
Current Research in Neurobiology 2 (2021) 100007
Contents lists available at ScienceDirect

Current Research in Neurobiology

journal homepage: www.editorialmanager.com/crneur/Default.aspx
Ion-channel regulation of response decorrelation in a heterogeneous
multi-scale model of the dentate gyrus

Poonam Mishra, Rishikesh Narayanan *

Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
A R T I C L E I N F O

Keywords:
Adult neurogenesis
Channel decorrelation
Computational model
Heterogeneities hippocampus
Intrinsic plasticity
Ion channels
Multiscale analysis
* Corresponding author. Molecular Biophysics Un
E-mail address: rishi@iisc.ac.in (R. Narayanan).

https://doi.org/10.1016/j.crneur.2021.100007
Received 27 July 2020; Received in revised form 2
2665-945X/© 2021 The Author(s). Published by Els
A B S T R A C T

Heterogeneities in biological neural circuits manifest in afferent connectivity as well as in local-circuit compo-
nents such as neuronal excitability, neural structure and local synaptic strengths. The expression of adult neu-
rogenesis in the dentate gyrus (DG) amplifies local-circuit heterogeneities and guides heterogeneities in afferent
connectivity. How do neurons and their networks endowed with these distinct forms of heterogeneities respond to
perturbations to individual ion channels, which are known to change under several physiological and patho-
physiological conditions? We sequentially traversed the ion channels-neurons-network scales and assessed the
impact of eliminating individual ion channels on conductance-based neuronal and network models endowed with
disparate local-circuit and afferent heterogeneities. We found that many ion channels differentially contributed to
specific neuronal or network measurements, and the elimination of any given ion channel altered several func-
tional measurements. We then quantified the impact of ion-channel elimination on response decorrelation, a well-
established metric to assess the ability of neurons in a network to convey complementary information, in DG
networks endowed with different forms of heterogeneities. Notably, we found that networks constructed with
structurally immature neurons exhibited functional robustness, manifesting as minimal changes in response
decorrelation in the face of ion-channel elimination. Importantly, the average change in output correlation was
dependent on the eliminated ion channel but invariant to input correlation. Our analyses suggest that
neurogenesis-driven structural heterogeneities could assist the DG network in providing functional resilience to
molecular perturbations.
1. Introduction

A multitude of experimental and computational studies have estab-
lished the role of the dentate gyrus (DG) as a brain region that is critically
involved in memory encoding. Prominent among these encoding tasks is
the ability of the DG to mediate response decorrelation and pattern
separation of inputs received from the entorhinal cortex Li et al. (2017);
Lodge and Bischofberger (2019); Aimone et al. (2014); Aimone et al.
(2006); Aimone et al. (2009); Sahay et al. (2011); Leutgeb et al. (2007);
Kropff et al. (2015); Mishra and Narayanan (2019); Marr (1971); Rolls
(2013); Luna et al. (2019). In addition, the DG has also implicated in
engram formation, which involves activity-dependent plasticity in neural
excitability involving changes in ion channels in these neural populations
(Titley et al., 2017; Tonegawa et al., 2015, 2018; Mozzachiodi and Byrne,
2010; Zhang and Linden, 2003). There are precise sets of computation
spanning different scales of analyses that occur within the DG network
towards accomplishing these physiological goals. Perturbations to
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components that drive these computations at one scale (say individual
ion channel densities), introduced by pathological insults or neuro-
modulation or learning- or adaptation-induced changes, could result in a
cascading effect that alters physiological properties across several scales
(say, single neuron and network level outcomes). For instance, the
requirement of DG neurons to change their ion channel densities (at the
molecular scale) in the process of encoding engrams could alter their
ability to perform response decorrelation (at the network scale). The
complexity involved in the assessment of such multi-scale cascades is
enormous, owing to the disparate forms of biological heterogeneities
inherent to the different network components and the intricate in-
teractions between these distinct components that govern network
function. Therefore, computational models spanning different scales,
where a systematic analyses of such cascades can be rigorously accom-
plished, provides a pragmatic path to approach this problem of
multi-scale analyses in DG network physiology.

An essential first step in assessing the cascading impact of altered
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molecular components to multi-scale functions is to account for the
expression of multiple forms of biological heterogeneities in the DG,
spanning different scales of analysis. Biological heterogeneities that span
the DG at single neuron scale include those in ion channel properties and
expression profiles, neuronal intrinsic properties, dendritic arborization,
whereas at the network scale it comprises mainly of local synaptic con-
nectivity and the sparse, orthogonal and divergent nature of afferent
connectivity. Importantly, each of these heterogeneities is further
amplified by the expression of adult neurogenesis in the DG, especially
given the enormous dependence of each neuronal and synaptic attribute
on the neuronal maturation process. Especially with reference to afferent
connectivity, accumulating lines of evidence point to adult neurogenesis
providing a unique substrate for orthogonal, non-overlapping processing
and storage of information from upstream cortex (Li et al., 2017; Lodge
and Bischofberger, 2019; Aimone et al., 2006, 2009; Luna et al., 2019),
referred to as afferent heterogeneities. The expression of these amplified
heterogeneities, in conjunction with specific characteristics of the local
network provide substrates for the prevalent postulates and lines of ev-
idence that the DG network endowed with adult neurogenesis is an ideal
system to execute response decorrelation and pattern separation (Li et al.
(2017); Lodge and Bischofberger (2019); Aimone et al. (2014); Aimone
et al. (2006); Aimone et al. (2009); Sahay et al. (2011); Leutgeb et al.
(2007); Kropff et al. (2015); Mishra and Narayanan (2019); Mishra and
Narayanan (2020b)).

