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Abstract Leaves are flat determinate organs derived from indeterminate shoot apical

meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of

meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and

CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly, shortly after leaf initiation,

to gradually restrict the activity of a leaf meristem in Arabidopsis thaliana to marginal and basal

domains, and that their absence confers persistent marginal growth to leaves, cotyledons and floral

organs. Following primordia initiation, the restriction of the broadly acting leaf meristem to the

margins is mediated by the juxtaposition of adaxial and abaxial domains and maintained by WOX

homeobox transcription factors, whereas other marginal elaboration genes are dispensable for its

maintenance. This genetic framework parallels the morphogenetic program of shoot apical

meristems and may represent a relic of an ancestral shoot system from which seed plant leaves

evolved.

DOI: 10.7554/eLife.15023.001

Introduction
Traditionally, plant organs are divided into organs with indeterminate growth such as shoots, roots

and vascular cambia, whose growth is maintained by meristems, groups of pluripotent cells, and

organs with determinate growth such as leaves or floral organs. Fossil evidence indicates that seed

plant leaves evolved from ancestral shoot systems, and further, the dichotomous morphology of

early seed plant leaves suggests growth via a persistent apical meristem (reviewed in [Kenrick and

Crane, 1997; Floyd and Bowman, 2010]). However, as anatomical features typical of apical or vas-

cular meristems are not present in leaves, whether developing leaves grow from a localized meri-

stem has been debated for nearly a century (Foster, 1936; Hagemann and Gleissberg, 1996).

In one of the first detailed examinations of development at the plant shoot apex Caspar Wolff

described the leaf lamina arising from the margins of Brassica ’capitata’ (cabbage) leaves

(Wolff, 1759). Subsequently, Avery suggested that early lamina growth of Nicotiana tabaccum was

initiated by a row of subepidermal initial cells located at the upper-lower (adaxial-abaxial) leaf

boundary that he termed the ’marginal meristem’ (Avery, 1933). However, it had already been

noted that later protracted growth in leaves occurs in tissues that are not marginal, but rather within

the developing lamina in a region described as a ’plate meristem’ (Schüepp, 1918, 1926). Thus,

early views of leaf development were perceived to consist of two growth phases (Foster, 1936). An

early ephemeral phase of cell divisions without cell expansion produces the characteristic 6–10 cell

layers of the leaf thickness via submarginal periclinal cell divisions and epidermal anticlinal divisions.

This is followed by a later prolonged growth phase where the bulk of two-dimensional lamina
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growth is produced via a plate meristem in which cell divisions are predominantly anticlinal. Analyses

of leaf development in the middle of the 20th century sought to identify patterns of submarginal cell

divisions to identify initial cells, but the patterns of cell division were highly variable between species

casting doubt on the presence of specific initials (Foster, 1936).

More recently, examination of mitotic indices during leaf development revealed that a higher rate

of cell division is observed in submarginal (i.e. plate meristem) regions of the leaf as compared to

the margins (Maksymowych and Erickson, 1960; Fuchs, 1966; Thomasson, 1970; Dubuc-

Lebreux and Sattler, 1981; Jéune, 1981). Furthermore, sector analysis of leaf development in sev-

eral eudicot species, including N. tabacum, revealed that most clonal sectors were located between

the midrib and the margin, with only a minority extending all the way to the margin (Dulieu, 1968;

Poethig and Sussex, 1985; Dolan and Poethig, 1998), indicating that leaves do not grow from the

margins sensu stricto, and calling into question the concept of the leaf marginal meristem. However,

noting the overall lack of organized cell division patterns in plants, Hagemann and Gleissberg

argued that the defining features of meristems are their organogenetic potential and cytohistologi-

cal state rather than specific cell division patterns. Thus, in their view the marginal meristem (or ‘blas-

tozone’, as they refer to it) is responsible for primary morphogenetic events, e.g. lamina initiation,

but is used up early in leaf development, with most lamina expansion occurring during a later leaf

differentiation phase (Hagemann and Gleissberg, 1996). Although this is a compelling model, evi-

dence for this interpretation has been mainly observational and circumstantial.

Here we show that removal of multiple growth suppressing transcriptional factors results in inde-

terminate growth of the margins of all lateral organs, coupled with sustained organogenesis and

activity of gene modules shared amongst other plant meristems. Our finding supports the presence

of a specific leaf meristem, and conforms to the view stemming from the fossil record that recruit-

ment of suppressors of meristematic activity was critical in seed plant leaf evolution and

development.

Results
In Arabidopsis, leaf morphogenesis is initiated at the flanks of the shoot apical meristem (SAM)

where leaf primordia develop as flattened lamina with defined abaxial, adaxial and marginal cell

types (Tsukaya, 2013). Lamina development requires the juxtaposition of abaxial/adaxial polarity

factors, including adaxial class III HD-Zip and abaxial KANADI transcription factors. These lie on

either side of a narrow middle domain expressing the WUSCHEL RELATED HOMEOBOX (WOX)

genes, PRESSED FLOWER (PRS) and WOX1, and together promote organ growth and differentiation

(Nakata et al., 2012; Wang et al., 2011; Eshed et al., 2004). In Arabidopsis leaf development,

expression of growth genes rapidly diminishes distally but can persist proximally (Donnelly et al.,

1999; Nath et al., 2003). This proximo-distal differentiation gradient is regulated by CIN-TCP tran-

scription factors (Nath et al., 2003). A reduction of five CIN-TCPs targeted by the endogenous

microRNA, miR319a (also known as miR-JAW) results in delayed basipetal progression of a mitotic

arrest front and increased cell proliferation particularly at leaf margins, producing crinkly and ser-

rated leaves (Efroni et al., 2008; Ori et al., 2007; Palatnik et al., 2003). Increased distal leaf growth

and serrations are also observed when the activities of the four NGA transcription factors are

reduced (Figure 1—figure supplement 1) (Trigueros et al., 2009; Alvarez et al., 2009). The NGAs

and CIN-TCPs are co-expressed at many stages of leaf development, exemplified by the distal

expression of TCP3, TCP4, NGA1 and NGA4 in young leaves (Figure 1—figure supplement 2) and

in contrast to the reported expression of miR319 at the leaf base (Obayashi et al., 2009; Nag et al.,

2009). This, together with similarities in their loss-of-function phenotypes, suggests shared roles in

leaf development. To investigate functional redundancy, we introduced a constitutive expression

construct of miR319a (35S:miR319) targeting the five CIN-TCP genes (Palatnik et al., 2003) into a

quadruple NGA mutant (nga1,2,3,4) that lacks NGA activities.

