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Immune response is modulated by different substances that are present in the environment. Nevertheless, some of these may cause
an immunotoxic effect. In this paper, the effect of organophosphorus pesticides (frequent substances spilled in aquatic ecosystems)
on the immune system of fishes and in immunotoxicology is reviewed. Furthermore, some cellular andmolecular mechanisms that
might be involved in immunoregulation mechanisms of organophosphorus pesticides are discussed.

1. Introduction

Organophosphorus pesticides (OPs) are a group of insecti-
cides derived from the phosphoric or phosphorothioic acid;
its use has increased in the recent years for the improvement
of agriculture production, in the industry and prevention
of human health through control and/or eradication of
unwanted insects, plants, animals, and disease vectors [1].
According to information published by theNational Pesticide
Information Center (NPIC), the most used OPs are chlor-
pyrifos, malathion, acephate, naled, dicrotophos, phosmet,
phorate, diazinon, dimethoate, and azinphos-methyl. At a
worldwide level, an average of 37 million pounds of these
active substances is sold [2].

Even thoughOPs have limited persistence in the environ-
ment, they are highly toxic for humans and are responsible for
most of accidental intoxications [3]. TheWorld Health Orga-
nization (WHO) estimated that, every year, almost 3 million
people suffer acute intoxication due to OPs [4]; hence its use
is considered a worldwide public health problem [5]. OPs
cause two main toxic effects. The first one is acute toxicity,
initiated by the inhibition of the acetylcholinesterase enzyme
(AChE) with the subsequent accumulation of acetylcholine
(ACh) in the nervous termination, provoking an overstim-
ulation of muscarinic acetylcholine (mAChR) and nicotinic
acetylcholine (nAChR) receptors. The inhibition mechanism

of AChE is conducted through phosphorylation of the
hydroxyl group in the serine of the active site of the enzyme;
once phosphorylated it is extremely stable, which avoids its
physiological action on the ACh that consists in the degrada-
tion of this neurotransmitter to allow reuptake of acetate and
choline in the nervous terminal [3, 6, 7]. The second effect
is chronic and is denominated organophosphate-induced
delayed polyneuropathy (OPIDP), which is characterized by
ataxia and paralysis, signs that appear 2-3 weeks after expo-
sure to OPs [1, 8].

1.1. Effects of OPs in Aquatic Ecosystems and Fishes. After its
application on agricultural crops, residual OPs enter water
bodies as result of spray drift, soil leaching, and running
off soils dedicated to agriculture, provoking adverse effects
on the target species but also on a wide range of nontarget
organisms, especially those that inhabit aquatic ecosystems
such as invertebrates, birds, and fishes [9, 10].

Among the nontarget species exposed to OPs, it is
important to mention fishes, since these organisms are tran-
scendental due to their status as top consumer species in the
food chain, besides of playing an important role in the main-
tenance of the balance of aquatic ecosystems. From an evolu-
tionary point of view, fishes are important organisms because
they appeared over 560 million years ago; they are a group of
vertebrates phylogenetically antique; there are over 25,000
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species; therefore their great diversity stands out in compar-
ison to other vertebrates [11, 12]. Among other species, some
have stood out for their ecological or economic importance,
while others have been used as study models in diverse areas
of scientific research [13].

2. Immune System of Fishes

Fishes are the first group of organisms that present an innate
and adaptive immunity system; therefore the study of these
organisms is of great relevance due to the information it gives
about evolution of the immune system in vertebrates [14].

The innate immune system is of paramount importance
in fishes [15–17]; among the components of humoral innate
immunity that are mainly characterized in fishes are antibac-
terial peptides, lysozymes, lectins, acute-phase proteins, and
molecules of the complement system, while innate immunity
cells mostly characterized are macrophages, neutrophils, and
eosinophils [18–20].