To quantify the impact of molecular perturbation on network func-
tion, a critical second step is to employ a quantitative metric to monitor
network function. Channel decorrelation is a type of response decorre-
lation, and is defined as a reduction in correlation between response
profiles of individual channels (neurons) to afferent stimuli. Channel
decorrelation has been identified as a mechanism to ensure that infor-
mation conveyed by different neuronal channels is complementary
(Mishra and Narayanan, 2019; Wiechert et al., 2010; Padmanabhan and
Urban, 2010; Chow et al., 2012; Pitkow and Meister, 2012; Tetzlaff et al.,
2012). It has been established that channel decorrelation could be ach-
ieved through synergistic interactions between different forms of these
heterogeneities, with afferent heterogeneities dominating local hetero-
geneities when coexpressed (Mishra and Narayanan, 2019). In a scenario
where afferent heterogeneities, actively mediated by afferent connec-
tivity driven by adult neurogenesis (Li et al., 2017; Lodge and Bischof-
berger, 2019; Aimone et al., 2006, 2009; Luna et al., 2019), are dominant
(Mishra and Narayanan, 2019), what is the precise role of local hetero-
geneities in the network? How does channel decorrelation vary in a
network endowedwith various local heterogeneities when neurons in the
network encounter single ion-channel perturbations? Would the
expression of specific forms of local heterogeneities in general, and
neurogenesis-induced heterogeneities in particular, contribute to func-
tional resilience of the perturbed network?

To understand the cascading impact of molecular-scale perturbations
on cellular (neural integration and excitability) and network (channel
decorrelation) physiology with a specific goal to understand the contri-
butions of local heterogeneities to functional resilience, we employed a
multi-scale conductance-based network model of the DG. The neurons of
this network model were biophysically and physiologically constrained
to match their biological counterparts, and the network was endowed
with four distinct forms of local and afferent heterogeneities. We
employed this model to sequentially assess the cascading impact of
eliminating individual ion channels from two distinct neuronal subtypes,
first on neuronal intrinsic physiological properties, and consequently on
network excitability and on the ability of the network to perform channel
decorrelation.

At the single-neuron scale, our analyses revealed that the mapping
between ion channels and physiological measurements was many-to-
many, but not all-to-all. Specifically, we found that many (but not all)
ion channels differentially contributed to specific neuronal or network
measurements, and the elimination of any given ion channel altered
several (but not all) functional measurements. At the network scale, the
2

impact of eliminating individual ion channels was critically reliant on the
specific local heterogeneities expressed in the DG network. Importantly,
in the presence of structurally immature neurons in the DG network, the
impact of ion channel elimination on channel decorrelation was lower,
when compared with a network exclusively constructed with structurally
mature neurons. Finally, we observed that for perturbation in a given ion
channel, the average percentage change in output correlation was
invariant to the specific values of input correlation. Together, these re-
sults unveil the importance of ion-channel and neurogenesis-induced
heterogeneities in maintaining robustness of channel decorrelation,
emphasizing their role beyond providing a substrate (Mishra and Nar-
ayanan, 2019) for the expression of degeneracy in achieving channel
decorrelation.

2. Methods

In this multi-scale computational study, we sought to systematically
examine the impact of knocking out different ion channels on single
neuronal response properties and on network-scale decorrelation in the
DG. An important question addressed in our analyses is on whether and
how the expression of local heterogeneities in the DG contributes to
functional resilience (with reference to response decorrelation) in the
face of ion channel perturbations. In what follows, we describe the single
neuronal and network models, the procedures and measurements
employed in assessing single-neuron and network physiology after vir-
tual knockout of specific ion channels. To avoid confusion between the
use of the word “channel” in channel decorrelation and ion channels, we
always employ the phrase “ion channels” when we refer to the latter.

2.1. Rationale and experimental design: the need for the incorporation of
heterogeneities in studying ion-channel perturbations

