depends on allele frequency and relative effect sizes. We ranked genes (x axis) on the
basis of how often their effect sizes in the family were greater than their effect sizes in the population subsamples, which is also 1 � their
empirical p values (see Material and Methods). Variants are restricted to those within <100 kb of the TSS, within ENCODE TF binding
and DNase I hypersensitivity peaks, and with a PhyloP score > 1. We observed that variant enrichment was dependent on whether the
variant was rare (blue) or not (gray). We calculated enrichment by dividing the proportion of genes with such an annotated rare variant
in each effect-size bin by the proportion of genes with an annotated rare variant across all effect-size bins.
(C) Conservation scores and allele frequency predict genes with a larger effect in the family than in the population. We restricted to var-
iants within <100 kb of the TSS, within ENCODE TF binding and DNase I hypersensitivity peaks, and with different PhyloP thresholds.
Proportions were computed by p1 statistics on permutation-based p values of family effect larger than population effect. We observed
that rare and highly conserved variants overlapping epigenomic data (light blue) were highly predictive of a larger effect in the family
than in the population.
analyses the ranking of genes according to their relative ef-

fect sizes instead of absolute effect sizes becausewe hypoth-

esized that the former might better inform family-specific

effects. By instead measuring fit (R2), we identified 577 cis-

eQTLs that had a better fit in the family than the best pop-

ulation-level cis-eQTL variant (CI > 0.95; FDR ¼ 7,341 3

0.05 / 577 ¼ 63%; Figure S10). Among those genes that

exhibited the largest effect sizes and fits in the family

(both at a CI > 0.95), there was a significant overlap of

36.4% (Figure S11). To exclude the possibility of technical

factors underlying effect-size differences, we repeated the

analysis by using different quantification pipelines (Figures

S13 and S14), population discovery-panel sizes (Table S6),

and alternative methods for choosing the best SNP

(Figure S16); we observed no significant difference in the

discovery set of large-effect genes or on further downstream

analyses (see Material and Methods).

We also identified genes that exhibited larger ASE effects

in the family than in the population. We found that 223 of

the 1,777 genes we tested had larger ASE effect sizes in the

family (CI > 0.95, FDR ¼ 1,777 3 0.05 / 223 ¼ 40%;

Figure 1B; Figure S25). We expected that on an individual

basis, the family and population would actually have the

same distribution of ASE effect sizes (no excess of large ef-

fects, FDR ¼ 1). We controlled for some initially observed

excess in the family by matching read depths via down-

sampling; however, this did not address all the excess in

the family, and unknown factors still remained. We ex-

pected that any excess, however, would only add noise to

subsequent rare-variant enrichment analyses, and we

further validated large ASE effects by using evidence from
The American
IBD siblings (Figure S25). In addition, we applied ASE to

support discoveries of cis-eQTLs in the family; by strati-

fying their degree of effect size relative to those in the

population, we detected a proportionally increased enrich-

ment of detectable ASE (significant ASE sites defined as

allelic imbalance > 0.05, binomial test p value < 0.05;

Figure S21). This relationship supports a potential regula-

tory role of rare variants because it indicates that large-ef-

fect cis-eQTLs in the family might be the consequence of

heterozygous variants that manifest in ASE. This idea is

further supported by our observation of a direct and simple

linear relationship between cis-eQTL effect size among

children and ASE effect size among parents (Figure S20).

