
Received: 26 April 2021 Revised: 15 June 2021 Accepted: 26 July 2021

DOI: 10.1002/cac2.12204

REVIEW

Early screening and diagnosis strategies of pancreatic
cancer: a comprehensive review

Jinshou Yang† Ruiyuan Xu† ChengchengWang Jiangdong Qiu Bo Ren
Lei You

Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College,
Beijing, P. R. China

Correspondence
LeiYou,Department ofGeneral Surgery,
PekingUnionMedicalCollegeHospital,
ChineseAcademyofMedical Sciences,
PekingUnionMedicalCollege, Beijing
100023, P.R.China.
Email: florayo@163.com

†These authors contributed equally to this
work.

Funding information
Non-profit CentralResearch Institute
FundofChineseAcademyofMedi-
cal Sciences,Grant/AwardNumber:
2018PT32014;ChineseAcademyofMedi-
cal Science InnovationFund forMedical
Science,Grant/AwardNumber: 2017-I2M-
1-001

Abstract
Pancreatic cancer is a highly malignant digestive system tumor with a poor
prognosis. Most pancreatic cancer patients are diagnosed at an advanced stage
or even metastasis due to its highly aggressive characteristics and lack of typical
early symptoms. Thus, an early diagnosis of pancreatic cancer is crucial for
improving its prognosis. Currently, screening is often applied in high-risk indi-
viduals to achieve the early diagnosis of pancreatic cancer. Fully understanding
the risk factors of pancreatic cancer and pathogenesis could help us identify the
high-risk population and achieve early diagnosis and timely treatment of pan-
creatic cancer. Notably, accumulating studies have been undertaken to improve
the detection rate of different imaging methods and the diagnostic accuracy of
endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) which is the
golden standard for pancreatic cancer diagnosis. In addition, there are currently
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no biomarkers with sufficient sensitivity and specificity for the diagnosis of
pancreatic cancer to be applied in the clinic. As the only serum biomarker
approved by the United States Food and Drug Administration, carbohydrate
antigen 19-9 (CA19-9) is not recommended to be used in the early screening
of pancreatic cancer because of its limited specificity. Recently, increasing
numbers of studies focused on the discovering of novel serum biomarkers
and exploring their combination with CA19-9 in the detection of pancreatic
cancer. Besides, the application of liquid biopsy involving circulating tumor cells
(CTCs), circulating tumor DNA (ctDNA), microRNAs (miRNAs), and exosomes
in blood and biomarkers in urine, and saliva in pancreatic cancer diagnosis are
drawing more and more attention. Furthermore, many innovative technologies
such as artificial intelligence, computer-aided diagnosis system, metabolomics
technology, ion mobility spectrometry (IMS) associated technologies, and novel
nanomaterials have been tested for the early diagnosis of pancreatic cancer and
have shown promising prospects. Hence, this review aims to summarize the
recent progress in the development of early screening and diagnostic methods,
including imaging, pathological examination, serological examination, liquid
biopsy, as well as other potential diagnostic strategies for pancreatic cancer.

KEYWORDS
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1 INTRODUCTION

Pancreatic cancer is the seventh leading cause of cancer-
related death in both males and females worldwide
because of its poor prognosis; causing almost as many
deaths (n = 466,003) as the number of diagnosed cases
(n = 495,773) [1]. It is expected to be the second most com-
mon cause of cancer-related death in the United States
(U.S.) by 2030 [2]. Unlike with many other cancer entities,
over the past several decades, its 5-year overall survival has
marginally improved but still remains no more than 9% [3,
4]. Due to the lack of typical early symptoms and its highly
aggressive biological characteristics, most pancreatic can-
cer is diagnosed at an advanced stage and are not eligible
for curative surgery; leading to dismal clinical outcomes.
However, the 5-year survival rate of patients with tumors
limited to the duct epithelium can reach 100% when the
tumors are smaller than 1 cm [5]. Thus, screening and early
diagnosis of pancreatic cancer are crucial for improving
its prognosis. It is well known that different forms of pan-
creatic cancer exhibit major differences in both pathology
and patient outcomes. Most pancreatic cancers are char-
acterized as pancreatic ductal adenocarcinomas (PDACs)
which account formore than 85% of all malignancies of the

exocrine pancreas [6]. Hence, the definition of “pancreatic
cancer” we used in the study refers to PDAC.
Direct screening of pancreatic cancer patients from the

general population is difficult and not cost-effective due to
the lack of high specificity tests and the low incidence of
pancreatic cancer. The National Comprehensive Cancer
Network (NCCN) recommends the application of endo-
scopic ultrasonography (EUS) for genetic/familial high-
risk individuals [7].However, applying screening strategies
for sporadic pancreatic cancer in individuals with one
or more risk factors could enhance the performance of a
putative screening test [8]. According to the recommenda-
tions of the U.S. Prevention Services Task Force (USPSTF)
on screening for pancreatic cancer, the risk factors, except
for certain inherited genetic syndrome or familial history,
mainly include new-onset diabetes mellitus (NODM),
preexisting diabetes mellitus, older age, cigarette smoking,
obesity, and a history of chronic pancreatitis [9]. For
instance, Sharma et al. [10] developed a prediction model
involving three factors including change in weight, change
in blood glucose, and age at onset of diabetes to determine
the risk level of pancreatic cancer in patients with NODM.
When there is clinical suspicion or evidence of dilated

pancreatic and/or bile duct, the NCCN guidelines
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suggest that pancreatic protocol computed tomography
(CT) should first be utilized for diagnosis [7]. Additionally,
magnetic resonance imaging/cholangiopancreatography
(MRI/MRCP), EUS, EUS-guided fine-needle aspiration
(EUS-FNA), and endoscopic retrograde cholangiopancre-
atography (ERCP) also play important roles in diagnosing
pancreatic cancer. Many technological innovations of
imaging or endoscopy are being applied to improve
the diagnostic accuracy of pancreatic tumors [11–13].
Serological tests are also important auxiliary diagnostic
methods for pancreatic cancer. The carbohydrate antigen
19-9 (CA19-9) is the only serum biomarker approved by
the U.S. Food and Drug Administration (FDA), but cannot
meet the need for a clinical diagnosis in practice due to
its low sensitivity (80%, 95% confidence interval [CI] =
72%–86%) and low specificity (75%, 95% CI = 68%–80%)
[14]. For this reason, some studies have focused on the
combined detection of CA19-9 together with other tumor
markers such as carcinoembryonic antigen (CEA), car-
bohydrate antigen 125 (CA125), carbohydrate antigen 242
(CA242) [15], and on novel serum biomarkers, such as
macrophage inhibitory cytokine-1 (MIC-1) andmucin 5AC
(MUC5AC) [16, 17]. More recently, liquid biopsies have
been utilized as a novel diagnostic approach by detecting
tumor-associated biomarkers, mainly circulating tumor
DNA (ctDNA), circulating tumor cells (CTCs), exosomes,
and microRNAs (miRNAs) in a variety of extractable
body fluids [18]. Diagnostic signatures consisting of serum
metabolites established by usingmetabolomics techniques
are also now attracting attention [19]. However, before
these can be established as standard clinical tools, more
interventional clinical trials as well as the development
of an algorithm to combine the appropriate circulating
markers are needed [20].
To date, still no biomarkers or panels of markers with

sufficient diagnostic accuracy have been approved for the
early diagnosis of pancreatic cancer. Hence, the aim of
this review is to discuss current screening and diagnos-
tic strategies and future prospects in terms of risk factors,
imaging approaches, pathological examination, serologi-
cal tests, liquid biopsies, and other novel early diagnostic
methods of pancreatic cancer.