Strikingly, simultaneous reduction in expression of these nine genes resulted in continuous de

novo formation of tissue at the margins of all lateral organs including cotyledons, leaves and floral

organs (Figure 1A–B, Figure 1—figure supplement 3). Indistinguishable phenotypes were observed

in plants constitutively expressing both miR319a and the previously characterized artificial miRNA

amiR-NGA (Alvarez et al., 2009), facilitating easier and more extensive characterization of the inde-

terminate growth phenotype. 35S:miR319a/35S:amiR-NGA plants grow more slowly, are later
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Figure 1. Reduction in NGA and CIN-TCP activities renders organ margins indeterminate. (A, B) Overview of wild-type (WT) and 35S:miR319a

nga1,2,3,4 (miR319a nga1,2,3,4) cotyledons (A) and leaves (B). (C-I) Close ups of leaf margins of WT and 35S:miR319a-amiR-NGA plants. (D1-D2) Third

leaf of 35S:miR319a/35S:amiR-NGA plant marked with nail polish (arrows; light blue and dark blue), demonstrating the ongoing growth from the

margins along 21 days. (E) Transverse sections through the distal end of developing wild-type and 35S:miR319a/35S:amiR-NGA leaves showing large

versus small marginal cells (arrows). (F) Developing wild-type and 35S:miR319a/35S:amiR-NGA leaf primordia exhibit a similar six-cell-layered blade

anatomy (outlined). (G) The margin of older wild-type margins have large, differentiated cells, whereas the 35S:miR319a/35S:amiR-NGA leaf margin

retains the primordial blade structure. (H) The marginal cells of wild-type are elongated (arrowhead), while small isodiametric cells and initiating

trichomes are found at 35S:miR319a/35S:amiR-NGA margins (I; arrow). (J) Transcriptome-based differentiation-score distributions of dissected 35S:

Figure 1 continued on next page
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flowering, and their leaf margins harbor proliferative cell populations unlike those of 35S:amiR-NGA

and 35S:miR319a singly transgenic plants (Figure 1C–G, Figure 1—figure supplement 3–8). Appli-

cation of stain to 35S:miR319a/35S:amiR-NGA leaf margins indicates continued proliferation at the

leaf margin, with the marker displaced sub-marginally over time (Figure 1D1–D2, Figure 1—figure

supplement 3). In 35S:miR319a nga1,2,3,4 or 35S:miR319a/35S:amiR-NGA plants, the entirety of

Figure 1 continued

miR319a/35S:amiR-NGA leaf margins, sorted primordia cells expressing FIL gene, and proximal or distal halves of seventh wild-type leaves (see

Materials and methods for details). (K-L) Expression of ATML1:H2B-mYFP (yellow), ATHB8:GUS (M, N; blue), PIN1:PIN1-GFP (O; green), and PRS:GUS

(P; blue) in developing leaves of indicated genotypes and a young wild-type leaf primordium (O1, P1). Note the distal exclusion of marker expression in

slightly older wild-type leaves (O2, P2) while arrows indicate persisting expression along the distal margin with reduced NGA and CIN-TCP activities.

ad, adaxial leaf side; ab, abaxial leaf side. Scale bars: A, D1-D2, 2 mm; B, 5 mm; C, 1 mm; 50 mm in other panels.

DOI: 10.7554/eLife.15023.002

The following source data and figure supplements are available for figure 1:

Source data 1. Mean size of the leaf in wild-type and 35S:amiR-NGA plants, corresponding to the data shown in Figure 1—figure supplement 1C.

DOI: 10.7554/eLife.15023.003

Source data 2. Mean size of the palisade mesophyll cells in wild-type and 35S:amiR-NGA plants, corresponding to the data discussed in the legend to

Figure 1—figure supplement 1D and E.

DOI: 10.7554/eLife.15023.004

Source data 3. CYCB1;1:GUS expression in distal wild-type and 35S:miR-NGA, correspnding to the data shown in Figure 1—figure supplement 1F–I.

DOI: 10.7554/eLife.15023.005

Source data 4. Effects on expression of different CIN-TCP and NGATHA family members and possible off targets in amiR-NGA and miR319a overex-

pressing plants- Figure 1—figure supplement 3.

DOI: 10.7554/eLife.15023.006

Source data 5. Differences in flowering time among wild-type, 35S:amiR-NGA, 35S:miR319a and 35S:amiR-NGA/35S:miR319a plants, corresponding to

the data shown in Figure 1—figure supplement 4D.

DOI: 10.7554/eLife.15023.007

Figure supplement 1. Altered growth in leaves with reduced NGATHA gene activity.

DOI: 10.7554/eLife.15023.008

Figure supplement 2. NGA1:GUS, NGA4:GUS, TCP4:GUS and TCP3:GUS expression in leaves.

DOI: 10.7554/eLife.15023.009

Figure supplement 3. Ongoing marginal growth in leaves and floral organs with reduced CIN-TCP and NGATHA gene activities.

DOI: 10.7554/eLife.15023.010

Figure supplement 4. Plant growth and flowering time in plants with reduced CIN-TCP and NGATHA gene activities.

DOI: 10.7554/eLife.15023.011

Figure supplement 5. SEM of leaf margin cells with reduced CIN-TCP and NGATHA gene activities.

DOI: 10.7554/eLife.15023.012

Figure supplement 6. Patterns of proximal to distal leaf margin cell expansion.

DOI: 10.7554/eLife.15023.013

Figure supplement 7. Distribution of markers in leaves with reduced CIN-TCP and NGATHA gene activities.

DOI: 10.7554/eLife.15023.014

Figure supplement 8. Transverse sections of leaves with reduced NGATHA and CIN-TCP activities.

DOI: 10.7554/eLife.15023.015

Figure supplement 9. Changes in PIN1-GFP expression when CIN-TCPs and NGATHA gene activities are reduced.

DOI: 10.7554/eLife.15023.016

Figure supplement 10. ATHB8:GUS expression in leaves with reduced CIN-TCPs and NGATHA gene activities.

DOI: 10.7554/eLife.15023.017

Figure supplement 11. PRS:GUS expression is maintained longer at the leaf margins when CIN-TCP and NGATHA gene activities are reduced.

DOI: 10.7554/eLife.15023.018

Figure supplement 12. WOX1:GUS expression is maintained longer at the leaf margins when CIN-TCP and NGATHA gene activities are reduced.

DOI: 10.7554/eLife.15023.019

Figure supplement 13. Reduced NGATHA and CIN-TCP gene activities in the PRESSED FLOWER (PRS) domain alters leaf marginal growth.

DOI: 10.7554/eLife.15023.020

Figure supplement 14. Ongoing marginal growth in cotyledons with reduced CIN-TCP and NGATHA gene activities.

DOI: 10.7554/eLife.15023.021

Figure supplement 15. Morphological and marker analyses in cotyledons with reduced CIN-TCP and NGATHA gene activities.