Analyzing the impact of individual ion channels on neuronal intrinsic
properties in a single hand-tunedmodel introduces biases that are inherent
to the specific model and would not account for the heterogeneities in ion
channel expression or in intrinsic properties of the neurons. With the
ubiquitous expression of ion-channel degeneracy, whereby synergistic
interactions among disparate combinations of ion channels result in the
emergence of similar single neuron physiological characteristics (Mishra
and Narayanan, 2019; Basak & Narayanan, 2018, 2020; Das et al., 2017;
Drion et al., 2015; Jain and Narayanan, 2020; Migliore et al., 2018; Mittal
and Narayanan, 2018; Mukunda and Narayanan, 2017; Rathour et al.,
2016; Rathour and Narayanan, 2012a, 2014, 2019; Anirudhan and Nar-
ayanan, 2015; Seenivasan and Narayanan, 2020; Srikanth and Narayanan,
2015), such an approach would yield results that are not applicable to the
entire population of neurons in the biological system (Marder and Taylor,
2011). A well-established alternate to this approach, which accounts for
degeneracy and heterogeneities across scales, is an unbiased stochastic
search algorithm that spans the ion channel parametric space to arrive at
neuronal models that satisfy cellular-scale physiological constraints (Prinz
et al., 2003, 2004; Foster et al., 1993). As the population of neuronal
models arrived through such an approach is well constrained by the bio-
physical and physiological measurements from the specific neuronal sub-
type under consideration, this population constitutes an efficacious
substrate to understand the impact of individual ion channels on neuronal
physiology. An important difference between a hand-tuned model and this
stochastic search approach is that the stochastic search model is unbiased,
with no relationship in terms of which ion channel was introduced for
matching what specific physiological property. Therefore, results arrived
on the impact of individual ion channels emerge from the heterogeneous
neuronal populations, without assignment of specific physiological pur-
poses to individual ion channels (Mishra and Narayanan, 2019; Basak and
Narayanan, 2018; Mittal and Narayanan, 2018; Rathour and Narayanan,
2012a, 2014, 2019; Srikanth and Narayanan, 2015; Marder and Taylor,
2011; Prinz et al., 2003; Foster et al., 1993; Goldman et al., 2001; Taylor
et al., 2009).



P. Mishra, R. Narayanan Current Research in Neurobiology 2 (2021) 100007
2.2. Intrinsically heterogeneous population of single-neuronal model
obtained through unbiased stochastic search

We employed a multi-parametric multi-objective stochastic search
(MPMOSS) algorithm as a route to generate a heterogeneous population
of GC and BC neuronal models. In this study, to assess the impact of in-
dividual ion channels on neuronal and network physiology, we employed
the valid models generated previously (Mishra and Narayanan, 2019).
Fig. 1. Multi-scale modeling framework for assessing the impact of ion channel
virtual arena traversal. A–B, Conductance-based models for granule cells (GC) and
conductances for these neurons. Symbols employed: gL: Leak conductance; gNaF: Fas
conductance calcium-activated potassium conductance; gSK: Small-conductance calc
tance; gHCN: Hyperpolarization-activated cyclic-nucleotide-gated (HCN) nonspecific ca
N-type calcium current; iGABAA: GABAA receptor current; iAMPA: AMPA receptor curre
entorhinal cortical cells. Note that all sodium, potassium and nonspecific cation ch
conductances; all calcium currents and receptor currents were modeled using the
dependent currents; the inputs from entorhinal cortex were modeled as currents that
virtual animal was allowed to run in an arena of 1 m � 1 m (left panel) for a period o
this arena was fed into a dentate gyrus network made of interconnected granule and b
obtain firing rate profiles and spatial rate maps (last panel) by overlaying neuronal fir
network employed here was not a homogeneous network, but employed several bio
represented variability in ion channel densities and neuronal intrinsic properties, an
search (MPMOSS) paradigm (Mishra and Narayanan, 2019). Synaptic heterogeneitie
were modeled by altering the AMPAR and GABAA receptor permeability. These rece
balance was maintained and the overall firing rates of GCs and BCs were within
model surface area changes in granule cells consequent to adult neurogenesis, and
erogeneities were representative of the uniquely sparse connectivity from the entorhin
different afferent inputs. This scenario was compared with a case where all GCs and
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We briefly describe the details associated with the generation of these
heterogeneous populations of single-neuron models. The stochastic
search for valid granule cells involved 40 active parameters associated
with passive properties, nine active conductances and calcium handling
mechanisms (Supplementary Table S1; (Mishra and Narayanan, 2019)).
The passive model parameters of granule cell were set as follows: the
resting membrane potential, VRMP ¼ �75 mV; specific membrane resis-
tance, Rm ¼ 38 kΩ cm2; specific membrane capacitance, Cm ¼ 1 μF/cm2;
knockouts on cellular and network physiology of the dentate gyrus during
basket cells (BC) were built using several experimentally derived ion channel