2 HIGH-RISK GROUPS AND RISK
FACTORS

2.1 High-risk individuals with specific
hereditary backgrounds

With insidious onset and high degree of malignancy, pan-
creatic cancer brings the patients an enormous burden
because of the little therapeutic benefit. Therefore, the

screening of pancreatic cancer in common population
appears to be important and urgent for this disease entity.
Routine screening for pancreatic cancer is generally not
recommended for asymptomatic individuals, except for
those with certain inherited genetic syndromes such as
Peutz-Jeghers syndrome or familial history of pancreatic
cancer [21]. In those cases, non-invasive imaging or highly
sensitive serological tests should be performed. As men-
tioned above, due to its low sensitivity of 80% and speci-
ficity of 75%, CA19-9 possesses limited diagnostic utility
[14].
The NCCN guidelines suggest that EUS has a promis-

ing role in screening these high-risk individuals [7]. In a
prospective study including 78 high-risk individuals and
149 controls with follow-up by EUS and CT, 8 patients
with pancreatic cancer, 6 patients with intraductal pap-
illary mucinous neoplasms (IPMNs), and 3 patients with
extra-pancreatic neoplasms were identified and diagnosed
[22]. A multicenter prospective cohort study from the U.S.
including 216 asymptomatic high-risk individuals reported
detection of pancreatic abnormality by CT, MRI, and EUS
in 11.0%, 33.3%, and 42.6%, respectively [23].
Regarding consideration of age at first screening and

frequency thereafter, some investigators recommend that
first screening should take place at 40-50 years of age,
or 10–15 years earlier than the onset age of pancreatic
cancer patients in their family in the case of familial
disease. Screening is recommended every 3 years or every
3–6 months if the first screening shows abnormalities
[24]. In 2018, the International Cancer of the Pancreas
Screening Consortium updated its recommendations for
the management of patients with increased risk of familial
pancreatic cancer. For such individuals, it was agreed that
surveillance should begin at age 50 or later, otherwise 10
years earlier than the youngest relative with pancreatic
cancer and that the preferred surveillance tests should
be EUS and MRI/MRCP [25]. Notably, improvement of
imaging-basedmethods and exploration of novel biomark-
ers is still required to improve early pancreatic cancer
diagnostic efficiency.

2.2 Risk factors for sporadic pancreatic
cancer

Many patients with sporadic pancreatic cancer would
inevitably be overlooked under the screening principles
for genetic/familial high-risk individuals. Thus, it is nec-
essary to explore a high-risk population in more detail
to improve the detection rate and survival outcomes of
patients with pancreatic cancer. This requires comprehen-
sive research on the risk factors of sporadic pancreatic can-
cer, regarding the identification of objective factors, and
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taking into account that the incidence rate is higher in
males than in females, and increases gradually after age
45 until it reaches a peak at the age 80 [26]. Additionally,
there are also environmental factors known to contribute
to the development of pancreatic cancer including lifestyle,
dietary habits, and related diseases.
Unhealthy living habits promote the development of

pancreatic cancer. Smokers were reported to have an
approximately 2–3-fold risk of pancreatic cancer relative
to non-smokers, but this risk decreases with increasing
time since quitting smoking [27]. It was suggested that
one mechanism of this cigarette smoke-induced effect was
via miR-25-3p and m6A modification resulting in the acti-
vation of oncogenic AKT-p70S6K signaling, which pro-
vokes the malignant transformation of pancreatic duct
epithelial cells [28]. Heavy alcohol drinking (defined as
≥420 g/week), another independent risk factor for pan-
creatic cancer, was associated with significant excess risk
(hazard ratio [HR] = 1.69, 95% CI = 1.21–2.37) in men, but
not women [29, 30]. In addition, the consumption of cer-
tain foodstuffs also increased risk, such as red meat (HR=
1.16, 95% CI = 1.01–1.33) [29]. Thus, developing and main-
taining good living habits is an important proactive mea-
sure in the primary prevention of pancreatic cancer.
Individuals with certain chronic diseases, including

chronic pancreatitis, diabetes, and obesity, have a higher
risk of suffering from pancreatic cancer. To evaluate the
association between different forms of pancreatitis and
pancreatic cancer, Karlson et al. [31] conducted a large
cohort study with a follow-up duration of up to 25 years.
They found that chronic pancreatitis patients had the high-
est standardized incidence ratio of 22.2 (95%CI= 16.2–29.6)
for the development of pancreatic cancer within 4 years,
and 7.6 (95% CI= 6.0–9.7) within 24 years. Ameta-analysis
of 13 eligible studies revealed that the patients diagnosed
with pancreatic cancer within two years of chronic pan-
creatitis had a pooled effect estimate of 16.16 (95% CI =
12.59–20.73) [32]. However, the risk decreased when the
interim periodwas increased to 5 years. Themechanism by
which chronic pancreatitis develops into pancreatic can-
cer is still unclear. Abnormally activated signaling path-
ways, such as transforming growth factor-β (TGF-β), Janus
kinase (JAK)/signal transducer and activator of transcrip-
tion (STAT), mitogen-activated protein kinase (MAPK),
nuclear factor-κB (NF-κB), and Toll-like receptors (TLRs),
may contribute to malignant transformation of pancreatic
cells during long-term pancreatitis [33]. Numerous clin-
ical studies have demonstrated that diabetes and hyper-
glycemia are risk factors for pancreatic cancer. The result
of a retrospective study from the U.S. showed that patients
with type 2 diabetes have a doubled risk (HR = 2.17, 95%
CI = 1.70–2.77) of developing pancreatic cancer compared
with the general population [34]. In a large prospective

clinical study in China, the risk of pancreatic cancer in
diabetic patients was also approximately twice than that
of the general population (HR = 1.87, 95% CI = 1.48–2.37),
and increased with the duration of diabetes [35]. In addi-
tion, blood glucose levels are also closely associated with
the prevalence of pancreatic cancer [35, 36]. The mecha-
nisms of diabetes promotion of pancreatic carcinogenesis
are at least partly via the high levels of insulin and insulin-
like growth factors which act on the exocrine pancreas
to promote mitosis, induce cell differentiation, or impede
autophagy [37–39]. As a widespread global health prob-
lem, obesity is also considered a risk factor for pancre-
atic cancer. A case-control study from theUnited Kingdom
indicated a robust causal association of increasing body
mass index (BMI) with pancreatic cancer risk (odds ratio
[OR] = 1.34, 95% CI = 1.09–1.65, for each standard devi-
ation increase in BMI [4.6 kg/m2]) [38]. In a retrospec-
tive study from China, the case group included a higher
proportion of overweight and obese individuals (OR =