DOI: 10.7554/eLife.15023.022
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the older leaf margin consists of small densely packed cells lacking chlorophyll, rather than the large,

elongate cells characteristic of wild-type leaf margins (Figure 1C–I, Figure 1—figure supplement 5–

8). Sections of leaf primordia and differentiating leaves suggest that the six-cell-layered blade orga-

nization of young wild-type leaf primordia is maintained at 35S:miR319a/35S:amiR-NGA leaf margins

([Nakata et al., 2012]; Figure 1E–G, Figure 1—figure supplement 8).

The digital differentiation index (DDI) assesses relative leaf maturity from global gene expression

profiles (Efroni et al., 2008). The index of dissected, older 35S:miR319a/35S:amiR-NGA leaf margins

clearly matches that of initiating primordia (Figure 1J). This result is further supported by

the expression of markers that highlight continued cell division, distinguishing epidermal nuclei

(ATML1:H2B-mYFP), epidermal plasma membrane (ATML1:mCitrine-RCI2A), general cell division

(CYCB1;1:GFP), initiating trichomes (highlighted by GL2:GFP) and stomatal lineage proliferation

(TMM:GUS-GFP) (Figure 1K,L, Figure 1—figure supplement 7), which demonstrate ongoing leaf-

primordium-like activity at the leaf margins. In initiating wild-type leaves, auxin flux, marked by PIN-

FORMED1 (PIN1) expression, converges at the distal tip and at serrations, where it inwardly canal-

izes leaf vascular development, before becoming restricted to proximal margins of older leaves

(Bilsborough et al., 2011; Scarpella et al., 2006). Compared to wild-type leaves, in both 35S:amiR-

NGA and 35S:miR319a individual knockdown leaves auxin flux persists longer at distal leaf margins.

Strikingly, in the 35S:miR319a/35S:amiR-NGA combined knockdown leaves, auxin flux continues

around the entire leaf margin (Figure 1O, Figure 1—figure supplement 9). Auxin canalization and

ongoing de novo vasculature morphogenesis at these margins is marked by expression of the pro-

vascular makers ATHB8 and MONOPTEROS (MP) (Figure 1M–N, Figure 1—figure supplements 7

and 10). Paralleling marginal auxin flux, the organ marginal markers PRS and WOX1 are transiently

expressed in initiating wild-type leaves before becoming proximally restricted. When NGA or CIN-

TCP activities are reduced, PRS and WOX1 distal expression persists in older leaves whereas in the

combined loss in 35S:miR319a/35S:amiR-NGA leaves PRS and WOX1 expression occurs in an unin-

terrupted marginal band, again suggesting that these margins retain meristematic properties equiv-

alent to initiating leaf primordia (Figure 1P, Figure 1—figure supplements 11 and 12).

That expression of miR319a-amiR-NGA under control of the PRS regulatory sequences results in

indeterminate margins confirms that marginal loss of NGA and CIN-TCP activity is sufficient to allow

the maintenance of these meristematic characteristics (Figure 1—figure supplement 13). Notably

the lamina away from the margins of PRS>>miR319a-amiR-NGA is thinner and more wild-type in

appearance than that of 35S:miR319a/35S:amiR-NGA leaves suggesting that the broader, non-mar-

ginal expression of the NGAs and CIN-TCPs may reflect an activity in regulating cell expansion that

remains functional in PRS>>miR319a-amiR-NGA leaves (Figure 1—figure supplement 8 and Fig-

ure 1—figure supplement 13).

The extended maintenance of primordium identity was also observed in the cotyledons of 35S:

miR319a nga1,2,3,4 or 35S:miR319a/35S:amiR-NGA plants, which continuously produce tissue with

leaf characteristics including stellate trichome formation (Figure 1A, Figure 1—figure supplement

14). Changes in the expression pattern of the cell division marker CYCB1;1:GFP are apparent in the

distal embryonic cotyledons while the respective expression of ATML1:H2B-mYFP and MONOP-

TEROS demonstrates the absence of the normal, marginal cell differentiation program and ectopic

production of provascular strands implying an active marginal meristem similar to that observed in

leaves (Figure 1—figure supplement 15). Notably there was no evidence for impaired dormancy of

35S:miR319a nga1,2,3,4 or 35S:miR319a/35S:amiR-NGA seed suggesting that the seed-based pro-

gram of imposed dormancy was as effective on this cotyledon marginal meristem as on the embry-

onic shoot and root meristems. After germination, cotyledons of 35S:miR319a nga1,2,3,4 or 35S:

miR319a/35S:amiR-NGA seedlings continue growth and express growth markers unlike wild-type

(Figure 1—figure supplements 14 and 15). The floral organs of NGA and CIN-TCP compromised

plants also exhibit prolonged marginal growth (Figure 1—figure supplement 3). Hence NGA and

CIN-TCP redundantly suppress marginal growth in all aerial lateral organs.

Ongoing growth from the organ margin may be a consequence of ectopic activation of a SAM

program. We surveyed the expression of genes that are expressed in the SAM but not in leaves of

Arabidopsis, and no evidence was found for the expression of meristem genes including SHOOT

MERISTEMLESS (STM), WUSCHEL (WUS) and CLAVATA1/3 (CLV1/3) in indeterminate leaf margins

of 35S:miR319a/35S:amiR-NGA plants (Figure 2A–E). In agreement, the 35S:miR319a-amiR-NGA

transgene conferred indeterminate growth of cotyledon and/or leaf margins in stm-11 knat6-1 bp-9
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triple and wus-1 single mutants where SAM activity is respectively lost or disrupted (Figure 2F–L).

Thus, continued marginal growth in 35S:miR319a-amiR-NGA double knockdown leaves is not a con-

sequence of secondarily acquiring characteristics of the indeterminate SAM, as for example in

YABBY-compromised mutants (Sarojam et al., 2010).

The NAC transcription factors CUP-SHAPED COTYLEDON2 (CUC2) and CUC3 are regulators of

leaf margin shape in Arabidopsis and other angiosperm species, and ectopic activation of CUC

genes promotes adventitious shoot formation (Blein et al., 2008; Aichinger et al., 2012;

Hibara et al., 2003), suggesting that deregulation of CUC genes may account for the indeterminate

growth phenotype. However, we found that the cotyledon and/or leaf margins continue to grow in

Figure 2. Regulators of SAM maintenance and leaf margin elaboration are dispensable for maintenance of the

marginal leaf meristem. (A) Relative mRNA expression levels of meristem regulators in cells collected from apices

and in indeterminate leaf margins. Levels of three class 1 KNOX genes, STM, KNAT1 and KNAT2, as well as WUS

and CLV1/3 are shown. Levels were determined in sorted cells expressing WUS or CLV3 (meristem-expressed) or

FIL (expressed in developing organs) (see Materials and methods for details) and compared with those in 35S:

miR319a/35S:amiR-NGA indeterminate leaf margins (labeled as Margins). Heatmap color represents the row Z-

score. (B, C) STM:GUS and (D, E) WUS:GUS expression (blue) is confined to the vegetative shoot meristem (arrows)

both in wild-type and 35S:miR319a/35S:amiR-NGA plants. (F–I) stm-11 knat6-1 bp-9, (J–L) wus-1, and (M-Q) cuc2-3

cuc3-105 seedlings have a disrupted apical meristem. Arrowheads denote fused cotyledons. In the presence of the

35S:miR319a-amiR-NGA transgene, cotyledons (G, H, I, K, N, O) and leaves (K, L, P, Q) grow indeterminately

(arrows) in these mutants. Close-ups of the indeterminate margin are shown in I, L, Q. Leaves in P and Q are

produced from a SAM that grows through fused cuc2-3 cuc3-105 cotyledons such as those depicted in O. cot,

cotyledon. Scale bars: B-E, J, K, 5 mm; F-H, M-O, 2 mm; I, L, Q, 0.5 mm; P, 1 cm.