t sodium conductance; gKDR: Delayed rectifier potassium conductance; gBK: Big-
ium-activated potassium conductance; gBK: A-type transient potassium conduc-
tion conductance; iCaT: T-type calcium current; iCaL: L-type calcium current; iCaN:
nt; iMEC: current from medial entorhinal cortical cells; iLEC: current from lateral
annels were modeled using a Nernstian framework are represented as parallel
Goldman-Hodgkin-Katz (GHK) formulation, and therefore are represented as
were dependent on animal traversal and are represented as current sources. C, A
f 1000 s to allow complete traversal of the entire arena. The animal’s location in
asket cells (middle panel). The voltage outputs of granule cells were recorded to
ing rate over the temporally aligned spatial location of the virtual animal. D, The
logical heterogeneities expressed in the dentate gyrus. Intrinsic heterogeneities
d was accounted for by employing a multi-parametric multi-objective stochastic
s represented the strength of the local BC → GC and GC → BC connections, and
ptor permeabilities were varied within a range where the excitation-inhibition
experimentally observed ranges. Structural heterogeneities were introduced to
were incorporated by adjusting the geometry of the GC models. Afferent het-
al cortices to the DG, and were modeled by feeding each GC and BC neuron with
BCs were given identical afferent inputs.
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and the model cell was a cylinder of 63-μm diameter and 63-μm length.
This resulted in passive charging time constant (RmCm) to be 38 ms
(Schmidt-Hieber et al., 2007) and passive input resistance (Rin) of the cell
to be 305 MΩ, matching the experimental value of 309 � 14 MΩ (Chen,
2004). The nine different active conductances that were present in the
GC model were (Fig. 1A): hyperpolarization-activated cyclic nucleotide
gated (HCN or h), A-type potassium (KA), fast sodium (NaF),
delayed-rectifier potassium (KDR), small conductance (SK) and big
conductance calcium-activated potassium (BK), L-type calcium (CaL),
N-type calcium (CaN) and T-type calcium (CaT). The ion channel kinetics
and their voltage-dependent properties were adopted from experimental
measurements from the GC (Magee, 1998; Beck et al., 1992; Ferrante
et al., 2009; Aradi and Holmes, 1999). All calcium ion channels were
modeled using the Goldman-Hodgkin-Katz (GHK) formulation (Gold-
man, 1943; Hodgkin and Katz, 1949), with default values of intracellular
and extracellular calcium concentrations set as 50 nM and 2 mM,
respectively. The evolution of cytosolic calcium concentration [Ca]c, was
dependent on the current through voltage-gated calcium ion channels
and involved a first order decay with a default calcium decay time con-
stant, τCa ¼ 160 ms:

d½Ca�c
dt

¼ � 10000 ICa
36 � dpt �F þ ½Ca�∞ � ½Ca�c

τCa
(1)

where F represented Faraday’s constant, τCa defined the calcium decay
constant in GCs (Eliot and Johnston, 1994), dpt¼ 0.1 μmwas the depth of
the shell into which calcium influx occurred, and [Ca]∞ ¼ 50 nM is the
steady state value of [Ca]c. In generating the physiologically-validated
heterogeneous GC population, we subjected 20,000 unique models
spanning a 40-parameter space (Table S1) to a validation procedure
involving nine different single-cell electrophysiological measurements
(Table 1) from GCs. We found 126 models (~0.63% of the total popu-
lation) to be valid.

A similar MPMOSS strategy was employed to generate a heteroge-
neous population of basket cells (Fig. 1B), endowed with four different
voltage-gated ion channels (HCN, KA, NaF and KDR), and involving a
stochastic search space of 18 parameters (Table S2: ion channel and
passive membrane properties (Mishra and Narayanan, 2019)). The pas-
sive parameters of the BC base model whose geometry was set as a cyl-
inder with 66-μm diameter and 66-μm length were as follows: VRMP ¼
�65 mV, Rm ¼ 7.1 kΩ cm2, Cm ¼ 1 μF/cm2. Here, we generated 8000
unique BC models, validated them against 9 electrophysiological
Table 1
Experimentally derived electrophysiological measurements, lower and upper
bounds that were employed for validating the granule cell and the basket cell
models (Mishra and Narayanan, 2019). Data from (Aradi and Holmes, 1999;
Krueppel et al., 2011; Lubke et al., 1998; Mott et al., 1997; Santhakumar et al.,
2005).

Measurement, Unit Symbol Granule cell Basket cell

Lower Upper Lower Upper

1 Action potential
amplitude, mV

VAP 95 115 110 120

2 Action potential threshold,
mV

Vth �55 �40 �51 �41

3 Action potential half-
width, ms

TAPHW 0.53 1.6 0.53 1.5

4 Fast after
hyperpolarization, mV

VfAHP �25 �3.4 �27 �14

5 Sag ratio Sag
ratio

0.9 1 0.9 1

6 Spike frequency
adaptation

SFA 0.1 0.8 0.9 1.04

7 Input resistance, MΩ Rin 107 228 45 65
8 Firing frequency at 50 pA,

Hz
f50 0 0 0 0

9 Firing frequency at 150 pA,
Hz

f150 10 15 30 50
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measurements from BCs (Table 1) and found 54 valid BC models
(~0.675% of the total population). The experimental bounds on mea-
surements for granule and basket cells (Table 1) were obtained from
(Aradi and Holmes, 1999; Krueppel et al., 2011; Lubke et al., 1998; Mott
et al., 1997; Santhakumar et al., 2005). We have demonstrated ion
channel degeneracy individually for the 126 valid GCs and for the 54 BCs
(Mishra and Narayanan, 2019). We employ these valid model pop-
ulations for the virtual knockout analyses, both at single-neuronal and
network scales.

2.3. Subthreshold and suprathreshold physiological measurements
employed to quantify the single-neuron properties

The intrinsic response properties of GCs and BCs were quantified
based on nine measurements (Mishra and Narayanan, 2019; Lubke et al.,
1998), which were employed to validate the models obtained through
stochastic search and to assess the impact of individual ion channel
knockouts. The nine electrophysiological measurements employed for
validation and their bounds are provided in Table 1. Rin was measured
from the neuronal steady state voltage response to each of 11 different
current pulses, injected with amplitudes ranging from �50 pA to 50 pA
(for 1000 ms) in steps of 10 pA (e.g., Fig. 2A, left). The steady state
voltage deflections from VRMP were plotted as a function of the corre-
sponding current injections to obtain a V–I plot. We fitted a straight-line
function to this V–I plot, and the slope of this linear fit defined Rin. Sag
ratio was calculated as the ratio of the steady state voltage deflection to
the peak voltage deflection recorded in response to a �50 pA (1000 ms)
current injection.