2.48 and 95% CI = 1.98–3.11 for overweight individuals;
OR= 3.5, 95% CI= 2.67–5.41 for obese individuals) empha-
sizing these independent risk factors for pancreatic can-
cer [40]. A recent study reported that obesity accelerated
oncogenic Kras-driven pancreatic ductal tumorigenesis in
mice by inducing aberrant pancreatic islet cholecystokinin
expression [41]. Genetic or dietary weight loss impeded
pancreatic cancer progression. Additionally, a high-fat diet
was found to promote the development of pancreatic can-
cer, usually synergistically with obesity. Recent studies
revealed that high-fat diets could activate oncogenic Kras
via cyclooxygenase-2 (COX2), leading to pancreatic inflam-
mation and fibrosis, and the development of pancreatic
intraepithelial neoplasias (PanINs) and PDAC [42]. Con-
versely, acinar cells with Krasmutations had significantly
reduced expression of fibroblast growth factor 21, which
was found to suppress the effect of a high-fat diet in
promoting pancreatic adenocarcinoma development [43].
Additional to the above, Pang et al. [44] identifiedmultiple
risk factors for pancreatic cancer involving chronic chole-
cystitis (OR = 1.81, 95% CI = 1.34–2.44), cholecystotomy
(OR= 16, 95%CI= 8.16–31.5) and low levels of high-density
lipoprotein cholesterol C (OR = 3.12, 95% CI = 2.52–3.86).

2.3 High-risk population predictive
model

Integrating multiple risk factors for pancreatic cancer to
establish a risk prediction model could contribute to its
early detection. Patients with NODM have more than
twice the risk of pancreatic cancer relative to those with
long-term diabetes [45]. To identify individuals at high-
risk for PDAC among patients with NODM, Boursi et al.
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[46] developed and validated a predictive model including
age, BMI, change in BMI, smoking, use of proton pump
inhibitors and anti-diabetic medications, as well as lev-
els of hemoglobin A1c (HbA1c), cholesterol, hemoglobin,
creatinine, and alkaline phosphatase. Based on this, only
6.19% of the NODM population would need to undergo
definitive screeningwhen setting the predicted risk thresh-
old at 1%, but nevertheless, this was with limited sensi-
tivity. Notably, Chari’s team developed a model denoted
“Enriching New-Onset Diabetes for Pancreatic Cancer”
(ENDPAC) that weighted scores for three factors includ-
ing change in weight, change in blood glucose, and age at
onset of diabetes [10]. AnENDPAC score of at least 3 identi-
fied patientswhodeveloped pancreatic cancerwithin three
years of diabetes onset with an area under the curve (AUC)
of 0.87 with 80% sensitivity and specificity. This simple and
effective model possesses potential value for screening for
pancreatic cancer.
The role of serum metabolites in the detection of pan-

creatic cancer has attracted a great deal of attention with
the development of metabolomics technologies involv-
ing nuclear magnetic resonance (NMR) spectroscopy and
mass spectrometry (MS) [47]. For instance, metabolite
biomarkers in plasma may also contribute to the diag-
nosis of pancreatic cancer. Michálková et al. [48] investi-
gated the changes of metabolites in plasma samples via
NMR and developed a model comprising 12 metabolites
(3-hydroxybutyrate, lactate, glutamine, alanine, valine,
lysine, citrate, histidine, isoleucine, glutamate, acetone,
and dimethylamine) which had an accuracy of 94%, 100%
sensitivity, and 90% specificity in distinguishing pancre-
atic cancer patients from healthy individuals. In addition,
Mayerle et al. [19] identified a biomarker signature com-
prising nine metabolites together with CA19-9 for the dis-
crimination of PDAC from chronic pancreatitis with an
AUC of 0.96 (95% CI = 0.93–0.98), a marked improve-
ment compared to CA19-9 alone. To establish a screen-
ing strategy for pancreatic cancer based on NODM, the
metabolomic profiles of serum samples from patients with
NODM and those with PDAC and NODM have been com-
pared [49]. This identified 62 different metabolites and
found that a panel includingN-succinyl-L-diaminopimelic
and PE (18:2) had high sensitivity (93.3%) and specificity
(93.1%). Currently, the studies focusing on the serum
metabolomics for pancreatic cancer screening based on the
NODM population are rare and further studies need to be
performed.
Researchers have also established a high-risk popu-

lation predictive model through the analysis of clinical
symptoms and risk factors for pancreatic cancer. A study
from Peking Union Medical College Hospital (PUMCH)
developed a high-risk scoring model for pancreatic cancer

based on 10 risk factors (male, age >60, alcohol, smoking,
diabetes history, meat diet, family history of pancreatic
cancer, pancreatitis, cholelithiasis history, and cholecys-
titis history) and 4 symptoms (anorexia, upper abdominal
pain, weight loss, and jaundice), which exhibited an AUC
of 0.981 [50]. In addition, a retrospective cohort study
from Saudi Arabia noted nine factors that contributed
significantly to the risk of pancreatic cancer, namely,
older age, male gender, weight loss, abdominal pain,
blood clots, pancreatitis, jaundice, persistent fatigue, and
abnormal imaging tests [51]. This risk assessment model
yielded excellent predictive utility (receiver operating
characteristic [ROC] = 96.3%, 95% CI = 94.1%–98.6%) and
high sensitivity (94%), which was useful for improving
screening performance. Hence, exploring risk factors for
pancreatic cancer comprehensively, identifying the high-
risk population effectively, and applying highly sensitive
imaging-based or serological examinations are currently
the main screening strategies to improve the early
diagnosis, treatment, and prognosis of pancreatic cancer.

3 TYPES OF EXAMINATION

3.1 Imaging

Medical imaging has important roles in pancreatic cancer
screening and early detection, preoperative evaluation and
staging, differential diagnosis, follow-up, and treatment
evaluation [52]. Nonetheless, at present, there is no stan-
dard imaging screening procedure. The USPSTF indicates
that imaging-based methods such as CT, MRI, and EUS
have been tested as screening strategies in trials of high-
risk populations with inherited genetic syndromes or fam-
ily history of pancreatic cancer [9]. As mentioned above,
EUS performs best for screening high-risk individuals [23].
Different imaging methods have different capabilities

for the detection of early pancreatic cancer. A multicenter
retrospective study from Japanwas conducted to clarify the
imaging features of 200 cases in stage 0 and I PDAC, 20%
of which were symptomatic [11]. The diagnostic accuracy
of transabdominal ultrasound (TAUS), CT, MRI, and EUS
was 67.5%, 98.0%, 86.5%, and 86.5%, respectively. Moreover,
the main manifestation of early pancreatic cancer in CT,
EUS, and MRCP is a dilation or irregular stenosis of the
main pancreatic duct. However, both CT and TAUS have
limited value in the diagnosis of early PDAC because only
indirect signs, such as dilation of pancreatic duct or change
of pancreas contour, can be seen using these techniques.
Notably, CT also detected local fatty changes of the pan-
creatic parenchyma in 42% stage 0 and 41.8% stage I cases,
which implies the importance of detecting a local fatty
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change in the pancreas for identifying early-stage pancre-
atic cancer [11].
EUS can detect smaller solid lesions, and has the addi-