DOI: 10.7554/eLife.15023.023

The following figure supplement is available for figure 2:

Figure supplement 1. CUC activities are dispensable for indeterminate leaf margin growth.

DOI: 10.7554/eLife.15023.024
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cuc2 cuc3 and cuc1 cuc2 mutants expressing the 35S:miR319a-amiR-NGA transgene. This indicates

that continued margin growth is independent of CUC-mediated marginal elaboration (Figure 2M–

Q, Figure 2—figure supplement 1).

Since lamina growth is an outcome of an interaction between adaxial and abaxial factors and

involves the marginal leaf WOX genes (Nakata et al., 2012; Eshed et al., 2004), the role of polarity

factors and WOX genes in maintaining continued marginal growth was investigated. The respective

adaxial, marginal and abaxial genes PHABULOSA (PHB), PRS and KANADI1 (KAN1) are expressed in

young, wild-type leaf primordia before diminishing in a basipetal fashion (Figure 3A,C,E,G–H, Fig-

ure 3—figure supplement 1). At the margins of 35S:miR319a/35S:amiR-NGA leaves, PHB, PRS and

KAN1 gene expression continues indefinitely, with spatial relationships maintained, implying that in

older leaves with reduced CIN-TCP and NGA activities, the collective interplay among these genes

is sustained as established in initiating wild-type leaf primordia (Figure 3A–H, Figure 1—figure sup-

plement 11, Figure 3—figure supplement 1). To test whether adaxial/abaxial tissue polarity and

associated WOX activities are required for marginal leaf growth we examined the effects of muta-

tions in these genes on indeterminate marginal growth. Semi-dominant PHB alleles produce two leaf

types on the same plant: partially radialized leaves with distal lamina and completely radialized

(adaxialized) leaves (Figure 3I). In 35S:miR319a/35S:amiR-NGA phb-1d/+ plants, leaves with distal

lamina exhibited ectopic marginal growth while radialized leaves did not, demonstrating that ongo-

ing marginal growth first requires the juxtaposition of polarity factors (Figure 3J, Figure 3—figure

supplement 2). PRS and WOX1 redundantly promote growth as an output of the abaxial/adaxial

polarity program (Nakata et al., 2012). The combined loss of NGA and CIN-TCP activities in 35S:

miR319a/35S:amiR-NGA plants results in both PRS and WOX1 expression occurring as an uninter-

rupted marginal band in older leaves (Figure 1P, Figure 1—figure supplements 11 and 12). Nota-

bly, prs wox1 double mutants suppressed the indeterminate marginal growth in 35S:miR319a/35S:

amiR-NGA plants (Figure 3K–L, Figure 3—figure supplement 3). Hence the ongoing leaf margin

growth is dependent on both the polarity program and the leaf-specific WOX genes.

To further characterize the relationships between the different leaf domains, we investigated

weak polarity mutant backgrounds where ectopic sites of adaxial/abaxial juxtaposition lead to out-

growths, which have marginal identity, from the leaf lamina (Nakata et al., 2012; Wang et al.,

2011; Eshed et al., 2004). The abaxial surfaces of developing kan1 kan2 mutant leaves exhibit

ectopic expression of PIN1, PRS and NGA1 (Figure 3M–P). Reducing both NGA and CIN-TCP activ-

ity in the kan1 kan2 background results in a striking proliferation of leaf tissue from the abaxial sur-

face (Figure 3Q, Figure 3—figure supplement 2). Similarly, reducing NGA and CIN-TCP activities

in mutants of the adaxial factor ASYMMETRIC LEAVES2 (AS2), where patches of ectopic, adaxial

PRS expression are observed, resulted in adaxial lamina proliferation (Figure 3R–U, Figure 3—fig-

ure supplement 2). A shift in the marginal program with corresponding lamina outgrowths can also

be achieved through direct manipulation of WOX1 expression, such as ectopic abaxial expression of

WOX1 in FIL:WOX1 plants (Figure 4A–C) (Nakata et al., 2012). Here, as in kan1 kan2 mutant leaves,

we detected PIN1 and NGA1 expression in the abaxial outgrowths.

The indeterminate cell proliferation and patterning of the leaf margin in 35S:miR319a/35S:amiR-

NGA plants suggests it is self-organizing, a property of meristems, consistent with results demon-

strating positive and negative feedbacks between PRS/WOX1 and adaxial/abaxial polarity factors

(Nakata and Okada, 2012). The lack of marginal growth in radialized phb-1d/+ organs and its

ectopic placement at discrete positions of the lamina when the adaxial/abaxial patterning is compro-

mised argues for a major role of the polarity factors in marginal positioning of a leaf meristem that

requires the intervening activity of WOX genes. In turn, a negative feedback loop between the mar-

ginally restricted meristem and NGA/CIN-TCP activities may lead to the ephemeral nature of this

meristem. In agreement, leaves of FIL:WOX1 that are likely relieved from such feedback regulation,

maintained a highly meristematic nature and failed to differentiate and expand when NGA and CIN-

TCP activities were jointly reduced (Figure 4D,E).