On the other hand, adaptive immunity mechanisms in
fishes play a vital role in the protection against recurrent
infections, response that is mediated by T- and B-lympho-
cytes and antibodies. Fishes are the first vertebrates where
clonal selection and genetic rearrangement in receptors of
lymphocytes are present. Likewise, leucocytes with T cell
activity have been reported, similar to the cooperative and
cytotoxic T cells of mammals (CD4+-like, CD8+-like). Apart
from that, based on the profile of cytokines, there have been
reports of T cells subpopulations similar to the ones reported
in mammals [21]. In contrast, B cells in fishes have been char-
acterized through the expression of antigen receptor (BCR).
In fishes, IgM is the main soluble antibody, which is tetra-
meric; on the other hand, IgD, just like in mammals, is
expressed in the surface of B cells. In addition, other isotypes
have been identified, such as lgT and lgZ, which are mainly
found inmucosa, such as in intestine, in skin, and in gills [21–
24].

3. OPs Immunotoxicity in Fishes

In recent years, an immunotoxic effect of OPs has been
reported in diverse organisms, including fishes. Immune
system is the first defense line against pathogenic organisms;
however, it is a very sensitive system to be altered by stressing
factors present in the environment (biotic and abiotic) [1, 10];
thus it is vulnerable to any xenobiotic such as OPs, which can
cause structural or functional alterations in humoral or cell
mechanisms (nonspecific or adaptative) of the immune
response (Table 1), which entails, among others, an increase
in the susceptibility to infections [6].

3.1. OPs and Humoral Response. In fishes, molecules that are
responsible of the innate and adaptative humoral response
can be altered by OPs, like chlorpyrifos, diazinon, and
phosalone, among others [10, 25–30].

Thus, lysozyme is an important molecule defense of the
innate immune system of fishes that is frequently altered by

OPs. A study showed that the lysozyme activity increased sig-
nificantly in liver and spleen of beluga (Huso huso) exposed
acutely to diazinon (1.5mg/L). However, at subacute and
subchronic exposure of this pesticide, lysozyme activity
decreased in plasma, liver, kidney, and spleen [31]. On the
other hand, it has been reported that the acute exposure to
diazinon (2.0 and 4.0mg/L) in grass carp (Ctenopharyngodon
idella) induced a significant increase in the lysozyme activity
present in kidney and spleen of this fish. Nevertheless, in
plasma of these organisms, enzyme activity diminished sig-
nificantly [25]. Recent studies have reported a decrease in the
lysozyme activity in plasma of rainbow trout (Oncorhynchus
mykiss) and common carp (Cyprinus carpio L.) exposed to
diazinon (0.1 and 0.2mg/L) and phosalone (0.15, 0.30, and
0.60mg/L), respectively [28, 30]. Also, it has been reported
that chlorpyrifos provoke a diminishment in the enzyme
activity present in plasma and spleen of common carp (C.
carpio) exposed acutely to 75𝜇g/L of pesticide [10]. Recently,
it was reported that exposure of Nile tilapia (Oreochromis
niloticus) to chlorpyrifos (0.102 and 0.255mg/L) provoked an
increase in the activity of this enzyme in the plasma of these
organisms; however, at a lower concentration (0.051mg/mL)
the pesticide did not cause any effect on the activity of this
enzyme [29].

Another important molecule of the innate immune sys-
tem of fishes is the protein C3 of the complement, which is
also altered by the exposition to OPs. A deregulation at con-
centration and mRNA expression of this molecule has been
reported in anterior kidney, spleen, and plasma of common
carp (C. carpio L.) exposed acutely to chlorpyrifos [10].

Reactive C protein (RCP) is another molecule of the
innate immune system of fishes affected by exposure to this
type of pesticides. In this context, it has been reported that
acute exposure to metrifonate (0.4 ppm) in rainbow trout (O.
mykiss) provoked a significant increase of this protein in the
plasma of organisms exposed during 3 days to the pesticide;
however, at 10 and 18 days after exposure, protein activity
diminished significantly [32].