tional advantages of not employing ionizing radiation and
not requiring contrast agents, and, moreover, can acquire
cytopathological results sequentially [52], unlike the low
sensitivity of thin-section triple-phase helical CT for PDAC
with a diameter <2 cm [53]. Maguchi et al. [54] compared
different imaging techniques for pancreatic cancer with
a diameter <2 cm and found that TAUS, CT, and EUS
had a sensitivity of 52.4%, 42.8%, and 95.2% respectively.
However, conventional EUS cannot distinguish very well
between carcinoma and other etiologies without the
use of an invasive cytological examination (EUS-FNA)
because the majority of pancreatic tumors, even those
with benign etiologies, have a hypoechogenic appearance.
Thus, the development of non-invasive alternatives or
methods to EUS-FNA is necessary. A retrospective study
from China revealed that the size of the neoplasm and
the regularity of the margin in EUS could significantly
differentiate malignant from benign pancreatic tumors,
and combined diagnosis showed a sensitivity of 73.68%
and specificity of 90% [55]. However, the EUS features
of age, sex, location, echo pattern, and dilation of the
main pancreatic duct were not informative. Recently,
contrast-enhanced endoscopic ultrasonography (CEH
EUS) has been utilized as a useful minimally invasive
diagnostic method, and was reported to facilitate the
imaging of parenchymal perfusion and microvessels in
pancreatobiliary disease. A prospective single-center study
found that the CEH EUS had higher sensitivity (94.5% vs.
83.1%) and accuracy (84.1% vs. 78.6%) than conventional
EUS [13]. The results of a meta-analysis also showed excel-
lent pooled estimates of sensitivity and specificity of CEH
EUS for pancreatic cancer diagnosis, at 93% (95% CI =
0.91–0.95) and 80% (95% CI = 0.75–0.85) respectively [56].
We believe that this modality can contribute to refining
diagnostic techniques for pancreatic cancer in clinical
practice.
It should be pointed out that operating EUS or CEH

EUS operation is relatively challenging and accuracy is
often affected by the subjectivity of endosonographers.
EUS examination is often used as a part of EUS-FNA
in patients with suspected pancreatic cancer, and CEH
EUS is required to confirm the diagnosis if EUS-FNA
shows a negative result due to the smaller lesions [57]. In
addition, there are contraindications for MRI, including
metal implants and patient claustrophobia, but this
approach has yielded higher detection rates than CT for
pancreatic cancer or small solid pancreatic tumors [11,
23, 58]. Nonetheless, CT is still currently used as the first
choice for pancreatic cancer diagnosis in clinical practice.

3.2 Pathological examination

Over the last few years, EUS-FNA has been considered
the most advanced and accurate diagnostic technique in
patients with suspected pancreatic cancer. Among those
with pancreatic lesions detected by CT, the sensitivity,
specificity, and accuracy of EUS-FNA were 87.6%, 91.2%,
and 88.8%, respectively [13]. A prospective single-center
study from South China reported that EUS-FNA had a
sensitivity, specificity, and accuracy of 77.8%, 100%, and
84% for pancreatic cancer diagnosis [59]. Multivariate
analysis showed that abdominal pain, lesion properties,
lesion metastasis, and lesion size were independent
factors predicting PDAC. To increase the accuracy of early
diagnosis of EUS-FNA, investigators have made many
improvements to methods and techniques. Real-time
elastography (RTE), a new technique for the assessment
of tissue elasticity using ultrasound, has been used in
multiple tumors to differentiate malignant from benign
lesions. The combination of RTE and EUS-FNA was
reported to have higher diagnostic accuracy, sensitivity,
and specificity with 94.4%, 93.4%, and 100%, respectively
[60]. In addition, Bournet et al. [61] reported that patholog-
ical assessment combined with KRAS-mutation analysis
using allelic discrimination showed higher accuracy (88%
vs. 73%) and sensitivity (93% vs. 85%) for PDAC diagnosis
than cytopathology alone. Furthermore, novel optical
system-spatial-domain low-coherence quantitative phase
microscopy (SL-QPM) was demonstrated to improve the
accuracy of EUS-FNA cytological diagnosis and increase
the sensitivity of cytology for identifying pancreatic cancer
from 72% to 94%, even when traditional cytopathology
failed to allow an accurate diagnosis [62]. For differenti-
ating between inflammatory masses and malignancies, it
was found that endoscopic ultrasound-guided fine-needle
biopsy (EUS-FNB) possessed higher diagnostic accuracy
and sensitivity than EUS-FNA (93.0% and 86.6% vs. 83.6%
and 69.5%), and it should be considered as the preferred
technique for diagnosing cancer in the setting of chronic
pancreatitis [63]. Moreover, a prospective study compared
the diagnostic accuracy of different techniques to obtain
EUS-FNA samples with slow-pull and standard suction
techniques [64]. There were no significant differences, but
the slow-pull technique decreased the number of slides
and caused less bleeding.
ERCP plays an important role in the diagnosis and

treatment of cholangio-pancreatic diseases. Cytology using
endoscopic nasopancreatic drainage has potential value
for the early detection of pancreatic cancer in situ. Com-
pared to EUS-FNA, cytology during ERCP was more com-
monly applied for preoperative pathologic diagnosis in
Japan, which has a detection rate of 72.2% compared to
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only 16.7% for EUS-FNA in patients with stage 0 pan-
creatic cancer [11]. However, pancreatic juice cytology
could be affected by the position and size of the catheter,
and in addition, patients frequently suffer from complica-
tions such as post-ERCP-related pancreatitis [65]. At the
PUMCH, the number of patients where ERCP is used for
diagnosis has decreased in the last decade, and ERCP is
now more frequently used for treatment [66]. Thus, we
should adopt the appropriate diagnostic procedure for dif-
ferent stages of pancreatic cancer and fully consider the
patient’s condition.