All supra-threshold measurements were obtained from the voltage
trace recorded in response to a 150 pA depolarizing current injection,
with AP measurements obtained from the first spike of this trace. Firing
frequency was calculated as number of spikes in response to 150 pA
current injection for 1 s (e.g., Fig. 2A, right). Spike frequency adaptation
(SFA) was calculated as the ratio of the first inter spike interval (ISI) to
the last ISI. The voltage in the AP trace corresponding to the time point at
which the dV/dt crossed 20 V/s defined AP threshold. AP half-width was
the temporal width measured at the half-maximal points of the AP peak
with reference to AP threshold. AP amplitude was computed as the peak
voltage of the spike relative to VRMP. Fast afterhyperpolarization (VfAHP)
was measured as the maximal repolarizing voltage deflection of the AP
from threshold (Mishra and Narayanan, 2019).

2.4. Virtual knockout approach and metrics employed to assess the impact
of ion-channel knockouts on single-neuronal physiology

As disparate parametric combinations yielded similar physiological
properties in heterogeneous populations of GC and BC models (Mishra
and Narayanan, 2019), it was important to independently assess the
impact of ion channel elimination in each of the 126 GCs and 54 BCs.
Within the degeneracy framework, virtual knockout models (VKMs)
constitute a powerful technique to quantitatively assess the contribution
of specific ion channels to chosen measurements in a heterogeneous
population of models (Basak & Narayanan, 2018, 2020; Jain and Nar-
ayanan, 2020; Mittal and Narayanan, 2018; Mukunda and Narayanan,
2017; Anirudhan and Narayanan, 2015; Rathour and Narayanan, 2014;
Seenivasan and Narayanan, 2020). Specifically, for the GC population,
we virtually knocked-out one of the 9 active ion channels (by setting its
conductance value to be zero) individually from each of the 126 valid
models, and computed each of the 9 measurements after this knockout.
Then, we computed the percentage change in each of 9 measurements
from their respective valid base model values (where all the ion channels
were intact in that specific valid model). This procedure was repeated for
all nine ion-channels in GCs, and the statistics of percentage changes in
each measurement for each VKM were assessed. A similar procedure was
applied independently on BC valid models as well, with differences in
number of active ion channels in the model (Nchannel ¼ 4) and number of



Fig. 2. Virtual knockout of individual channels resulted in heterogeneous and differential impact on different sub- and supra-threshold electrophysio-
logical measurements in a valid population of dentate granule cells. A, Left: Voltage responses to current pulses of �50 to þ50 pA, in steps of 10 pA, for 500 ms
employed for input resistance (Rin) calculation. Right: Voltage traces showing firing rate (f150) and spike pattern in response to a 150 pA current injection for 950 ms for
the same granule cell model. B–D, Same as (A) but for different valid models of granule cell. Valid models 36 (A) and 50 (B), respectively represent the minimum and
maximum percentage change in input resistance (Fig. 3G) after virtual knockout of HCN ion channels. Valid models 100 (C) and 41 (D), respectively represent the
minimum and maximum percentage change in f150 (Fig. 3F) after virtual knockout of L-type calcium ion channels. Across panels, black traces represent the valid base
model and traces of other colors depict those after virtual knockout of nine different ion channels in the chosen model.
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valid models (Nvalid¼ 54). The procedure was employed to assess each of
the 9 measurements here as well.

Quantitatively, for each of the 9 different measurements, letMn (base)
represent the measurement value of the base version (i.e., all parameters
were intact) of model number n (1� n� 126 for GCs; 1� n� 54 for BCs).
Fig. 3. The mapping between individual ion channels and different electrop
individual ion channels yielding differential and variable effects on different m
measurements obtained after virtual knockout of individual ion channels from valid m
cell population obtained using MPMOSS. Percentage changes were calculated by com
the measurement in the corresponding base model. Individual panels represent the
potential half-width, TAPHW; C, action potential threshold, Vth; D, fast after hyperpola
injection, f150; G, input resistance, Rin; and G, sag ratio. p values were obtained using
tested for significance from a “no change” scenario. *: p < 0.01, **: p < 0.001.

6

LetMn (Ci) represent the measurement value obtained from the VKM after
deleting one the ion channels Ci (1� i� 9 for GCs; 1� i� 4 for BCs). We
quantified the impact of single ion channel knockout on each measure-
ment by computing percentage change as:
hysiological measurements was many-to-many, with virtual knockout of
easurements. A–H, Plots of percentage changes in different electrophysiological
odels of granule (Nvalid ¼ 126 for GC, black) and basket (Nvalid ¼ 54 for GC, red)
paring the measurement after virtual knockout of the specific ion channel with
following intrinsic measurements: A, action potential amplitude, VAP; B, action
rization potential, VAHP; E, ISI ratio; F, firing rate in response to 150 pA current
Wilcoxon signed rank test, where the percentage change in measurements were
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ΔMnðCiÞ¼MnðCiÞ �MnðbaseÞ
MnðbaseÞ � 100 (2)
This procedure was repeated for each valid model, each ion channel
and each measurement, and the statistics of these measurements were
plotted as quartiles to depict the entire span of changes (Fig. 3).