Other proteins that are also altered by the exposure toOPs
are the globulins. Some studies have reported that, in plasma
of rainbow trout (O. mykiss), concentration of these proteins
diminishes significantly when organisms are exposed acutely
and subacutely to diazinon (0.1 and 0.2mg/L) [27, 28].
Likewise, a diminishment in the concentration of globulins
in plasma of common carp (C. carpio L.) exposed acutely to
phosalone has been shown [30]. On the other hand, it has
been reported that immunoglobulins are also affected byOPs;
in this sense, there are studies that show that these pesticides
alter the concentration of IgM, which is the most important
gamma-globulin in fishes [33, 34]. In this context, it has been
published that chlorpyrifos (0.051mg/mL) diminish concen-
tration of IgM in plasma ofNile tilapia (O. niloticus) [29]. Fur-
thermore, it has also been reported that the exposure to chlor-
pyrifos (75𝜇g/L) during 24 h provoked a significant decrease
of IgM in plasma of common carp, apart from a diminish-
ment of IgM present in spleen of fishes exposed acutely to
15 and 75 𝜇g/L of the pesticide [10]. In addition, a significant
increase has been reported in the concentration of IgM
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in plasma ofNile tilapia exposed acutely to diazinon (1.96mg/
L). Nevertheless, exposure to lower concentrations of this
pesticide (0.78 and 0.39mg/L) did not alter concentration of
IgM in plasma of these organisms [26, 35].

Regarding the effect of OPs on the cytokines, it has been
reported that the exposure to chlorpyrifos during 24 h (1.16,
11.6 and 116 𝜇g/L) induces an increase in the expression of
mRNAof IL-1𝛽, IL-1R, and IFN-𝛾 in spleen of carp (C. carpio)
[36].

3.2. OPs and Cellular Immune Response. The innate and
adaptative cellular response of fishes can be deregulated by
the exposure to diverse OPs. Studies show that exposure
of rainbow trout and common carp to diazinon provokes a
diminishment in the white blood cell (WBC) in these species.
The differential account of these cells showed a diminishment
in the percentage of lymphocytes, monocytes, and basophils;
however, the percentage of neutrophils and eosinophils
increased significantly after exposure to the pesticide [28, 37].
A decrease in WBC in other species such as Nile tilapia
(O. niloticus) exposed to malathion (0.23 and 0.46mg/L)
and carp (C. carpio) exposed to phosalone (0.15, 0.30, and
0.60mg/L) has also been reported. In common carp, lym-
phocytes diminished significantly at the three evaluated
concentrations, even though the percentage of monocytes
and neutrophils increased [1, 30]. In contrast to the results in
the before mentioned studies, Ural [38] reported an increase
in the WBC of common carp exposed to chlorpyrifos (0.04
and 0.08mg/L). In this sense, Hedayati and Tarkhani [39]
reported that, in iridescent shark (Pangasius hypophthalmus)
exposed to diazinon (0.5 and 1 ppm), a significant increase
in the total number of WBC, particularly in neutrophils, was
shown, while the number of lymphocytes did not show any
change due to the exposure to this pesticide. However, no
eosinophils and monocytes were detected in the blood
samples of the analyzed fishes [38, 39].

On the other hand, it was also reported that the OPs
not only induce alteration in the number of cells, but also
in the morphology and functionality of them. Hence, it was
reported that diazinon (15, 30, 45, 60, and 75𝜇g/L) provoked
changes in the size of macrophages of kidney and spleen
of the fish Lepomis macrochirus [40]. In addition, it has
been reported that the phagocytic activity of cells is also
altered by the exposure to OPs. Girón-Pérez et al. showed
that the phagocytic index of mononuclear cells of Nile tilapia
decreased by exposure in vivo to diazinon; however, an
increase in the respiratory burst of these cells was observed
[26, 35]. Regarding the effect of OPs on the proliferative
capacity of lymphocytes, it has been reported that chlorpyri-
fos at concentrations 0.051, 0.102, and 0.255mg/L during 96 h
did not affect the proliferative capacity of lymphocytes inNile
tilapia [29]. However, the lymphoproliferation of splenocytes
of this fish diminishes significantly after exposure in vivo to
diazinon (7.83, 3.91, and 1.95mg/L) during 96 h [35]. Never-
theless, the exposure in vivo of lymphocytes to diazinon and
diazoxon (main metabolite of diazinon) did not affect the
proliferative capacity of these cells [41].