Large-Effect cis-eQTLs in the Family Are Enriched

with Rare Variants

We hypothesized that rare noncoding variants might be

responsible for a considerable proportion of the large-ef-

fect-size cis-eQTLs in the family. Taking advantage of full

genome data in the family, we assessed the enrichment

of rare and potentially regulatory variants near the tran-

scription start site (TSS) of genes with different magnitudes

of relative effect sizes between the family and the popula-

tion. Here, we used PhyloP to define potentially regulatory

variants on the basis of ENCODE TF peaks, DNase I hyper-

sensitivity peaks, and evolutionarily constrained regions

across 99 vertebrate genomes; we will later further explore

the relative importance of each of these annotations. We

observed enrichment of rare and potentially regulatory

noncoding variants in genes that had the largest effect

sizes (CI> 0.95 and CI> 0.80; Figure 2A). This relationship
Journal of Human Genetics 95, 245–256, September 4, 2014 249
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Figure 3. Large-Effect eQTLs Influence Essential Genes
(A) dN/dS ratio comparing large-effect family cis-eQTLs to population cis-eQTLs. We selected family eQTLs on the basis of their effect
sizes relative to population eQTL effect sizes and plotted the distributions of dN/dS ratios. As a comparison, we show the distribution
of dN/dS ratios for the most significant cis-eQTL genes identified only in the population (373 unrelated European individuals from
the Geuvadis study) given different p value cutoffs. This is further compared to family-level genes that have rare and potentially regu-
latory variants (within 5 kb of the TSS, within ENCODE TF binding and DNase I hypersensitivity peaks, and with a PhyloP score> 1).We
observed that for large-effect cis-eQTLs and family-level genes with a rare variant, a higher proportion were more conserved (described as
the percentage of genes with a dN/dS < 0.3; lower dN/dS ratios indicate higher conservation).
(B) Comparison of centrality in the PPI network between large-effect cis-eQTLs in the family and population cis-eQTLs. Centrality is
measured by the number of interacting proteins (degrees). Different groups of genes are defined in the same way as in (A). We show pro-
portions of high-connectivity (hub) genes (degree> 10; higher degrees indicate more essential genes) among these groups. We observed
that the proportion of high-connectivity genes was greatest for large-effect cis-eQTLs and family-level genes with a rare variant. This sug-
gests that common regulatory variants are less likely to occur at conserved genes. In contrast, family-specific eQTL effects, because they
arise from rare variants, can affect conserved genes.
was most pronounced within the first 5 kb close to the TSS

and decayed as a function of distance. It was also related to

the degree to which the family effect was larger than that

detected in the population across the full distribution of

measured effects (Figure 2B). Likewise, we tested both

large-effect cis-eQTLs by fit (R2) and large-effect ASE genes

and observed similar strong enrichment of rare and poten-

tially regulatory variants (Figures S23 and S25C).

We also evaluated the utility of known regulatory annota-

tions in predicting eQTLs for rare variants. Comparing an-

notated rare variants with all rare variants, we observed

strong enrichment (up to a 2-fold increase near the TSS) of

annotated variants, indicating that annotation is highly

informative in predicting eQTLs (Figure S22). Furthermore,

weobserved that theenrichmentwashigher in family-based

eQTLs than in population eQTLs as a function of effect size

(Figure S24). To test the contribution of different annota-

tions to a large effect in the family, we further stratified by

MAF and strength of evolutionary constraint. We observed

that variants with lower MAF and with increasing degree

of evolutionary constraintwere themost informative factors

indicative of large cis-eQTL effects in the family (Figure 2C).

Large-Effect cis-eQTLs in the Family Influence

Essential Genes

It has been previously reported that cis-eQTLs based

on population studies are depleted among essential
250 The American Journal of Human Genetics 95, 245–256, Septemb
genes.19 We hypothesized that if rare variation was

indeed responsible for large-effect cis-eQTLs in the family,

reduced impact of purifying selection on rare variants

would result in family eQTLs disproportionately affec-

ting essential genes. We tested this hypothesis in two

ways: defining gene essentiality by (1) its degree of

evolutionary constraint and (2) its centrality within

a PPI network. To assess evolutionary constraint, we

used dN/dS ratios between humans and chimps to

compare large-effect cis-eQTL genes in the family to cis-

eQTL genes in the population. We observed that large-

effect cis-eQTL genes in the family had significantly

higher conservation status than population cis-eQTL

genes (Figure 3A). This was even more pronounced for

genes with a rare and potentially regulatory variant

within 5 kb of the TSS. By contrast, cis-eQTL genes in

the population were less constrained for increasingly

stringent p values.