2.5. The multi-scale network and its local and afferent inputs

A default network of 100 GCs and 15 BCs (Fig. 1C), with the GC:BC
ratio constrained by experimental observations (Aimone et al., 2009;
Amaral et al., 2007), was constructed by randomly picking valid models
from the population of GCs and BCs obtained fromMPMOSS (Mishra and
Narayanan, 2019). In a subset of simulations, the network size was
increased to 500 GCs and 75 BCs, with similar model design (Fig. 8).
Local connectivity was set such that the probability of a BC to GC
connection was 0.1, and that of a GC to BC connection was set as 0.05
(Aimone et al., 2009). The GC → BC and BC → GC connections were
modeled as synapses containing AMPA and GABAA receptors, respec-
tively. The AMPA receptors weremodeled to be permeable to sodium and
potassium ions, whereas the GABAA receptors were permeable to chlo-
ride ions. Both receptor currents were modeled using the GHK conven-
g1 ¼ 4πλffiffiffi
6
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g3 ¼ 4πλffiffiffi
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tion (Goldman, 1943; Hodgkin and Katz, 1949), with a rise time of 2 ms
and a decay time constant of 10 ms (Mishra & Narayanan, 2015, 2019).

IAMPAðv; tÞ¼ INaAMPAðv; tÞ þ IKAMPAðv; tÞ (3)

where,

INaAMPAðv; tÞ¼PAMPA PNa sðtÞ vF2

RT

0
B@
½Na�i � ½Na�o exp

�
�vF
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�

1� exp
�
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1
CA (4)
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1� exp
�
�vF
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where F was Faraday’s constant, R depicted gas constant, T was tem-
perature and PAMPA was the maximum permeability of AMPAR. s(t)
governed the AMPAR kinetics and was set as follows:

sðtÞ¼ a ðexpð�t = τdÞ� expð�t = τrÞÞ (6)

where a normalized s(t) such that 0 � s(t) � 1, τd (¼10 ms) represented
the decay time constant, τr (¼2 ms) depicted the rise time, PNa¼PK, ½Na�i
¼ 18 mM, ½Na�o ¼ 140 mM, ½K�i ¼ 140 mM, and ½K�o ¼ 5 mM, leading to
the AMPAR reversal potential to be ~0 mV. The BC→ GC GABAA re-
ceptor chloride current was modeled as (Mishra and Narayanan, 2015):

IClGABAAðv; tÞ¼PGABAA sðtÞ vF2

RT

�½Cl�i � ½Cl�o expðvF=RTÞ
1� expðvF=RTÞ

�
(7)
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where PGABAA was the maximum permeability of GABAA receptor. s(t)
was identical to that for AMPAR. ½Cl�i ¼ 5 mM and ½Cl�o ¼ 98 mM.

All neurons in this DG network received inputs from two different
regions of entorhinal cortex (EC): one from medial entorhinal cortex
(MEC) grid cells that transmitted spatial information and another from
lateral entorhinal cortex (LEC), which provides contextual information
(Renno-Costa et al., 2010; Anderson et al., 2007). The firing of the MEC
and LEC cells were driven by the position of a randomly traversing virtual
animal in a 1 m � 1 m arena (Fig. 1C). Each DG neuron received active
inputs (Mishra and Narayanan, 2019; Cayco-Gajic et al., 2017) from 5
different MEC cells and 5 different LEC cells, with input strength from
MEC and LEC split equally. The current input from a single MEC grid cell
to DG cells was modeled as a hexagonal grid function defined as a sum of
three two-dimensional cosine functions (Solstad et al., 2006):

ψðx; yÞ¼ 2
3

�
cosðg1Þ þ cosðg2Þ þ cosðg3Þ

3
þ 1
2

�
(8)

where (x, y) represented the position of the virtual animal in the arena,
and g1, g2 and g3 were defined as:
where λ represented the grid frequency, θ depicted the grid orientation
and x0, y0 were offsets in x and y, respectively. This hexagonal grid
function was scaled to obtain the input from a single MEC cell, with the
scaling performed to set the relative contribution of MEC and LEC to the
DG cells. MEC cell inputs were distinct in terms of the grid frequency (λ:
2–6 Hz) and grid orientation (θ: 0–360�), each sampled from respective
uniform distributions. This hexagonal grid function was scaled to set the
relative contribution of MEC and LEC to DG cells. Each MEC cell input
was distinct in terms of the grid frequency and grid orientation, each
randomly sampled from respective uniform distributions.

