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Introduction
Tremor is an involuntary movement that is commonly seen in 
movement disorders, such as essential tremor, Parkinson dis-
ease (PD), and spinocerebellar ataxias.1–3 It is induced in 
rodents by harmaline, which is a beta-carboline derivative, by 
overactivating the olivocerebellar system, which is the same 
mechanism that contributes to generating tremor in humans.4 
Harmaline causes excitotoxicity and subsequent tremor due to 
facilitating rhythm generation in the inferior olivary (IO) neu-
rons, which project their axons to the cerebellar Purkinje cells 
(PCs).5 Consequently, harmaline selectively induces cerebellar 
PC death by trans-synaptic excitotoxicity, which can be pre-
vented by IO chemoablation using 3-acetylpyridine.6 However, 
chronic harmaline administration will induce tolerance in rats.7

Apoptosis causes PC neurodegeneration in many neurode-
generative diseases.8,9 Increased caspase activity following har-
maline administration suggested the implication of apoptosis 
in the pathogenesis of harmaline-induced tremor causing the 
degeneration of cerebellar PCs.5,6 Apoptosis is a programmed 
cell death that is mediated by caspases, which constitute a fam-
ily of cysteine proteases.10,11 Caspases are synthesized in the 
cell as inactive zymogens that become activated upon apoptotic 
stimuli.12,13 Caspases are categorized into initiator caspases and 
executioner caspases.14 Initiator caspases are activated subse-
quent to their cleavage that is induced by the apoptotic stim-
uli.12,15 Once activated, initiator caspases cleave and 
consequently activate executioner caspases, which mediate the 
apoptotic events that lead to the morphological features of 
apoptosis.16,17 Active caspase-3, which is an executioner 

caspase that plays a key role in apoptosis,9,18 has been shown in 
cerebellar PCs and granule cells in harmaline-induced tremor.19

Apoptotic pathways can be either mitochondria-mediated 
or cell surface death receptor–mediated.20,21 Active caspase-8, 
which is an initiator caspase, mediates cell death receptor–
dependent apoptosis, which is also known as extrinsic apop-
totic pathway.22 Tumor necrosis factor α (TNF-α) is involved 
in the cell surface death receptor–mediated apoptosis as the cell 
death receptor ligand that initiates and stimulates the apop-
totic pathway.22

We hypothesize that the proapoptotic factors TNF-α and 
active caspase-8, indicative of cell surface death receptor–
mediated apoptosis, play a pathological role in the cerebellar 
PC and granule cell death observed in harmaline-induced 
tremor. Therefore, using immunohistochemistry and light 
microscopy, our study has investigated the expression of TNF-
α and active caspase-8 in the cerebella of rats with harmaline-
induced tremor.

Materials and Methods
Animals

A total of 20 normal 3- to 4-month-old Wistar rats were ran-
domly selected and equally divided into control and tremor 
groups. Same conditions (22°C ± 1°C, free access to standard 
chow and water, 12 hours dark/light cycle) were used to house 
the rats in individual cages. Animal-related protocols were 
conducted in accordance with the guidelines of the Institutional 
Animal Care and Use Committee at Jordan University of 
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Science and Technology. Tremor was induced according to the 
protocol previously described.5 To summarize, tremor rats were 
intraperitoneally injected with a single dose of harmaline 
hydrochloride (50 mg/kg; Sigma Aldrich, Saint Louis, MO, 
USA). Control rats were simultaneously injected intraperito-
neally with same volume of normal saline. Animals were sacri-
ficed by cervical dislocation 24 hours post harmaline treatment, 
which is the time when the neurodegeneration and active cas-
pase-3 expression in cerebellar PCs and granule cells were 
shown.19

Immunohistochemistry of TNF-α and active 
caspase-8 in the cerebellum

After sacrificing the animals, cerebella were dissected, fixed in 
10% buffered neutral formaline (10% BNF), and processed. After 
that, midsagittal 4-µm-thick paraffin-embedded sections were 
prepared. Previously described protocols were used to perform 
the immunohistochemistry for calbindin, TNF-α, and active cas-
pase-8.8,9,18,23–27 Briefly, the 4-µm-thick sections were processed 
via immunohistochemistry using an antibody to TNF-α (ab6671, 
Abcam, Cambridge, MA, USA) and an antibody to active cas-
pase-8 (sc-5263, Santa Cruz Biotechnology, Santa Cruz, CA, 
USA). Subsequent to their deparaffinization and rehydration, the 
sections were processed for antigen retrieval. Then, after their 
incubation in 3% hydrogen peroxidase for 5 minutes, the sections 
were washed with phosphate-buffered saline (PBS). After that, 
some sections were incubated with anti-calbindin antibody, oth-
ers were incubated with anti-TNF-α antibody, while the rest of 
the sections were incubated with anti-active caspase-8 antibody, 
using the dilutions recommended by the vendor, at room tem-
perature for 1 hour. Next, the sections were washed in PBS and 
subsequently incubated in biotinylated secondary antibody 
(LSAB kit, Dako, Carpinteria, CA, USA) for 15 minutes at room 
temperature. Next, the sections were washed in PBS before and 
after their incubation with streptavidin horse radish peroxidase 
(LSAB kit, Dako) for 15 minutes at room temperature. 
Subsequently, 3′-diaminobenzidine (0.05% DAB) was applied 
for 2 minutes or longer, until the desired intensity was established. 
Then, the sections were washed with tap water to stop the reac-
tion. Eventually, the sections were counterstained with hematox-
ylin and examined under the light microscope. Primary antibodies 
were omitted in the negative control slides. Human lymphoma 
slides (ab5146, Abcam, Cambridge, MA, USA) were used as 
positive control slides for active caspase-8 and TNF-α. Five sec-
tions of the cerebellum from each animal group were evaluated 
for TNF-α and active caspase-8 expression.