We next applied PPI networks with the premise that

genes that are more central in the network or have more

connections to other genes are more essential than less

connected ones. We found significantly higher connectiv-

ity for large-effect cis-eQTL genes in the family than for cis-

eQTL genes in the population (Figure 3B). Furthermore,

this contrast became stronger when we focused only on

those genes that also contained a proximal rare and poten-

tially regulatory variant (Figure 3B).
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Figure 4. Large-Effect sQTLs in the Family
(A) Enrichment of rare variants at large-effect sQTL genes. We ranked genes (x axis) on the basis of how often their effect sizes in the
family were greater than their effect sizes in the population subsamples (see Material and Methods). We restricted to variants within
30 bp of splice sites and with a PhyloP score > 1. As for cis-eQTLs (in Figure 2B), we observed that enrichment was dependent on allele
frequency. We calculated enrichment by dividing the proportion of genes with such an annotated rare variant in each effect-size bin by
the proportion of genes with an annotated rare variant across all effect-size bins.
(B) Conservation scores, the distance to splice site, and allele frequency predict genes with a larger effect in the family than in the pop-
ulation. We observed that rare and conserved variants near splice sites (light blue) were highly predictive of a larger splicing effect in the
family than in the population.
Family Transcriptome Sequencing Identifies

Large-Effect sQTLs

By comparing cis-sQTLs between the family and the pop-

ulation, we also ranked genes with larger relative effect

sizes (measured as R2) in the family than in the pop-

ulation (n ¼ 726, >95% population, n ¼ 5,622 genes;

FDR ¼ 39%). Differences in isoform-quantification pipe-

lines probably overestimate the excess number of large-ef-

fect sQTLs because there is also more noise in isoform

quantification in the population. However, as for large-

effect eQTLs, we also observed enrichment of rare and

potentially functional variants for large-effect sQTL genes

in the family (Figure 4A). Furthermore, by stratifying

on allele frequency, distance to splice sites, and evolu-

tionary-constraint thresholds, we found that large-effect

sQTLs in the family were much better predicted by

rare variants than by common variants, especially for

conserved regions near splice sites (Figure 4B). In addition

to observing large effect sizes, we also found that sQTLs

could exhibit very high heritabilities, nearly as high

as those for Mendelian traits (examples in Figures S26

and S27).

Large-Effect cis-eQTLs in the Family Might Further

Modify Complex-Disease-Associated Genes

There has been considerable interest in whether rare vari-

ants modify risk of complex disease.46,47 Although we

were unable to directly test disease associations within

this family because of the anonymity of the individuals,

we sought to quantify the number of genome-wide associ-

ation study (GWAS) genes in which cis-eQTLs exhibited
The American
larger effects in the family than in the population. We

identified 315 GWAS genes in which the known GWAS

variant was an eQTL in the population (at an FDR of

5%), suggesting a regulatory basis to disease pathogenesis.

Of these genes, we identified 65 with a larger-effect cis-

eQTL in the family (>80th percentile). Of those, 17 (Table

S9) were not polymorphic for the known GWAS SNP in

the family, and two had a rare and potentially regulatory

variant (within <100 kb of the TSS, within an ENCODE

TF binding and DNase I hypersensitivity peak, and with a

PhyloP score > 0) influencing genes implicated in body

mass index, hypertension, and obesity. In addition, regard-

less of relative effect sizes of eQTLs between the family and

population, we identified four GWAS genes (Table S10) in

which the known GWAS SNP was an eQTL in the popula-

tion and that had a rare and potentially regulatory variant

(within<100 kb of the TSS, within an ENCODE TF binding

and DNase I hypersensitivity peak, and with a PhyloP

score > 3) in the family according to strong predictor vari-

ables. Although increased risk in this family is not known,

the presence of rare and potentially regulatory variants in

complex-disease-associated genes whose expression is

implicated in disease pathogenesis suggests that complex

traits and genes should be further studied with rare-variant

association tests.

Functional Noncoding Annotations Are Informative

of the Impact of Rare Noncoding Variants

Genome and transcriptome data from a single large family

allowed us to test the utility of various noncoding anno-

tations for predicting the impact of noncoding variants
Journal of Human Genetics 95, 245–256, September 4, 2014 251



on expression. Here, our goal was to identify those anno-

tations that could inform a functional variant from

genome sequence alone. We chose to include the

following as potentially informative annotations:

ENCODE TF binding, DNase I hypersensitivity peaks,

evolutionary constraint, motif disruption as computed

by HaploReg, and distance to the TSS. We identified that

each noncoding annotation was more informative for pre-

dicting the impact of rare variants than the impact of com-

mon variants on expression (Figure 5A; Table S7).