3.3 Serological examination

There are no effective serum tumor markers for the early
diagnosis of pancreatic cancer at present. Although CA19-
9 is approved by the FDA as the only serum biomarker
for PDAC, it has limitations such as giving false negatives
in patients with Lewis blood type-negative phenotype
and false positives in patients with obstructive jaundice.
Also, the level of CA19-9 can increase under some cir-
cumstances, such as in the presence of benign tumors,
inflammatory masses, and diabetes [67]. These factors
reduce the usefulness of CA19-9, which lacks sufficient
sensitivity and specificity for the early diagnosis of pancre-
atic cancer. However, it is commonly used as a significant
prognostic factor for the evaluation of therapeutic effects,
surveillance of metastasis, and survival prediction in
patients with advanced pancreatic cancer [68–70]. In addi-
tion to CA19-9, other tumor markers, such as CEA, CA125,
and CA242, are also used together to diagnose pancreatic
cancer. CA19-9 seems to be associated with the highest
sensitivity around 80% but has no advantages regarding
specificity, which appears to be the highest for CA242, at
approximately 90% [14, 15]. Notably, the sensitivity and
specificity of detecting serum CA19-9, CEA, CA125, and
CA242 together were 90.4% and 93.8%, clearly higher
than any single marker [15]. Consequently, patients with
suspected pancreatic cancer still need to be tested for at
least these four tumor markers. In addition, a team from
the Shanghai Cancer Center of Fudan University divided
the participants into three genotypes (Lewis-negative,
Mixed, Secretor-negative) by Sanger sequencing and
determined the best cut-off value for each group, then
applied these cut-offs to the diagnosis of pancreatic cancer
[71]. The sensitivity of CA19-9 for the detection of stage I,
II pancreatic cancer increased from 76.1% to 87.2%.
Numerous potential novel markers for pancreatic can-

cer diagnosis have been identified using high-throughput
screening of proteins in serum of PDAC patients, and
bioinformatics analysis of available cancer genome
datasets. A number of studies reported the diagnostic

value of novel serum protein markers in detecting pan-
creatic cancer via enzyme-linked immunosorbent assay
(ELISA), and combining these with CA19-9 could effec-
tively improve the diagnostic accuracy for differentiating
pancreatic cancer fromhealthy controls, benign tumors, or
chronic pancreatitis (Table 1). As a special type of chronic
pancreatitis, autoimmune pancreatitis (AIP) is usually
misdiagnosed as pancreatic cancer. Immunoglobulin G4
(IgG4) is a commonly used diagnostic indicator of AIP
but has a low sensitivity of only 72% (95% CI = 0.68–0.76)
for differentiating between AIP and pancreatic cancer
[72]. In a study aiming to identify a serological pattern to
differentiate AIP from PDAC using routinely performed
tests, four serum biomarkers including CA19-9, globulin,
eosinophil, and hemoglobin were suggested to act as inde-
pendent markers, and combinations thereof identified
AIP patients with 92% sensitivity and 79% specificity [73].
Moreover, researchers found that the levels of hybrid κ/λ
antibodies in AIP patients were significantly higher than
in pancreatic cancer patients, and the combined detection
of serum hybrid κ/λ antibodies and IgG4 increased the
sensitivity compared to IgG4 alone [74]. In the past, we
identified several immunogenic membrane antigens
(voltage-dependent anion channel-1 [VDAC-1], voltage-
dependent anion channel-2 [VDAC-2], coiled-coil helix
coiled-coil helix domain-containing protein 3 [CHCHD3],
stomatin-like protein 2 [SLP-2], and translocase of the
mitochondrial outer membrane [TOM]) that bound serum
IgG from pancreatic cancer patients; the levels of these
specific antibodies in patients’ peripheral blood were high
[75]. Therefore, the detection of specific autoantibodies
in the plasma may also contribute to the early diagnosis
of pancreatic cancer and needs to be validated by further
clinical studies.
More recently, glycoproteomics has emerged as a

subfield of proteomics, and tumor-specific variations in
protein glycosylationmay also contribute to the early diag-
nosis of pancreatic cancer. Aronsson et al. [76] identified
ten glycoprotein biomarker candidates through mapping
the glycosylation profile of 1000 proteins, and subse-
quently verified these in serum samples from patients
with pancreatic cancer. The panel including CA19-9,
IL.17E, B7.1, and DR6 showed an AUC of 0.988 at 100%
sensitivity and 90% specificity for discriminating stage
I pancreatic cancer from healthy controls, which was
more effective than CA19-9. In addition to compositional
glycan profiling, structure-specific glycan profiling is con-
sidered potentially able to provide biomarkers with high
specificity. Through the separation, identification, and
relative quantification of isomeric glycans, Liu et al. [77]
discovered 25 specific-isomeric biomarkers which were
significantly altered in pancreatic cancer. A combination
of all the potential biomarkers showed a higher AUC
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F IGURE 1 Liquid biopsy in early screening and diagnosis of pancreatic cancer. Compared to traditional tissue biopsy, liquid biopsy has
more advantages (blue panel). Liquid biopsy involving circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNAs
(miRNAs) and exosomes represents a non-invasive and real-time manner to evaluate tumor heterogeneity. Beyond blood, other fluids
including saliva, pancreatic juice, urine and stool also play important roles in early screening and diagnosis of pancreatic cancer (orange
panel)

of 0.976 with 93.5% sensitivity and 90.6% specificity for
discriminating between patients with pancreatic cancer
and healthy controls. These results suggest that the devel-
opment of innovative proteomic technology will make this
technique more conducive for discovering more potential
tumor-specific biomarkers. With the rapid increase in
the number of novel different types of tumor-specific
serum biomarkers, it is expected that a mature and simple
algorithm will become available, combining different
data. This will ensure that diagnostically efficient markers
will enter clinical practice as soon as possible.

4 LIQUID BIOPSY

Over the last few decades, the use of liquid biopsy for
analyzing tumor biomarkers circulating in fluids such as
the blood, urine, and saliva, has received a great deal of

attention. Unlike traditional tissue biopsy, liquid biopsy
allows the evaluation of comprehensive cancer profiles
in a non-invasive and real-time manner (Figure 1). Huge
progress has beenmade in the development of devices that
may contribute to the clinical application of liquid biopsy
[20]. Accumulating evidence acquired using liquid biopsy
involvingCTCs, ctDNA,miRNAs, and exosomes have been
robustly exploited by the cancer research community.