Data collection and analysis

Five slides from each animal in each of the 2 groups were 
examined microscopically. A total of 10 random areas from 
each section were analyzed for TNF-α and active caspase-8 
expression in the cerebella. The sections were photographed 

using digital camera. Adobe Photoshop software was used to 
count the total pixels area occupied by positive staining in each 
area relative to the total pixels area as described previ-
ously.18,23,24,28–30 Then, the average of the pixels area occupied 
by positive staining relative to the total pixels area was com-
puted for each animal in each group.

Statistical analysis

TNF-α and active caspase-8 expression was analyzed, in differ-
ent cerebella, and statistically compared between the 2 different 
groups (n = 10 animals per group) using independent samples t 
test using SPSS software version 19.0 (SPSS Inc., Chicago, IL, 
USA). Differences in TNF-α and active caspase-8 expression 
were considered statistically significant at P value <.05.

Results
Calbindin-immunoreactive cell bodies and dendrites of the 
PCs were homogeneously arranged in continuous PC and 
molecular layers, respectively (Figure 1A). However, unstained 
patches were viewed in the PC and the molecular layers dis-
rupting their continuity in the cerebella from experimental rats 
(Figure 1B), indicating PC loss following the administration of 
harmaline.

Hematoxylin was used to stain and subsequently identify the 
nuclei of intact cells in the different layers of the cerebellar cortex 
(Figures 1 to 3). TNF-α-immunoreactive neurons were linearly 
aligned along the molecular layer and granule cell layer interface 
in experimental cerebella (Figure 2B). TNF-α-immunoreactive 
neurons were also observed in the granule cell layer in experimen-
tal cerebella (Figure 2B). However, TNF-α immunoreactivity 
could be hardly detected in the molecular layer, which contains 
stellate cells in its superficial part and basket cells in its deep part. 
Thus, both PCs and granule neurons were immunoreactive to 
TNF-α in cerebella from harmaline-treated rats. On the other 
hand, TNF-α expression could be hardly observed in the control 
cerebellar sections (Figure 2A). In contrast, TNF-α immunoreac-
tivity was very strongly apparent in cerebellar sections from the 
experimental group (Figure 2B). TNF-α expression is statistically 
significantly (P < .01) upregulated in the cerebella following the 
induction of tremor by harmaline treatment (Figure 2C).

Similarly, active caspase-8 expression could be barely 
observed in the control cerebellar sections (Figure 3A). 
However, active caspase-8 immunoreactivity was strongly obvi-
ous in the PC and granule cell layers in cerebellar sections from 
the experimental group (Figure 3B). In addition, active cas-
pase-8 expression has statistically significantly (P < .01) 
increased following the induction of tremor by harmaline 
treatment (Figure 3C).

Discussion
This study is the first to illustrate the impact of tremor induc-
tion on the expression of the cell surface death receptor–medi-
ated apoptotic factors, namely, TNF-α and active caspase-8, in 
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Figure 1. Immunohistochemical staining of calbindin in 4-µm-thick paraffin-embedded cerebellar sections. (A) From control. (B) From experimental. 

Scale bar shown in (B) applies to both images in the figure. Hematoxylin-stained nuclei helped to differentiate the molecular (ML), Purkinje cell (PC), and 

granule cell (GL) layers.
Calbindin immunoreactivity was strong in PC cell bodies and dendrites in both control (A) and experimental (B) rats. Nevertheless, in harmaline-treated rats, multiple 
unstained patches disrupting the continuity of both PCs and molecular layers were present (at the tips of the arrows), indicating a loss of PCs.

Figure 2. Immunohistochemical staining of TNF-α in 4-µm-thick paraffin-embedded cerebellar sections. (A) From control. (B) From experimental. Scale 

bar shown in (B) applies to both images (A and B) in the figure. Hematoxylin-stained nuclei help to differentiate the molecular (ML), Purkinje cell (PC), and 

granule cell (GL) layers. (A) TNF-α immunostaining is hardly observed in the control cerebellum. (B) TNF-α immunoreactivity is strong in PCs (such as 

that at the tip of the black arrow) and granule neurons (such as that at the tip of the white arrow) from the experimental group. (C) The level of TNF-α 

expression increased significantly in the experimental cerebella compared to that in the control group (P < .01†). Cr., control; Exp., experimental; TNF-α, 

tumor necrosis factor α.