We observed that evolutionary constraint and distance

to the TSS were the most informative for rare variants,

and they further increased their utility with increasing

strength of constraint and shorter distances, respectively.

One potential concern we identified is that we might be

only predicting a gene’s ability to harbor an eQTL such

that having a rare variant possessing specific annotation

might indirectly inform genes tolerant of arbitrary func-

tional variants (both common and rare). However, when

assessing whether genes containing different annotations

for rare variants were also more likely to have common

eQTLs in the population, we saw no significant difference

(Figure 5A, right panel). This demonstrates that particular

species of rare noncoding variants might be interpretable

from genome sequence data alone provided that there

is sufficiently high-confidence genotyping of those rare

variants. Furthermore, provided increasing availability

of genome-interpretation methods, this method offers

a means of determining and calibrating the efficacy of

different approaches.

Through finer stratification of allele frequency, we were

able to observe the degree to which genome annotation

influenced predictions of cis-eQTLs. We observed that

predictions of eQTLs were most informative for poten-

tially regulatory variants when those variants were rare

(Figure 5B). This was also the case for sQTLs: predictor vari-

ables such as evolutionary constraint and distance to splice

sites were the most informative factors for predicting a

sQTL when a variant was rare (Figure 5C).
Discussion

Our study combined high-quality genome sequencing

and RNA-seq data for a 17 member, three-generation fam-

ily, enabling us to investigate the role and interpretability

of rare noncoding variants. In contrast to low-pass ap-

proaches, high-quality full-coverage genome sequencing

and patterns of Mendelian segregation provided the abil-

ity to more confidently identify and genotype rare vari-

ants within the family. More importantly, the large num-

ber of children provided us with the ability to detect

eQTLs caused by rare variants specific to the family. In

contrast, the power of a design that includes many small

families or trios would be reduced by the overall heteroge-

neity of causal rare variants in each family. A further

advantage is that with matched cell type and population,
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we were able to compare family eQTLs to population

eQTLs reported by the Geuvadis Consortium.18 We iden-

tified genes that exhibit larger eQTL effect sizes in the

family than in the population and demonstrated that

these family-specific eQTLs are enriched with rare regula-

tory variants, influence more evolutionarily constrained

and central genes, and are potential contributors to risk

of complex disease.

One limitation of the study is that we did not observe

many more large-effect eQTLs in the family than expected

by chance; high FDRs were observed for all categories of

large-effect eQTLs. This could suggest that there is not an

overabundance of large-effect eQTLs specific to the family.

It might also simply reflect limited power or imperfect

comparison of effect sizes between cohorts, given that we

explored by varying quantification pipelines, discovery-

panel sizes, and methodologies for selecting testable vari-

ants. However, the enriched properties we identified for

large-effect family eQTLs appear to be robust to such limi-

tations, and we highlight that although there might not be

a strong excess of large-effect eQTLs, the relative degree of

effect between the family and population conveys mean-

ingful properties of family eQTLs. For instance, as the de-

gree of effect size increased in the family relative to the

population, we observed an increasing enrichment of

rare and potentially regulatory variants. Furthermore,

such large-effect eQTLs in the family exhibited increasing

enrichment in ASE, implicating a heterozygous causal

variant. Additionally, the enrichment of family eQTLs

among constrained and central genes was most extreme

for the subset of genes in which a rare and potentially reg-

ulatory variant could be identified. These observations fit

with population-genetic expectation given that rare vari-

ants can influence more essential genes because of a

reduced impact of purifying selection. Furthermore, this

is in contrast to the general properties of population

eQTL genes; for increasing effect sizes, they have previ-

ously been shown to be less constrained and less cen-

tral.19 Taken together, these results implicate an important

role of rare regulatory variants in large-effect eQTLs in the

family.

We compared, in addition to gene expression, ASE and

alternative splicing between the family and the popula-

tion. As with gene expression, we observed enrichment

in rare variants for large-effect ASE and sQTLs in the family.