Discussion
The observation that loss of NGAs and CIN-TCPs results in indeterminate leaf margins suggests that

the early wild-type leaf primordium has a meristem that acts during a brief developmental window

and that is gradually restricted spatially (Figure 4F–G). This interpretation is consistent with classical
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Figure 3. Marginal meristem activity requires juxtaposition of adaxial/abaxial polarity factors. (A–F) Adaxial PHB:

GUS (A, B), central PRS:GUS (C, D) and abaxial KAN1:GUS (E, F) expression domains (blue) in transverse sections

with abaxial sides facing upward. Young wild-type leaf primordia (A, C, E) and older 35S:miR319a/35S:amiR-NGA

leaf margins (B, D, F) are shown. (G–H) PHB:GUS (G) and KAN1:GUS (H) in whole wild-type (left) and 35S:miR319a/

35S:amiR-NGA (right) leaves. Arrows denote continued expression. (I) Completely (right) and partially (left)

Figure 3 continued on next page
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Figure 3 continued

radialized leaves of phb-1d/+ mutants. (J) phb-1d /+ 35S:miR319a/35S:amiR-NGA leaves. The distal lamina

exhibits continual marginal growth (arrowhead) whereas a radialized leaf lacks such growth (arrow). (K) Wild-type,

prs wox1, and prs wox1 35S:miR319a-amiR-NGA leaves at equivalent age. (L) Close-ups of differentiated leaf

margins of wild-type (L1), prs wox1 (L2) and prs wox1 35S:miR319a-amiR-NGA (L3; compare with the

indeterminate leaf margin in Figure 1C). (M–P) kan1 kan2 leaves showing abaxial outgrowths (M), and ectopic

expression of PIN1:PIN1-GFP (N), PRS:GUS (O) and NGA1:GUS (P) associated with abaxial outgrowths. (Q) A kan1

kan2 35S:miR319a-amiR-NGA leaf showing proliferative tissue outgrowth. (R, S) as2-14 leaves showing ectopic,

adaxial PRS:GUS expression (S). (T) From left to right shown are as2-14 35S:amiR-NGA, as2-14 35S:miR319a, as2-14

35S:miR319a/35S:amiR-NGA leaves with increasing adaxial outgrowths. (U) Close-up of the adaxial surface of as2-

14 35S:miR319a/35S:amiR-NGA leaf. ad/ab, adaxial and abaxial leaf sides. Scale bars: G–J, M, 2 mm; L, 1 mm; K,

Q, R, T, 5 mm; 50 mm in other panels.

DOI: 10.7554/eLife.15023.025

The following figure supplements are available for figure 3:

Figure supplement 1. Expression of adaxial/abaxial polarity and central WOX genes is maintained at the leaf

margins when CIN-TCP and NGATHA gene activities are reduced.

DOI: 10.7554/eLife.15023.026

Figure supplement 2. Adaxial/abaxial polarity factors are necessary for and spatially define the marginal

meristem, which is suppressed by CIN-TCP and NGATHA gene activities.

DOI: 10.7554/eLife.15023.027

Figure supplement 3. Changes in PRS/WOX1, NGATHA, or polarity factor activities affects leaf growth and

morphologies.

DOI: 10.7554/eLife.15023.028

Figure 4. Dynamic restriction of the leaf meristem. (A–C) FIL:WOX1 leaf with developing abaxial outgrowths

(arrow in A). These outgrowths show prolonged PIN1:PIN1-GFP (B) and NGA1:GUS (C) expression. (D, E) In FIL:

WOX1 35S:miR319a/35S:amiR-NGA first leaves show occasional bifurcation (arrows in D) and later emerging leaves

are highly proliferative (arrows in E) in the distal domain. (F, G) Scheme depicting developing wild-type (F) and

CIN-TCP/NGA compromised (G) leaves shown from a proximo-distal perspective (above horizontal arrows) and

abaxial-adaxial perspective captured at the dashed-line (below horizontal arrows). Leaves are physically and

evolutionarily derived from shoot apical meristems (SAM; left most cartoon in F). The SAM is radially patterned

with external (blue), internal (red) and central WOX (aqua) domains. In wild-type leaf primordia (F) the pre-pattern

at the SAM (white dash line) is converted into juxtaposed abaxial and adaxial domains directing WOX activation in

an intervening domain. Feedback between these three domains stabilizes the leaf meristem, promotes lamina

growth and maintains pluripotency (Nakata and Okada, 2012) before meristem activity is restricted to the

proximal marginal domains by CIN-TCP/NGA activities (yellow), permitting prolonged growth only at the proximal

region of the leaf. In leaves where CIN-TCP/NGA activities are reduced (G), meristem activity is maintained at all

margins in a pattern reminiscent of initiating leaf primordia. Scale bars: A, C, D, 2 mm; E, 1 mm; 50 mm in B.

DOI: 10.7554/eLife.15023.029
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morphological and anatomical studies in which the definition of the marginal meristem was

extended to include the entire meristematic leaf primordium at very early stages of leaf develop-

ment (Hagemann, 1970). If a leaf primoridum is damaged or bifurcated at this stage, nearly com-

plete regeneration of normal leaf morphology is possible (Goebel, 1902; Figdor, 1906; Snow and

Snow, 1941; Sachs, 1969). Subsequently, as the meristematic regions become restricted to the mar-

gins or portions of the margins, damage or bifurcation of the leaf primordium results in progressively

more limited regenerative capacity (Snow and Snow, 1941; Sachs, 1969; Figdor, 1926). Arabidop-

sis leaves are argued to possess a basal meristem that remains transiently active after leaf initiation

before transitioning to petiole development — a process regulated by the BLADE-ON-PETIOLE

(BOP) genes (Hepworth et al., 2005; Ichihashi et al., 2011; Kuchen et al., 2012; Laux et al.,

1996). Our observations are consistent with early distal expression of CIN-TCP and NGA genes

repressing the meristem distally, but the lack of early proximal expression allows marginal persis-

tence of the leaf meristem at the leaf base, as reflected by PRS expression dynamics and leaf mar-

ginal cell differentiation along the proximo-distal axis (Nakata et al., 2012) (Figure 1P, Figure 1—

figure supplements 6 and 8).

Whereas Arabidopsis leaves differentiate from tip to base, leaf differentiation in some other

angiosperm species can proceed from base to tip (Trécul 1853; Ikeuchi et al., 2013). We thus spec-

ulate that variations in lateral organ growth within an individual and among species reflect differen-

tial maintenance of meristem activity along the marginal and proximo-distal axes. Remarkable

diversity in leaf shape can arise from growth variation along the margin including leaf lobing. Lobe

formation in many species relies on leaf-specific activity of class 1 KNOX (KNOX1) genes, which the

simple leaves of Arabidopsis lack (Piazza et al., 2010). However, lobes can be mimicked by ectopic

KNOX1 expression in Arabidopsis leaves. The radialized leaves of phb-1d/+ plants, a prs wox1 back-

ground and NGA1 over-expression, all suppresses the KNOX1-induced lobing phenotype, indicating

that an active marginal meristem is a prerequisite to respond to KNOX1 activity (Figure 3—figure

supplement 3). Thus modulation in the marginal restriction of meristem activities can contribute to

leaf shape diversity.

Cotyledons and floral organs are viewed as modified leaves. In Arabidopsis, lack of a basally

restricted meristem may distinguish them from leaves in their response to reduced CIN-TCPs and

NGA activity. In these organs, additional growth is confined to the distal region whereas in leaves

the entire margin is affected (Figure 1A–B, Figure 1—figure supplements 3, 14 and 15). The

observation that leaf tissue grows from cotyledon tips suggests a brief activity of a marginal meri-

stem in cotyledons. Prolongation of the marginal meristem activity likely uncouples growth from the

embryonic cotyledon program, and therefore, cotyledons continue to grow the same way as leaves.