4.1 CTCs and ctDNA

CTCs are defined as cancer cells from solid tumors
found in the peripheral blood, formed by tumor-induced
angiogenesis, and circulating through normal vessels
and capillaries [78]. Therefore, the presence of CTCs
usually represents the invasion and metastasis of the
primary tumor. CTCs have important prognostic value for
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pancreatic cancer patients. Those with CTCs had worse
overall survival than patients without them (HR = 1.558,
95% CI = 1.238–1.961) [79]. However, the diagnostic value
of CTCs is doubted by many scientists due to their limited
and variable sensitivity (varying from 25% to 100%) related
to the different stages of pancreatic cancer at the time of
diagnosis [79, 80]. Utilizing the microfluidic NanoVelcro
CTC chip, Ankeny et al. [81] evaluated samples from
patients with PDAC for the presence and number of CTCs.
The presence of CTCs was confirmed as a diagnostic cri-
terion for PDAC with 75% sensitivity and 96.4% specificity
(AUC = 0.867, 95% CI = 0.798-0.935, P < 0.001). Further-
more, CTCs appeared to be an effective biomarker for
discriminating between local/regional and metastatic dis-
ease (AUC = 0.885, 95% CI = 0.80–0.969, P < 0.001) when
the cut-off value was ≥3 CTCs in 4 mL venous blood [81].
In addition to identifying CTCs by capturing them based
on the expression of the epithelial cell marker epithelial
cell adhesion molecule (EpCAM), emerging studies also
explored other cell surface markers such as the folate
receptor and the mesenchymal cell marker vimentin.
These have shown encouraging diagnostic efficiency in
distinguishing PDAC from benign pancreatic diseases
and healthy individuals. Combined folate receptor+ or
vimentin+ CTCs and CA19-9 further improved diagnostic
potency, with an AUC of 0.944 and 0.968, respectively [82,
83]. Liquid biopsy combining CTCs and other biomark-
ers is expected to provide a reliable and non-invasive
diagnostic method with adequate sensitivity. Notably, a
combination of CTCs and glypican-1 (GPC-1)-positive
exosome detection displayed the highest sensitivity of
100% for the diagnosis of resectable pancreatic cancer
[84]. However, CTC detection is subject to technical vari-
ability in the pre-analytical and analytical steps [20]. The
detection of CTCs proceeds first by their enrichment by
density gradient centrifugation or immunological capture
techniques, and immunochemical detection by antibodies
against epithelial-specific proteins or PCR-based detection
of tumor-specific mRNAs or epithelial-specific mRNAs
[79]. Due to the rarity of CTCs in the blood, new tech-
niques and devices are being developed and produced to
improve the diagnostic accuracy of CTCs for cancer. Thus,
improved technical and methodological approaches must
be clarified to demonstrate the routine applicability of this
methodology.
The term cell-free DNA (cfDNA) refers to fragments of

DNA found in the noncellular component of the blood.
They are approximately 150–200 base pairs in length
with a half-life of an hour or less [85]. cfDNA released
from apoptotic or necrotic tumor cells is often referred
to as ctDNA, which is the main direction of tumor liquid
biopsy work currently. Detection of cancer driver genes,
such as Kras mutations in the circulation is often used to

detect pancreatic cancer, whereby every mutation found
in the plasma could be also identified in the primary
tumor [86, 87]. Cohen et al. [86] found that Krasmutation
mainly at codon 12 was detected only in 30% of patients
and was more frequent in stage II than stage I patients.
However, the combination of KRAS mutation and four
protein markers (CA19-9, CEA, hepatocyte growth factor,
and osteopontin) increased the sensitivity to 64% with a
specificity of 99.5%. In addition, by using the single-strand
library preparation and hybrid-capture-based cfDNA
sequencing approach that could rescue short or damaged
cfDNA fragments, Liu et al. [87] found that detection of
Kras mutations served as an efficient marker to discrim-
inate PDAC from healthy controls (AUC = 0.863, 95%
CI = 0.830–0.898), with a higher detection rate than when
using PCR- or next-generation sequencing (NGS)-based
methods. Furthermore, the combination of theKras, TP53,
CDKN2A, and SMAD4 genes yielded higher diagnostic
accuracy for PDAC (AUC = 0.921, 95% CI = 0.890–0.956)
with 80% sensitivity and 100% specificity. Moreover, it was
found that the small mutated fragments are prevalent in
pre-cancerous IPMN and early-stage patients (stage I/II)
with a dominant peak of 75–85 bp in length of KRASG12D
compared to an advanced stage with a dominant peak
of 150 bp. This contributed to proposing a detection
method for early pancreatic cancer based on fragment
size. However, the level of ctDNA varies greatly in overall
cfDNA from less than 0.1% to > 90% in different patients
with cancer [88]. Besides, ctDNA has a >75% detection
rate in patients with advanced pancreatic cancer, but a low
detection rate of only 48% in localized pancreatic cancer
[89]. In addition, it is difficult to identify the source of
ctDNA and to predict the potential cancer type.
Notably, epigenetic reprogramming such as DNA

methylation occurs at the earliest stages of tumorigenesis.
This shows different patterns in different tissue and plays
an important role in cancer development and progression
[90]. Thus, the detection of DNA methylation of ctDNA
is considered a promising breakthrough in the early
screening of tumors. Using a newly developed highly
reliable technique called methylation on beads (MOB),
Eissa et al. [91] found that methylation of A disintegrin
and metalloproteinase with thrombospondin motifs 1
(ADAMTS1), zinc finger protein basonuclin-1 (BNC1), and
the combination of both had a sensitivity of 87.2%, 64.1%,
and 97.4%, respectively, for pancreatic cancer diagnosis.
For stage I/II pancreatic cancer, the two-gene panel exhib-
ited 94.8% sensitivity and 91.6% specificity. Furthermore,
although the combination of the two genes and CA19-9
did not result in increased sensitivity, it exhibited a higher
AUC of 0.95 (95% CI = 0.9–0.98) than CA19-9 alone
(57.1%). In addition, nucleosomes can be released into the
circulation; hence, intact nucleosome levels in serum or
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plasma might serve as potential diagnostic biomarkers
for pancreatic cancer. Bauden et al. [92] identified a panel
of five circulating nucleosome biomarkers comprising
5MC, H2AZ, H2A1.1, H3K4me2, and H2AK119Ub by
using Nucleosomic, a novel ELISA method. This panel
gave an AUC of 0.95 for the discrimination of pancreatic
cancer from healthy controls, thus better than CA19-9
alone. However, combining CA19-9 with a panel of these
four nucleosome biomarkers (5MC, H2AZ, H2A1.1, and
H3K4me2) showed the highest AUC of 0.98 with 92%
sensitivity and 90% specificity.

4.2 Circulating miRNAs

miRNAs are small non-coding RNA molecules of about
18-22 nucleotides that regulate gene expression post-
transcriptionally and play important roles in oncogenesis
and tumor metastasis [93]. The difference in expression of
miRNAs between pancreatic cancer and normal tissues or
between different stages of pancreatic cancer is clearly a
prerequisite for diagnostic biomarkers of pancreatic can-
cer. It was reported that the overexpression of miR-103
and miR-107 and low expression of miR-155 could distin-
guish pancreatic cancer from normal controls [94]. Com-
pared to non-neoplastic ductal epithelium, miR-155 was
significantly overexpressed in both PanIN-2 (2.6-fold) and
PanIN-3 (7.4-fold) [95], and miR-196b was only expressed
in PanIN-3 tissue [96]. However, as mentioned above, tis-
sue biopsy is an invasivemethodology and has low positive
detection rate for smaller lesions, leading to limited appli-
cation as a routine examination.
Recently, increasing numbers of studies have reported