4. Mechanisms of Immunotoxicity of OPs

The effects mentioned above show that OPs alter the function
of certain elements of the immune system, even though the
mechanisms of immunotoxicity of the OPs are not clear.
Such mechanism of OPs is not direct but it works through
indirect mechanisms, topics that will be discussed in this
section, based on evidence shown in different animal models
(Figure 1).

4.1. OPs and Cholinergic Regulation. As previously men-
tioned, OPs are substances that have as target molecule the
enzyme AChE, blocking its activity through the irreversible
bound to the active site, which provokes an increase in the
levels of the neurotransmitter ACh in the nervous system. In
this context, inmammals, the influence of the nervous system
on the regulation of the immune system has been demon-
strated years ago [42]; thus the increase in the concentration
of neurotransmitters, in this case neuronal ACh, can dereg-
ulate the immune function. Apart from that, there is clear
evidence that lymphocytes of mammals express mAChR and
nAChR in theirmembrane and possess all necessary enzymes
to produce ACh and autodegrade it through the AChE
enzyme; hence they possess a self-cholinergic system,
denominated extraneuronal or nonneuronal cholinergic sys-
tem [43, 44].

In this way, the existence of an extraneuronal cholinergic
system in lymphocytes makes them susceptible to pertur-
bation by OPs. It has been suggested that OPs can modu-
late lymphocytes through cholinergic receptors, evoking an
immediate intracellular signalization of diverse molecules,
among them c-Fos, modulating therefore the levels of sec-
ond messengers. Activation of cholinergic receptors can act
upstream in the transduction of signals, causing the inter-
ruption of cellular homeostasis, decaying into apoptosis [45].
Data obtained in our laboratory have proven that exposure
in vitro to diazinon and diazoxon does not alter the lympho-
proliferative capacity in fishes; nevertheless these substances
induce an increase in the concentration of ACh, which
significantly diminishes lymphoproliferation [41].

4.2. OPs and Cytotoxic Activity. Besides inhibiting the
enzyme AChE, OPs are capable of inhibiting serine hydro-
lases enzymes, such as molecules of the complement and
thrombin system, which will influence directly the function-
ality of the immune system. In addition, the damage in the
lymphoid tissue is the result of the phosphorylation, oxidative
damage, and/or altered neuronal function, induced by OPs
[46]. In this sense, in aquatic and human models, it has been
reported that OPs diminish NK cell, LAK cell, and cytotoxic
activities [47–50]. Even though there are very few studies on
the mechanisms of induced inhibition by OPs in this type of
cells, it has been proposed that this effect might be mediated
by the inhibition of serine proteases (granzymes, perforins,
and granulysins), molecules that are usually released by
exocytosis [47, 51–53]. In addition, OPs have been reported
not only to inhibit activity and release granules, but also to
inhibit the expression of genes related with these molecules
[49, 50]. On the other hand, the effect of OPs in NK cells
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through FasL/Fas pathway has been researched, and it has
been reported that dichlorvos (DDVP) induces decrease on
the expression of Fas in cells YAC-1 and the expression of FasL
in LAK cells. This suggests that OPs reduce cytolytic capac-
ity and proapoptotic signals through two mechanisms: (1)
diminishment in exocytosis of granules and (2) FasL/Fas
pathway [46].