How can our observations of a potential continuing meristematic activity at leaf margins be recon-

ciled with classical concepts of marginal and plate meristems in leaves and with the denial of their

existence based on mitotic indices and sector analyses? Seed plant leaves evolved from ancestral

shoot systems; thus, the shoot apical meristem (SAM) may provide an analogy, or perhaps homology

(Floyd and Bowman, 2010). The seed plant SAM exhibits two distinct organizational features.

Firstly, SAMs feature a tunica-corpus structure in which cell divisions in the tunica are almost exclu-

sively anticlinal (Schmidt, 1924). Secondly, the seed plant SAM exhibits cytohistological zonation

that is correlated with functional zonation (Foster, 1938). The central zone (CZ) exhibits low rates of

mitoses and acts to supply cells to the peripheral zone (PZ) and rib zone (RZ) where mitotic activity is

high, and organogenesis occurs (Steeves and Sussex, 1989). Consistent with these patterns of cell

division, cell lineage analyses of the SAM reveals that the majority of sectors observed do not extend

to include the SAM, but rather are presumed to originate in derivatives of the peripheral/rib zones

(Dulieu, 1969; Jegla and Sussex, 1989; Furner and Pumfrey, 1992).

As with SAMs, leaf meristems can also be interpreted to consist of distinct organizational zones.

Regions of low and high mitotic activity correspond to the classically defined ‘marginal’ and ‘plate’

meristems (Foster, 1936; Avery, 1933; Schüepp, 1926; Maksymowych and Wochok, 1969;

Maksymowych and Erickson, 1960; Fuchs, 1966; Thomasson, 1970; Dubuc-Lebreux and Sattler,

1981; Jéune, 1981). Consistent with these mitotic indices, cell lineage analyses reveal that the

majority of sectors produced in developing leaves are derived from regions internal to the margins

(Dulieu, 1968; Poethig and Sussex, 1985; Dolan and Poethig, 1998). While marginal activity of the

leaf meristem in wild-type Arabidopsis may be brief, we show here that when extended, cells
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generated at the margins are displaced towards the center of the leaf, displaying a maturation gradi-

ent, similar to the PZ and RZ cells displaced from the CZ of the SAM.

The CZ of the SAM is characterized by the expression of a WOX gene, WUSCHEL (Mayer et al.,

1998). Loss-of-function WUS alleles generate a functional SAM, but the CZ fails to be maintained,

leading to the eventual depletion of cells in the active PZ and RZ (Laux et al., 1996). Similarly, the

leaf meristem exhibits WOX gene expression, whose function is required for continued leaf growth,

but leaves can initiate and grow for a while without marginal WOX expression (Nakata et al., 2012;

Vandenbussche et al., 2009). The SAM features a tunica-corpus structure in which cell divisions in

the tunica are almost exclusively anticlinal ([Schmidt, 1924] and others). As with the SAM, the leaf

marginal domain is also organized into epidermal and sub-epidermal layers. Analysis of periclinal chi-

meras revealed that the epidermal layers of the leaf are clonally related, whereas the mesophyll and

vascular bundles are derived from subepidermal layers ([Foster, 1936; Avery, 1933; Baur, 1909]

and references therein). The lack of differentiation of leaf marginal cells in 35S:miR319a/35S:amiR-

NGA plants is consistent with these cells remaining meristematic.

Our results are largely consistent with classical views of leaf development — that the leaf primor-

dium is broadly meristematic at its inception, and that meristematic potential is subsequently

restricted to the marginal regions (Foster, 1936; Hagemann and Gleissberg, 1996; Jéune, 1981;

Sachs, 1969). In our view, the marginal and plate meristems represent two zones of a leaf meristem,

analogous, or perhaps homologous, to the central and peripheral zones of the SAM.

We suggest that the marginal restriction of the leaf meristem is in part maintained and guided by

the same adaxial and abaxial factors that function in shoot and cambial meristems, and all three mer-

istems are maintained by the activity of different WOX paralogs, suggesting the repeated use of a

molecular module (Figure 4F) (Aichinger et al., 2012). Sharing of genetic modules implies either

common descent or co-option of modules to pattern novel structures. Since seed plant leaves

evolved from ancestral shoot systems, common descent is plausible. In this scenario, the leaf meri-

stem module has been modified from an ancestral shoot meristem module to include the leaf-spe-

cific WOX1 and PRS paralogs (Lin et al., 2013; Nardmann and Werr, 2013) that arose in a common

ancestor of seed plants. Additional regulators such as the YABBY genes, which are instrumental in

lamina growth and restrict activity of SAM factors (Sarojam et al., 2010), and later acting factors lim-

iting leaf meristem activity (i.e., CIN-TCP and NGA) were integrated into the leaf program. Growth

suppressors modulating leaf meristem activity were recruited from genes of both ancient and recent

origins — CIN-TCP genes are present in all land plants (Navaud et al., 2007) whereas NGA genes

evolved recently, perhaps within seed plants (Alvarez et al., 2009). Thus the leaf marginal meristem

genetic program may have been derived via elaboration of an ancestral shoot program, reflecting

the derivation of the leaf from a modified shoot. The identification of such genetic framework pro-

vides a unification of how the entire seed plant shoot system is built from apical, vascular, cambial,

and leaf meristems that are mechanistically similar. The evolution of seed plant leaves from an ances-

tral shoot system can be interpreted as evolving via the recruitment of regulatory mechanisms to

suppress the morphogenetic potential of the leaf meristem.

Materials and methods

Plant material and growth conditions
For leaf analyses plants were grown under short-day conditions (10 hr light) at 20˚C for 15 to 20

days.

A number of lines for genetic and image analyses were generously provided for use in this study.

The cuc2-3 cuc3-105 lines were provided by Masao Tasaka (Hibara et al., 2006). The prs wox1 lines

were a gift from Tom Gerats (Vandenbussche et al., 2009). TMM:GUS-GFP line was provided by

Fred Sack (Nadeau and Sack, 2002). The ATML1:mCitrine-RCI2A and ATML1:H2B-mYFP were a gift

from Adrienne Roeder (Roeder et al., 2010). John Celenza and Peter Doerner provided the

CycB1;1::CycB1;1-GUS and CycB1;1::CycB1;1-GFP marker lines. The PIN1:PIN1-GFP and DR5:GFP

were supplied by Jiřı́ Friml (Friml et al., 2003). GL2::ERGFP:NOS was provided by Philip Benfey and

Ji-Young Lee (Lee et al., 2006). ATHB8:GUS was obtained from the Arabidopsis Biological Resource

Center (ABRC), Ohio State University, USA. The MONOPTEROS/ARF5:GFP line was gift from Dolf

Weijers. The NGA4:GUS line is nga4-1, a Ds gene trap allele (SGTSET7056) (Alvarez et al., 2009).
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Similarly PHB:GUS is phb-6, a Ds gene trap allele (SGT4606) in the first exon of PHB (Hawker and

Bowman, 2004). The BLS:STM and BLS promoter, transactivation line (BLS LacIH17-GAL4 (LhG4))

have been previously described (Shani et al., 2009; Furumizu et al., 2015; Lifschitz et al., 2006).