Furthermore, we observed that evolutionary constraint

and distance to splice sites for rare splicing variants was

significantly informative of large splicing effects in the

family.With both large-effect eQTLs and large-effect sQTLs

predicted by rare variants, this study highlights existing

potential for routine integration of these variants in rare-

variant association tests.

Ultimately, a principal goal in genome interpretation

is to develop the ability to predict the impact of all vari-

ants, including those that are rare or novel. In our study,

we were able to test the importance of diverse noncoding

annotations for predicting the impact of noncoding
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Figure 5. Predicting Rare and Common eQTLs
(A) Utility of diverse noncoding annotation for predicting rare and common eQTLs. We considered the enrichment in eQTLs (measured
with the p1 statistic) for rare (MAF < 0.01) and common (MAF > 0.01) variants overlapping the following different functional annota-
tions: ENCODE TF binding and DNase I hypersensitivity peaks, distance to TSS, PhyloP conservation scores, and motif disruption (score
change > 10); annotations were added one at a time. We found that these functional annotations were significantly more powerful for
detecting an eQTL when intersecting rare variants rather than common variants. Furthermore, on the right, we demonstrate that none
of the genes possessing rare variants overlapping the different categories of annotation were disproportionally enriched in their ability to
also be eQTLs in the population. A full matrix summarizing intersections of these annotations is provided in Table S7.
(B) Conservation scores and allele frequency predict genes with an eQTL. We restricted to variants within 100 kb of the TSS, within
ENCODE TF binding and DNase I hypersensitivity peaks, and with different PhyloP scores and allele frequencies to assess each variant
class’s enrichment in eQTLs. We observed that highly conserved and rare variants were strongly predictive of an eQTL.
(C) Conservation scores, the distance to splice site, and allele frequency predict genes with a sQTL.We considered different thresholds on
distance to splice sites, PhyloP conservation scores, and allele frequencies. We observed that rare and conserved variants near splice sites
(light blue) were highly predictive of a sQTL.
variants on gene expression. For rare variants, we identi-

fied that evolutionary constraint coupled with distance

to the TSS and epigenomic information was highly
The American
informative in predicting eQTLs. For common variants,

such annotations did not provide comparable predic-

tive power. The likely reason for this difference is that
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common variants, regardless of genomic annotation,

are very likely to be neutral, whereas rare variants have

a higher prior likelihood of functional impact that can

be further informed by genomic annotation. Given

that no previous analyses have had access to high-quality

genomes and transcriptomes in a single large human

family, this study provides data to support a much-

needed framework for frequency-independent evalua-

tion of genome interpretation for noncoding variants

and suggests that the impact of many rare and causal

noncoding variants might be easier to predict than

expected.
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Web Resources

The URLs for data presented herein are as follows:

1000 Genomes Phase 1 Analysis Results, ftp://ftp-trace.ncbi.nih.

gov/1000genomes/ftp/phase1/analysis_results/

Complete Genomics, 69 Genomes Data, http://www.

completegenomics.com/public-data/69-Genomes/

Ensembl Genome Browser, http://www.ensembl.org

Ensembl Variant Effect Predictor, http://www.ensembl.org/info/

docs/tools/vep/

GeneMANIA, http://www.genemania.org/

Geuvadis Data Browser, http://www.ebi.ac.uk/Tools/geuvadis-das/

Geuvadis RNA sequencing project, http://www.geuvadis.org/web/

geuvadis/RNAseq-project

GWAS catalog, http://www.genome.gov/admin/gwascatalog.txt

HaploReg, http://www.broadinstitute.org/mammals/haploreg

Illumina Platinum Genomes, whole-genome sequencing data,

http://www.illumina.com/platinumgenomes/

LFR data for family members, ftp://ftp2.completegenomics.com/

PhyloP conservation scoring, http://hgdownload.cse.ucsc.edu/

goldenpath/hg19/phyloP100way/

RegulomeDB, http://regulomedb.org/

UCSC Genome Browser, http://genome.ucsc.edu
Accession Numbers

The Gene Expression Omnibus accession number for the

RNA-seq data of all 17 individuals reported in this paper is

GSE56961.
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