4.3. OPs and Transduction of Signals. Alterations of the
components and immune functions have also been related to
the sequence and intensity of phosphorylation and dephos-
phorylating of protein kinases, essential process to modulate
the immune response. A key molecule in this process is the
protein suppressor of cytokine signaling 3 (SOCS3), which
regulates protein STAT. SOCS3 mediates inhibition of phos-
phorylation of STAT5,which has been relatedwith the dimin-
ishment of cellular proliferation [46]. In this context, it has
been reported that dialkylphosphates (DAPs), metabolites
produced during biotransformation ofOPs, interact with leu-
cocytes altering cellular signalization. There is evidence that
diethyldithiophosphate (DEDTP) and diethylthiophosphate
(DETP) interact and produce effects on the immune system,
reducing the expression of CD25 and CD4 and secretion
of IL-2, altering signalization of IL-2R, by modifying the
phosphorylation status of STAT5 proteins. Apart from that,
it has been reported that DEDTP increases phosphorylation
of SOCS3 and dephosphorylation of STAT5 and also induces
phosphorylation of ERK, JNK, and p38, depending events of

PKC, PLC-𝛾, and AMP-responsive element-binding protein,
which results in the nuclear translocation of NFAT, AP1, and
ERK [46, 54, 55]. Lima and Vega [56] reported that DEDTP
induces the arrest of the cellular cycle, mediated by SOCS3,
initiating a feedback mechanism associated with p21 and p53
[56, 57]. It has also been reported that OPs (chlorpyrifos,
sarin, and soman) can activate the PLC-𝛾 and after that the
transduction via of signals MAPK through PKC, as a conse-
quence of accumulation of IP3 and DAG [58].

4.4. OPs and Apoptosis. Some studies have suggested the
implication ofOPs in apoptotic processes. It is known that the
initiation of apoptosis is regulated by external and internal
signals, such as the activation of dead receptors, damage
to DNA, and perturbation of the mitochondrial membrane.
These mechanisms carry the caspases activation and subse-
quently the destruction of the cell in a programmed way [59].
Thus, it has been reported that some OPs (monocrotophos,
profenofos, chlorpyrifos, and acephate) induce apoptosis and
necrosis in cultured human lymphocytes of peripheral blood
[60]. Nakadai et al. reported that chlorpyrifos induce apop-
tosis in the cellular line U937 of human monocytes, besides
inducing an increase of caspase 3 [61]. On the other hand,
it has been shown that parathion and paraoxon (parathion
metabolite) induce apoptosis in the cellular line of lym-
phocytic leukemia T (EL4) through activation of caspase-3.
Likewise, exposure in vitro and in vivo to paraoxon pro-
voked cytochrome C translocation from the mitochondria



8 Journal of Immunology Research

to cytosol, activating proapoptotic molecules such as Bax
[59]. It has been shown that exposure of cell line ZC-7901
of grass carp fish (Ctenopharyngodon idellus) to malathion
(23.75mg/L) during 2 h induces a decrease in the mito-
chondrial membrane potential (ΔΨm), besides increasing the
intracellular calcium flux [62].

5. Conclusion

Fishes are the first vertebrates with innate and adaptative
immune mechanisms, similar to mammals. Thus, fishes can
be used as a model in biomedical research, allowing data in
the immunotoxicology field in evolutionary terms. Besides,
due to fishes being themost abundant vertebrate in the planet,
a lot of them with commercial importance, data generated
could have economic and ecological importance.

There are evidences that the immune response can be
altered by OPs exposure. Although, the immunotoxicity
mechanisms are not completely clarified, evidence suggests
that OPs can target several molecules related to the immune
system and execute the immunotoxic effect through the
alteration of the neuroimmune communication, particularly
the cholinergic neuronal and immune system. Nevertheless,
further research is needed in order to understand the mech-
anisms of immunoregulation of this type of pesticides widely
used in household and agricultural activities.

Conflict of Interests

There is no conflict of interests, and the authors declare
that they have no direct relationship with the previously
mentioned commercial entities or any other related one.

Acknowledgments

This work was funded by a grant from the financial resources
of SEP-CONACyT, Mexico, for Basic Research (Project no.
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