The BLS promoter drives gene expression in young leaf primordia but not in younger, initiating leaf

primordia.

Histology and microscopy
For tissue sections and scanning electron microscopy (SEM), samples were immersed in 2% glutaral-

dehyde in 0.025 M sodium phosphate buffer (pH 6.8) and vacuum infiltrated for up to one hour. For

sections, specimens were then washed, dehydrated in an ethanol series, and infiltrated and embed-

ded in LR White resin. 2 mm-thick sections were cut, dried onto slides, and stained with toluidine

blue. For SEM, glutaraldehyde-fixed tissues were further fixed in 1% OsO4 before dehydration

through a graded ethanol series and critical point dried using liquid CO2. Specimens were coated

with gold in an Eiko 1B.5 sputter coater and viewed using a Hitachi s570 scanning electron

microscope.

For histochemical analysis of GUS activity, samples were infiltrated with GUS staining solution

[0.2% (w/v) Triton X-100, 2 mM potassium ferricyanide, 2 mM potassium ferrocyanide, and 1.9 mM

5-bromo-4-chloro-3-indolyl-b-glucuronide in 50 mM sodium phosphate buffer, pH 7.0] and incubated

at 37˚C.
To prepare cleared samples, tissue was fixed overnight in 9:1 (v:v) ethanol:acetic acid at room

temperature. After rehydration in a graded ethanol series, samples were rinsed with water and were

cleared with chloral hydrate solution [1:8:2 (v:w:v) glycerol:chloral hydrate:water], dissected, and

viewed.

Fluorescence was observed using a Zeiss Axioskop2 mot plus microscope using filter set 46 for

YFP (excitation BP 500/20; beam splitter FT 515; emission BP 535/30), filter set 13 for GFP (excita-

tion BP 470/20; beam splitter FT 495; emission BP 505–530), and filter set 43 HE (excitation BP 550/

25; beam splitter FT 570; emission BP 605/70) or Semrock SpOr-B-000 filter set (excitation BP 543/

22; beam splitter FT 562; emission BP 586/20) for RFP. Images were collected using AxioVision soft-

ware individually or as part of a Z stack that included light field and DIC (differential interference

contrast) images as well. Deconvolution processing was carried out for some images.

The color of the nail polish applied to cotyledon and leaves was digitally altered to accommodate

red-green colourblind viewers.

Plasmid construction and plant transformation
Overexpression of miR319a (35S:miR319a) was carried out using a 323 bp fragment of the miR319a

encoding locus including 28 bp upstream and 92 bp downstream sequences of the annotated stem-

loop structure. This was cloned downstream of the 35S promoter in pART7 or the array of the lac

operator (OP) sequences in a BJ36-derivative plasmid for transactivation. The 35S:amiR-NGA and

OP:amiR-NGA constructs used to knockdown expression of all four NGA genes have been described

previously (Alvarez et al., 2006). To create expression constructs of the miR319a-amiR-NGA di-miR

(two miRNAs concatemerized for co-transcription), the 323 bp, miR319a encoding fragment was

cloned 5’ of the 235 bp amiR-NGA gene downstream of the 35S promoter in pART7 or the array of

the lac operator (OP) sequences in a BJ36-derived plasmid. Plants expressing two transgenes, 35S:

amiR-NGA and 35S:miR319a, are labeled miR319a/amiR-NGA while those expressing the di-miR are

labeled miR319a-amiR-NGA. A high proportion of plants expressing the 35S:miR319a-amiR-NGA di-

miR had a strong phenotype equivalent to F1 plants from a cross between selected, individual 35S:

amiR-NGA and 35S:miR319a expressing lines with strong phenotypes.

To construct a GUS reporter line of TCP4 (At3g15030), which is subject to the regulation by its

endogenous miRNA, miR319, approximately 3.9 kb of the upstream sequence, which starts from the

3’ end of the annotated upstream gene (At3g15020) and ends before the TCP4 start codon, was

PCR amplified and TA cloned into pCRII (Invitrogen). An approximately 1.7 kb of fragment down-

stream of the TCP4 stop codon, which extends into the annotated downstream gene (At3g15040),

was cloned with the miR319a target site in TCP4 built into the forward PCR primer. The two frag-

ments were subsequently cloned contiguously into BJ36 plasmid to create a TCP4 promoter
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cassette, and the GUS coding sequence was cloned between the 5’ and 3’ TCP4 regulatory regions

and upstream of the miR319 target site.

Similarly, to create a GUS reporter line of TCP3 (At1g53230) subject to regulation by its endoge-

nous miRNA, miR319, approximately 3.1 kb of the upstream sequence beginning from the 3’ end of

the annotated upstream gene (At1g53240) transcript and ends before the TCP3 start codon was

PCR-amplified and TA cloned into pCRII (Invitrogen). An approximately 2.2 kb of fragment down-

stream of the TCP3 stop codon, which extends into the annotated downstream gene (At1g53220),

was cloned with the miR319a target site in TCP3 built into the forward PCR primer. The two frag-

ments were subsequently cloned contiguously into BJ36 plasmid to create a TCP3 promoter cas-

sette, and the GUS coding sequence was cloned between the 5’ and 3’ TCP3 regulatory regions and

upstream of the miR319 target site.

For the GUS marker line of WOX1 (At3g18010), a 2.3 kb fragment upstream from the start codon

and a 3.8 kb fragment downstream of the stop codon were PCR amplified and TA cloned into pCRII.

The two fragments were cloned contiguously into BJ36 plasmid, and the GUS coding sequence was

cloned between the upstream and downstream regulatory regions.

The PRS/WOX3 (At2g28610) promoter GUS line was created using a PCR fragment of a 6.3 kb

sequence upstream of the PRS/WOX3 start codon. The PRS/WOX3 promoter was cloned upstream

of the GUS coding region in the BJ36-derivative, pRITA.

The KANADI1:GUS reporter line was created by cloning the GUS encoding DNA fragment down-

stream of the KANADI1 (At5g16560) promoter that consists of a 884 bp fragment of the conserved

second intron fused to a 5.3 kb fragment upstream of KANADI1, which has been previously

described (Efroni et al., 2008).

All constructs were subcloned into pMLBART or pART27 binary vector and were introduced into

Agrobacterium tumefaciens strain GV3101 by electroporation. Transgenic lines were generated by

Agrobacterium-mediated transformation, and transformants were selected on soil on the basis of

resistance to the herbicide BASTA or kanamycin. Primers used to clone the different cDNAs and pro-

moters are described in Supplementary file 1.