For modeling LEC inputs to GCs and BCs, we tiled the arena into 25
squares (5 rows and 5 columns) and assigned different tiles to be active
for different LEC inputs (Renno-Costa et al., 2010). Inputs from this LEC
cell to the DG cell was then scaled to set equal relative contribution of
MEC and LEC to the DG cells. Each LEC cell input was associated with a
unique randomized matrix, representing different active and inactive
regions (Mishra and Narayanan, 2019; Renno-Costa et al., 2010).
2.6. Incorporating different forms of heterogeneities into the multi-scale
network

To assess the robustness of networks (in performing channel decor-
relation) endowed with different forms of heterogeneities to single ion-
channel knockouts, we built DG networks endowed with distinct com-
binations of four different types of heterogeneities (Fig. 1D), following
the approaches introduced in (Mishra and Narayanan, 2019):

(i) intrinsic heterogeneity, where the GC and BC model neurons had
widely variable intrinsic parametric combinations, yet yielded
physiological measurements that matched their
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electrophysiological counterparts (Mishra and Narayanan, 2020b;
Beck et al., 1992; Ferrante et al., 2009; Aradi and Holmes, 1999;
Santhakumar et al., 2005). As mentioned in earlier sections, this
was incorporated into the network by the use of independent
MPMOSS algorithms for generating BC and GC models.

(ii) synaptic heterogeneity, where the synaptic strength of the local GC-
BC network was variable with excitatory and inhibitory synaptic
permeability values picked from uniform random distributions.
These parameters were maintained at a regime where the peak-
firing rate of GCs and BCs stayed within their experimental
ranges of 4–10 Hz and 30–50 Hz, respectively (Leutgeb et al.,
2007). We ensured that extreme parametric combinations where
the cell ceased firing (because of depolarization-induced block at
one extreme or high inhibition at the other) were avoided,
implying a balance between excitatory and inhibitory
connections.

(iii) neurogenesis-induced structural heterogeneity, where the DG network
was constructed entirely of mature or immature neurons, or con-
structed from neurons that represented different randomized
neuronal ages. Populations of immature GCs (originating through
adult neurogenesis) were obtained by subjecting the mature set of
the GC valid models (obtained through MPMOSS) to structural
plasticity. Specifically, the reduction in dendritic arborization and
in the overall number of ion channels expressed in immature
neurons (Aimone et al., 2014; van Praag et al., 2002) was
approximated by a reduction in the surface area (diameter) of the
model neuron, using Rin as the measurement to match with
experimental counterparts. The diameters of GC for the three
distinct configurations were: fully mature (63 μm), fully immature
(2–9 μm) and heterogeneous age population (2–63 μm).
Neurogenesis-induced structural heterogeneity was confined to
the GC population, leaving the BC population to be mature.

(iv) input-driven or afferent heterogeneity, where all neurons in the GC
and BC populations received either identical inputs (absence of
afferent heterogeneity) from the EC, or each GC and BC received
unique inputs (presence of afferent heterogeneity) from the EC.
Afferent heterogeneity models incorporate sparse and orthogonal
afferent connectivity from the EC to the DG (Li et al., 2017; Lodge
and Bischofberger, 2019; Aimone et al., 2006, 2009, 2010, 2011,
2014; Amaral et al., 2007; Aimone and Gage, 2011; Andersen
et al., 2006).

We tested the impact of virtually knocking out individual ion chan-
nels in networks endowedwith different combinations of these biological
heterogeneities, to ensure that our conclusions were not reflections of
narrow parametric choices and to ask if the expression of heterogeneities
enhances the robustness of the network to ion channel perturbations.
There are several lines of evidence that the synaptic connectivity to
immature neurons are low, and that this low connectivity counterbal-
ances their high excitability Li et al. (2017); Mongiat et al. (2009); Dieni
et al. (2016). To account for these observations, we reduced the overall
afferent drive in scenarios that involved neurogenesis-induced structural
differences (i.e., the fully immature population or the heterogeneous age
population). This reduction was implemented by scaling the afferent
drive in a manner that was reliant on the neuronal diameter, with lower
diameter translating to larger reduction in the synaptic drive, and was
adjusted towards the goal of reducing firing rate variability across the
neuronal population (Mishra and Narayanan, 2019).

2.7. Network analyses: virtual animal traversal and assessment of
excitability and channel decorrelation

A virtual animal was allowed to traverse a 1 m� 1 m arena, and the x
and y coordinates of the animal’s location translated to changes in the
external inputs from theMEC and LEC. The direction (range: 0–360�) and
distance per time step (velocity: 2.5–3.5 m/s) were randomly generated,
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and were updated every millisecond. The amount of time taken for the
virtual animal to approximately cover the entire arena was ~1000 s. All
simulations were performed for 1000 s, with the spatiotemporal
sequence of the traversal maintained across simulations to allow direct
comparisons, with the initial position set at the center of the arena. After
the network was constructed with different forms of heterogeneities and/
or with different ion channels knocked out, the spike timings of each GC
were recorded through the total traversal period of 1000 s (Mishra and
Narayanan, 2019). Note that the impact of knocking out the spike
generating conductances (from either BC or GC) was not assessed
because firing rate or response correlation could not be computed
without a spiking response from the neurons.

The overall firing rate of granule cells (e.g., Fig. 5A) spanning the
1000 s period was computed as the ratio between the spike count during
the period and the total time (1000 s). Instantaneous firing rates for each
GC was computed from binarized spike time sequences by convolving
them with a Gaussian kernel with a default standard deviation (σFR) of
50 ms. Although all correlation computations (e.g., Fig. 5B) were
computed using a σFR of 50 ms, for displaying firing rate overlaid on the
arena, we employed a smoother instantaneous firing rate computed with
a σFR of 2 s (e.g., Fig. 4A). This is important because the choice of σFR
plays a critical role in correlation computation (Mishra and Narayanan,
2019).