the potential value of blood miRNAs as biomarkers for
pancreatic cancer diagnosis. miRNAs are very stable
in blood and can be detected by various assays such as
reverse transcription-quantitative PCR (RT-qPCR), in situ
hybridization, next-generation sequencing, and miRNA
microarray [80, 97]. By using Illumina SBS technology
and hydrolysis probe-based RT-qPCR assays, a case-
control study from China identified a profile of miRNAs
(miR-20a, miR-21, miR-24, miR25, miR99a, miR185, and
miR191) which were significantly differentially expressed
in pancreatic cancer patients compared with controls.
The application of this 7 miRNA-based biomarker panel
in pancreatic cancer diagnosis resulted in an accuracy of
83.6% that was higher than CA19-9 (56.4%) [97]. Another
study from Chinese researchers identified six significantly
upregulated miRNAs in the serum of pancreatic cancer
compared to normal controls, namely let-7b-5p, miR-192-
5p, miR-19a-3p, miR-19b-3p, miR-223-3p, and miR-25-3p.
This six-miRNA panel yielded a high AUC of 0.978 (95%
CI = 0.966-0.998) with 93.3% sensitivity and 96.0% speci-

ficity in a validation cohort [98]. Through the detection of
whole blood miRNAs profiles, a study published in JAMA
reported 38 miRNAs that were significantly dysregulated
in patients with pancreatic cancer compared with controls
[99]. These researchers constructed 2 diagnostic panels,
index I (miR-145, miR-150, miR-223, and miR-636) with
an AUC of 0.86 (95% CI = 0.82–0.9), 85% sensitivity, 64%
specificity, and index II (miR-26b, miR-34a, miR-122,
miR-126, miR-145, miR-150, miR-223, miR-505, miR-636,
and miR-885.5p) with an AUC of 0.93 (95% CI = 0.90–
0.96), 85% sensitivity, 85% specificity. Furthermore, the
combination of index I and CA19-9 generated a higher
AUC of 0.94 (95% CI = 0.90–0.98, P = 0.1) compared with
CA19-9 alone with an AUC of 0.90 (95% CI = 0.87–0.94) in
the validation cohort [99].
Additionally, as reported recently, many other miRNAs

possess diagnostic value for pancreatic cancer, includ-
ing miR-16, miR-196a, miR-1290, miR-1246, miR-223,
miR-5100, miR-8073, miR-642b-3p, miR-663a, miR-21-5p,
miR-133a, and others. Combination of certain miRNA
with CA19-9 exhibit higher efficiency for pancreatic can-
cer or early-stage pancreatic cancer diagnosis (Table 2).
Moreover, combining different types of biomarkers in a
panel, such as miR-21/miR-25, CA19-9, and MIC-1, could
improve diagnosis, compared with using a single marker
[100]. Based on these studies, miRNAs could become
one of the most widespread and promising non-invasive
biomarkers, and more studies in larger cohorts to validate
the definitive miRNA panels are required for routine
clinical applications in the future.

4.3 Circulating exosomes

Exosomes are lipid bilayer-enclosed extracellular vehicles
(EVs) approximately 30–150 nm in size, consist of a lipid
bilayer interspersed with various membrane proteins, and
which contain a variety of nucleic acids, proteins, and
lipids [101]. Exosomes are secreted by all cells including
tumor cells and circulate in the blood. Recently, increas-
ing numbers of studies have highlighted the potential diag-
nostic role of EVs or circulating exosomes (crExos) for
the early detection of pancreatic cancer. By using multi-
ple plasmonic assays to analyze circulating tumor-derived
EVs, Yang et al. [102] identified an EV-based protein
marker profile including EGFR, EpCAM, MUC-1, GPC-
1, and WNT2, which showed an accuracy of 84% with
86% sensitivity and 81% specificity for the detection of
PDAC. Among these biomarkers, GPC-1, a cell surface pro-
teoglycan, had the best diagnostic performance, indicat-
ing its potential value for pancreatic cancer detection. In
another study, using mass spectrometry analyses, Melo
et al. [103] determined thatGPC-1was specifically enriched
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TABLE 2 The diagnostic value of other miRNAs for pancreatic cancer diagnosis

miRNA

Pancreatic
cancer group
vs. control
group AUC (95% CI)

SEN
(%)

SPE
(%)

AUC
(+ CA19-9)
(95% CI)

SEN
(+ CA19-9)
(%)

SPE
(+ CA19-9)
(%)

miR-16+miR-196a [138] PC vs. HC 0.90 (0.85–0.94) 87.0 73.5 0.98 (0.96–1.00) 92.0 95.6
miR-1290 [139] PC vs. HC 0.96 (0.91–1.00) 88.0 84.0 0.86 (NA)* 71.0* 90.0*

miR-1290 [140] PC vs. HC 0.93 (0.89–0.97) 75.0 97.5 0.99 (0.97–1.00) 94.2 97.5
miR-1246 [140] PC vs. HC 0.85 (0.79–0.91) 62.5 92.5 0.96 (0.93–0.99) 89.2 97.5
miR-1290+miR-1246 [140] PC vs. HC ND ND ND 0.99 (0.98–1.00) 96.7 97.5
miR-223 [141] PC vs. HC 0.83 (NA) 62.0 94.1 ND ND ND
miR-5100+miR-8073+
miR-642b-3p+miR-663a [142]

PC vs. HC 0.98 (NA) 98.6 87.5 ND ND ND

miR-21-5p [143] PC vs. HC 0.78 (0.66-0.90) 77.0 80.0 ND ND ND
miR-133a [144] PC vs. HC 0.89 (NA) 87.2 90.6 ND ND ND

*The AUC, sensitivity and specificity of CA19-9 alone in the detection of pancreatic cancer.
Abbreviations: PC: Pancreatic cancer; HC: Healthy controls; ND: not described; NA: not applicable.

on cancer-cell-derived exosomes. They found that crExos
from all patients with pancreatic cancer expressed signif-
icantly higher levels of GPC-1 than healthy controls with
100% sensitivity and 100% specificity. Furthermore,mutant
Kras transcripts were detected exclusively in the GPC-1+
crExos, supporting the cancer cell origin of them [103].
To overcome the difficulty of capture and analysis of exo-
somes with their proteins, Lewis et al. [104] adopted a
method integrating capture and analysis of crExos onto an
AC electrokinetic microarray chip without using capture
antibodies. They reported that GPC-1 and CD63 possessed
effective diagnostic attributes, with 99% sensitivity and 82%
specificity. In addition, it was found that combining CTC
andGPC-1+ exosome detection resulted in 100% sensitivity
and 80% specificity, indicating the potential value of liquid
biopsy combining different biomarkers [84].
Although a number of studies reported the diagnos-

tic value of crExos in pancreatic cancer, the isolation
of cancer-derived exosomes and separating them from
non-cancer derived exosomes remain difficult due to the
lack of specific markers or identification methods. Melo
et al. [103] found that the average size of PDAC crExos
was significantly smaller than all other crExos, and that
mutant Kras transcripts could be only detected in the
GPC+ crExos. Thus, it might be promising to combine
the sizing of exosomes and GPC-1 detection to recognize
the cancer-derived exosomes and subsequently proceed
with the detection of other biomarkers.