Transcriptome analysis
RNA was extracted from tissue removed with scissors from the 0.5–1 mm marginal region of older

35S:miR319a/35S:amiR-NGA leaves (older than that presented in Figure 1,D1, Figure 1—figure

supplement 3,D1 using the Qiagen RNeasy plant mini kit. cDNA was synthesized and hybridized to

Affymetrix ATH1 arrays according to the manufacturer’s recommendations in two biological repli-

cates. The data have been uploaded to NCBI GEO, Series number: GSE78693 and GSE12691. Signal

values were obtained and normalized using MAS5. Publicly available microarray data were obtained

from GEO-OMNIBUS (GSE13596: cells isolated from various domains of the inflorescence meristem,

GSE5630: dissected leaf 7 from wild-type 17-days-old plants [Schmid et al., 2005]), and normalized

using MAS5. Digital Differentiation Index (DDI) analysis was carried out as in Efroni et al. (2008),

using the same set of samples for marker calibration set. Analysis was done using R 2.7.2 (www.r-

project.org) and Bioconductor 2.2 (www.bioconductor.org/).
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emergence of land plants. Journal of Molecular Evolution 65:23–33. doi: 10.1007/s00239-006-0174-z,
PMID: 17568984

Obayashi T, Hayashi S, Saeki M, Ohta H, Kinoshita K. 2009. ATTED-II provides coexpressed gene networks for
Arabidopsis. Nucleic Acids Research 37:D987–991. doi: 10.1093/nar/gkn807, PMID: 18953027

Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez JP,
Blum E, Zamir D, Eshed Y. 2007. Regulation of LANCEOLATE by miR319 is required for compound-leaf
development in tomato. Nature Genetics 39:787–791. doi: 10.1038/ng2036, PMID: 17486095

Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D. 2003. Control of leaf
morphogenesis by microRNAs. Nature 425:257–263. doi: 10.1038/nature01958, PMID: 12931144

Piazza P, Bailey CD, Cartolano M, Krieger J, Cao J, Ossowski S, Schneeberger K, He F, de Meaux J, Hall N,
Macleod N, Filatov D, Hay A, Tsiantis M. 2010. Arabidopsis thaliana leaf form evolved via loss of KNOX
expression in leaves in association with a selective sweep. Current Biology 20:2223–2228. doi: 10.1016/j.cub.
2010.11.037, PMID: 21129970

Poethig RS, Sussex IM. 1985. The cellular parameters of leaf development in tobacco: a clonal analysis. Planta
165:170–184. doi: 10.1007/BF00395039, PMID: 24241041

Roeder AH, Chickarmane V, Cunha A, Obara B, Manjunath BS, Meyerowitz EM. 2010. Variability in the control of
cell division underlies sepal epidermal patterning in Arabidopsis thaliana. PLoS Biology 8:e1000367. doi: 10.
1371/journal.pbio.1000367, PMID: 20485493

Sachs T. 1969. Regeneration experiments on the determination of the form of leaves. Israel Journal Of Botany
18:21–30.

Sarojam R, Sappl PG, Goldshmidt A, Efroni I, Floyd SK, Eshed Y, Bowman JL. 2010. Differentiating Arabidopsis
shoots from leaves by combined YABBY activities. The Plant Cell Online 22:2113–2130. doi: 10.1105/tpc.110.
075853, PMID: 20628155

Scarpella E, Marcos D, Friml J, Berleth T. 2006. Control of leaf vascular patterning by polar auxin transport.
Genes & Development 20 1015 1027. doi: 10.1101/gad.1402406, PMID: 16618807

Alvarez et al. eLife 2016;5:e15023. DOI: 10.7554/eLife.15023 16 of 17

Research article Genomics and Evolutionary Biology Plant Biology

http://dx.doi.org/10.1016/S0012-1606(89)80053-3
http://www.ncbi.nlm.nih.gov/pubmed/2909405
http://dx.doi.org/10.1126/science.1214678
http://www.ncbi.nlm.nih.gov/pubmed/22383846
http://www.ncbi.nlm.nih.gov/pubmed/8565856
http://dx.doi.org/10.1073/pnas.0510607103
http://dx.doi.org/10.1073/pnas.0510607103
http://dx.doi.org/10.1073/pnas.0601620103
http://dx.doi.org/10.1073/pnas.1215376110
http://dx.doi.org/10.2307/2439558
http://dx.doi.org/10.2307/2440391
http://dx.doi.org/10.1016/S0092-8674(00)81703-1
http://www.ncbi.nlm.nih.gov/pubmed/9865698
http://dx.doi.org/10.1126/science.1069596
http://www.ncbi.nlm.nih.gov/pubmed/12040198
http://dx.doi.org/10.1073/pnas.0908718106
http://dx.doi.org/10.1105/tpc.111.092858
http://dx.doi.org/10.4161/psb.21959
http://www.ncbi.nlm.nih.gov/pubmed/22951404
http://dx.doi.org/10.1111/nph.12343
http://dx.doi.org/10.1111/nph.12343
http://www.ncbi.nlm.nih.gov/pubmed/23721178
http://dx.doi.org/10.1126/science.1079354
http://www.ncbi.nlm.nih.gov/pubmed/12610308
http://dx.doi.org/10.1007/s00239-006-0174-z
http://www.ncbi.nlm.nih.gov/pubmed/17568984
http://dx.doi.org/10.1093/nar/gkn807
http://www.ncbi.nlm.nih.gov/pubmed/18953027
http://dx.doi.org/10.1038/ng2036
http://www.ncbi.nlm.nih.gov/pubmed/17486095
http://dx.doi.org/10.1038/nature01958
http://www.ncbi.nlm.nih.gov/pubmed/12931144
http://dx.doi.org/10.1016/j.cub.2010.11.037
http://dx.doi.org/10.1016/j.cub.2010.11.037
http://www.ncbi.nlm.nih.gov/pubmed/21129970
http://dx.doi.org/10.1007/BF00395039
http://www.ncbi.nlm.nih.gov/pubmed/24241041
http://dx.doi.org/10.1371/journal.pbio.1000367
http://dx.doi.org/10.1371/journal.pbio.1000367
http://www.ncbi.nlm.nih.gov/pubmed/20485493
http://dx.doi.org/10.1105/tpc.110.075853
http://dx.doi.org/10.1105/tpc.110.075853
http://www.ncbi.nlm.nih.gov/pubmed/20628155
http://dx.doi.org/10.1101/gad.1402406
http://www.ncbi.nlm.nih.gov/pubmed/16618807
http://dx.doi.org/10.7554/eLife.15023


Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU. 2005. A
gene expression map of Arabidopsis thaliana development. Nature Genetics 37:501–506. doi: 10.1038/ng1543,
PMID: 15806101

Schmidt A. 1924. Histologische studien an phanerogamen vegertationspunkten. Botanisches Archiv 8:345–404.
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