4 Journal of Cell Death 

the cerebellum. The consequent analysis reveals TNF-α and 
active caspase-8 upregulation in the cerebellar PCs and gran-
ule cells subsequent to the induction of tremor by harmaline 
treatment.

Harmaline administration has been reported to induce 
tremor in rats.4,5,19 Indeed, harmaline-induced tremor is con-
sidered the best model of tremor, because activation of the 
olivocerebellar system has been suggested to play a key role in 
the pathophysiological mechanisms underlying essential 
tremor occurring in human patients and induced by harmaline 
in rats.5,19 Harmaline has been shown to induce neurodegen-
eration and active caspase-3-mediated apoptosis in cerebellar 
PCs and granule cells 24 hours following harmaline adminis-
tration.5,19 Thus, we sought to examine the expression of medi-
ators of the cell surface death receptor–mediated apoptosis, 
namely, TNF-α and active caspase-8, as an underlying mecha-
nism of PC neurodegeneration seen in essential tremor, 
24 hours post harmaline administration.

TNF-α initiates and promotes the cell surface death recep-
tor–mediated apoptosis.31–33 Previous studies have demon-
strated TNF-α overexpression in many neurodegenerative 
diseases, such as PD, Alzheimer disease (AD), and amyotrophic 
lateral sclerosis (ALS).34–37 In addition, elevated levels 

of TNF-α have been shown in the cerebellar PCs in many 
pathological conditions.36 These previous reports are consist-
ent with our results that reveal TNF-α upregulation in the cer-
ebellar PCs subsequent to tremor induction. To our knowledge, 
these are the first data to demonstrate the alterations in TNF-
α expression in cerebellar PCs and granule cells subsequent to 
harmaline administration. TNF-α has been reported to induce 
death receptor–mediated apoptosis by recruiting and subse-
quently activating caspase-8, which eventually leads to the 
cleavage and the subsequent activation of caspase-3.38–41 Thus, 
to further investigate the occurrence of cell surface death 
receptor–mediated apoptosis in PCs, we tested the alterations 
in active caspase-8 expression following the induction of 
tremor by harmaline. Abundant active caspase-8 has been 
reported in the developing cerebellum, but its expression grad-
ually decreases and disappears as development proceeds.42,43 
This is in agreement with our finding of hardly detected active 
caspase-8 in the cerebellum of control rats (Figure 3). Active 
caspase-8 has been implicated in many neurodegenerative dis-
eases, such as PD, AD, and ALS.44–47 Caspase-8 activation has 
been reported to occur upstream of caspase-3 activation.48,49 
However, caspase-8 activation has been shown to occur down-
stream of caspase-3 activation as well.50 In addition, harmaline 

Figure 3. Immunohistochemical staining of active caspase-8 in 4-µm-thick paraffin-embedded cerebellar sections. (A) From control. (B) From 

experimental. Scale bar shown in (B) applies to both images (A and B) in the figure. Hematoxylin-stained nuclei help to differentiate the molecular (ML), 

Purkinje cell (PC), and granule cell (GL) layers. (A) Active caspase-8 immunostaining is hardly observed in the control cerebellum. (B) Active caspase-8 

immunoreactivity is strong in PCs (such as those at the tips of the black arrows) and granule neurons (such as those at the tips of the white arrows) from 

the experimental group. (C) The level of active caspase-8 expression increased significantly in the experimental cerebella compared to that in the control 

group (P < .01*). Cr., control; Exp., experimental.



Erekat 5

has been reported to upregulate the expressions of Fas/FasL, 
activated caspase-8, and caspase-3. Furthermore, harmaline-
induced apoptosis could be significantly inhibited by blocking 
Fas/FasL signaling, suggesting that cell surface death receptor–
mediated pathway was involved in harmaline-induced apopto-
sis.51 Thus, in agreement with those previous reports,44–51 our 
results reveal elevated levels of active caspase-8 following 
tremor induction by harmaline treatment.

Previous studies have suggested the upregulation of TNF-α 
and active caspase-8 mediating the cell surface death receptor–
mediated apoptosis in neurodegenerative diseases.36,52,53 In addi-
tion, TNF-α and active caspase-8 upregulation revealed by our 
results (Figures 2 and 3) was correlative with PC neurodegenera-
tion indicated by partial loss of continuity of calbindin immuno-
reactivity (Figure 1) following tremor induction by harmaline. 
Thus, our finding of upregulated TNF-α and active caspase-8 
(Figures 2 and 3) in cerebellar PCs and granule cells may indi-
cate the occurrence of cell surface death receptor–mediated 
apoptosis subsequent to the induction of tremor by harmaline.

Thus, to summarize, our study illustrates the association of 
harmaline-induced tremor with the overexpression of TNF-α 
and active caspase-8 in the cerebellar PCs and granule cells, 
indicating the occurrence of cell surface death receptor–medi-
ated apoptosis in cerebellar PCs and granule cells subsequent 
to the induction of tremor by harmaline. Moreover, our data 
suggest that inhibition of TNF-α and/or active caspase-8 
might be considered as a potential therapeutic approach to 
ameliorate tremor in patients.
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