4.4 Other liquid biopsy methods

Pancreatic juice contains DNA and RNA shed from cells
lining the pancreatic ducts. Genetic analysis of pancreatic

juice of the patients with pancreatic cancer was able to
detect mutant DNA, such as Kras, TP53, and SMAD4, for
the discrimination of pancreatic cancer from the healthy
controls or pre-cancerous lesions [105, 106]. Additionally,
promoters of adenomatous polyposis coli (APC) and his-
tamine receptor H2 (HRH2) genes were found to be fre-
quently methylated in pancreatic cancer juice, serving as
potential diagnostic biomarkers [107]. Through the detec-
tion of exosome-derived miRNAs from pancreatic juice,
Japanese researchers found thatmiR-21 andmiR-155 levels
could discriminate PDAC patients from chronic pancreati-
tis patients with an AUC of 0.90 and 0.89, respectively, and
that a combination with cytology displayed even higher
accuracy [108]. Moreover, Krasmutation was found in the
stool of 88% of pancreatic cancer patients and 19.6% of nor-
mal individuals [109]. The detection of miR-181b and miR-
210 in the stool could distinguish patients with pancreatic
cancer from normal individuals [110]. However, peripheral
blood for pancreatic cancer detection is undoubtedly more
convenient than pancreatic juice and fecal samples.
As an important biological fluid in the human oral cav-

ity, saliva is convenient to collect without any invasive
manipulations. Investigators have identifiedmany salivary
mRNA biomarkers such as Kras, ACRV1, and MBD3L2 to
distinguish pancreatic cancer patients from healthy con-
trols and achieved a higher accuracy by combining these
biomarkers even in discriminating patientswith pancreati-
tis [111, 112]. Additionally, salivary metabolites and micro-
biota have also been studied for their diagnostic value in
pancreatic cancer patients and serve as potential biomark-
ers [113, 114]. In addition, Radon et al. [115] identified a
panel of three proteins in urine samples (LYVE-1, REG1A,
and TFF1) for pancreatic cancer diagnosis through an in-
depth proteomics analysis using mass spectrometry. This
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panel exhibited an AUC of 0.90 (95% CI= 0.84–0.96) when
comparing PDAC stage I-II to healthy urine and showed a
higher AUC of 0.97 (95% CI = 0.94–0.99) when matching
plasmaCA19-9 levels. It was reported that urinarymiRNAs
(miR-143, miR-223, and miR-30e) were significantly over-
expressed in patients with PDAC stage I comparing with
age-matched healthy individuals, and possessed potential
diagnostic value in distinguishing patients with early pan-
creatic cancer from healthy individuals or patients with
chronic pancreatitis [116].
There have been many studies that focused on liquid

biopsies aiming to improve the early diagnosis of pancre-
atic cancer.However, the challenges emergewhen it comes
to their actual clinical application. This technique is not yet
a standard tool. AsCatherineAlix-Panabières, a cancer cell
biologist at the University Medical Centre of Montpellier,
said, more interventional clinical trials are still needed, as
well as the development of an algorithm to integrate mul-
tiple appropriate liquid biomarkers, where policymakers
and industry must step in as well [20].

5 OTHER POTENTIAL DIAGNOSTIC
STRATEGIES

Imaging-based investigations such as CT, MRI, and EUS
are widely used methods to diagnose patients with pan-
creatic cancer currently. However, it should be pointed
out that the attention and experience of the operators are
crucial. Artificial intelligence techniques and computer-
aided diagnosis systems are emerging and should pro-
vide prospective benefits. For instance, Ozkan et al. [117]
developed a high-performance computer-aided diagnosis
system with imaging processing and pattern recognition
by using EUS imaging of patients with pancreatic cancer
and non-cancer patients. They identified the twenty most
appropriate features which exhibited different sensitivity
in three age groups (<40, 40–60, and >60 years old) of
87.5%, 85.7%, and 93.3%, respectively.
Tumors can secrete specific volatile organic compounds

(VOCs) which can be detected in the odors that emanate
from urine, breath, and feces, and can be sensed by
canines [118, 119]. Based on this, researchers have tried
to detect prostate cancer by exploiting the olfactory
system of highly trained dogs [120], but few studies with
dogs on pancreatic cancer have been published. Field
asymmetric waveform ion mobility spectrometry (IMS)
is a sensitive technique used for the detection of VOCs.
Nissinen et al. [121] demonstrated that field asymmetric
waveform IMS discriminated between urine samples
from patients with pancreatic cancer or pre-malignant
pancreatic lesion and healthy individuals with 85% sen-
sitivity and 75% specificity, but insufficient accuracy. In

addition, Covington’s group also detected urinary VOCs
from participants by using IMS, and developed an algo-
rithm distinguishing PDAC samples from healthy controls
with an AUC of 0.92, 91% sensitivity, and 83% specificity
[122]. Recently, the same group reported that both gas
chromatography-ion mobility spectrometry (GC-IMS) and
GC time-of-flight mass spectrometry (GC-TOF-MS) were
able to differentiate PDAC from healthy controls with
high confidence and an AUC in excess of 0.85. Chemical
identification further suggested that 2,6-dimethyl-octane,
nonanal, 4-ethyl-1,2-dimethyl-benzene, and 2-pentanone
play important roles in discriminating these groups [123].
Moreover, researchers also analyzed the VOCs in alveolar
air from the end-tidal breath of subjects suffering from
pancreatic cancer. By using ion-molecule reaction MS
technology, Princivalle et al. [124] identified ten VOCs
which significantly distinguished pancreatic cancer from
controls with a high AUC of 0.99, high sensitivity of 100%,
and specificity of 84%. Thus, it is a promising strategy to
detect pancreatic cancer through the VOCs in urine sam-
ples or alveolar air, with the advantages of non-invasive
operation and easy collection of biological samples.
Recently, increasing studies are focusing on new nano-

materials. The biocompatibility of nanomaterials such as
fluorescent nanoparticles allows their use for labeling and
detecting biological molecules, thereby serving as poten-
tial early diagnostic tools for cancer [125]. For exam-
ple, researchers discovered ultra pH-sensitive fluorescent
nanoprobes which were silent in the circulation but could
be activated in response to the low extracellular pH in
tumors, showing broad tumor imaging specificity and effi-
cacy in tumor models including pancreatic cancer [126].
These results indicate that the integration ofmedicinewith
other disciplines, such as computer science and chemistry,
is conducive for improving the detection of early pancre-
atic cancer.

6 CONCLUSIONS AND FUTURE
PERSPECTIVES

As a highly malignant tumor with a poor prognosis, pan-
creatic cancer attracts constant attention from scientists
worldwide who have undertaken many studies to improve
its diagnostic accuracy and early detection rate. Enhanc-
ing science education and expanding the early screening
population is crucial to significantly improve the progno-
sis of patients with pancreatic cancer. More importantly,
a multidisciplinary collaboration involving both the diag-
nostic departments (laboratory medicine, radiology, and
ultrasound) and therapeutic departments (surgery, gas-
troenterology, and oncology) is indispensable through-
out the entire process of pancreatic cancer diagnosis and
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treatment as suggested in various guidelines. Thus, it is
necessary to deepen the interdisciplinary integration and
strengthen the cooperation among different disciplines to
accelerate the scientific research production and clinical
transformation.
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