Histograms of Pearson’s pairwise correlation coefficients were
computed between instantaneous firing rate arrays (each spanning the
1000 s period) of each GC. Specifically, a correlation coefficient matrix
was constructed, with the (i, j)th element of this matrix assigned to the
Pearson’s correlation coefficient (Rij) computed between the instanta-
neous firing rate arrays of neuron i and neuron j in the network (channel
decorrelation). As these correlation matrices are symmetric with all di-
agonal elements set to unity, we employed elements in the lower trian-
gular part for computing the associated cumulative histogram (e.g.,
Fig. 5B).

Note that in this study, our focus is on channel decorrelation, a form
of response decorrelation that is distinct from pattern decorrelation,
where the focus in on correlation between temporally-aligned response
profiles of individual ion channels of information (i.e., neurons) to
afferent stimuli. Channel decorrelation is postulated to decrease the
overlap between channel responses (i.e. individual neuronal responses),
resulting in a code that is efficient because the information conveyed by
different channels (i.e. other neurons) is largely complementary. This is
distinct from pattern decorrelation, which is assessed by computing
response correlations across these two sets of neuronal outputs when
inputs corresponding to two different patterns arrive onto the same
network. Pattern decorrelation is computed to determine the ability of
neuronal outputs to distinguish (pattern separation) between the two
input patterns (Mishra and Narayanan, 2019; Wiechert et al., 2010).

In assessing channel decorrelation as a function of input correlation
(Mishra and Narayanan, 2019), we first computed the total afferent
current impinging on each neuron. As the total current was the same for
scenarios where identical afferent inputs were presented, the input cor-
relation across all neurons was set at unity. For the scenario where the
afferent inputs were heterogeneous, pairwise Pearson’s correlation co-
efficients were computed for currents impinging on different DG neurons
and were plotted against the corresponding response correlation (for the
same pair). Output correlations in this plot were binned for different
values of input correlation, and the statistics (mean � SEM) of response
correlation were plotted against their respective input correlation bins
(e.g., Fig. 7A).

2.8. Network analyses: assessing the impact of the elimination of individual
ion channels on network physiology

For each network configuration with any of the 9 ion-channels (7
from GCs and 2 from BCs) virtual knockouts, we computed change in this
overall GC firing rate after virtual knockout of the ion channel. Quanti-



Fig. 4. Granule cell firing profiles and spatial maps depicting the heterogenous impact of virtually knocking out individual ion channels from granule cells
in a network receiving identical afferent inputs. A, Left: Spike patterns (gray) overlaid with firing rates (red) for a 100 s period for valid GC model 50, residing in a
GC-BC network endowed with intrinsic and synaptic heterogeneities and receiving identical afferent inputs. Center: Instantaneous firing rates of GC model 50 for the
entire 1000 s of animal traversal across the arena. Right: Color-coded spatial rate maps showing firing rate of GC model 50 superimposed on the trajectory of the virtual
animal. The top-most panels represents these measurements for the base model (where all ion channels are intact), and the other panels depict these measurements
obtained after virtual knockout of individual ion channels from the granule cell population of the network. B, Same as (A) for GC model 44 residing in the same
network. Models 50 and 44 respectively showed maximum and minimum changes in firing rate after virtual knockout of BK ion channel (see Fig. 5A). The network
employed in this illustrative example was endowed with intrinsic and synaptic heterogeneities, but did not express structural heterogeneities.
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tatively, let Fn (base) represent the overall firing rate of neuron n (1� n�
100 for GC; 1 � n � 15 for BC) in the default network, and let Fn (Ci)
represent the firing rate of the same neuron, obtained from a network
where one of the ion channels Ci (1� i� 7 for GC VKMs; 1� i� 2 for BC
VKMs) was knocked out from all neurons (in either the GC or BC popu-
lation). We quantified the impact of single ion channel knockout on firing
as a difference:

ΔFnðCiÞ¼FnðCiÞ � FnðbaseÞ (12)

This procedure was repeated for different network configurations
endowed with different sets of heterogeneities. The statistics of these
measurements were plotted as quartiles to depict the entire span of
changes (e.g., Fig. 5A).

To compute pairwise changes in the degree of decorrelation conse-
quent to ion channel knockout, we calculated percentage changes in the
specific pairwise Pearson’s correlation coefficient after knockout of a
specific ion channel, compared to the coefficient’s value before knockout.
Quantitatively, let Rij (base) represent the Pearson’s correlation
9

coefficient computed between the instantaneous firing rate arrays of
neuron i and neuron j (1 � i, j � 100; i 6¼ j) in the base version of the
network. Let Rij (Ck) represent the Pearson’s correlation coefficient
computed between the same neuronal pair (i, j), obtained from a network
where one of the ion channels Ck (1 � k � 7 for GC VKMs) was knocked
out from all neurons (in either the GC or BC population). We quantified
the impact of single ion channel knockout on output correlation of GCs as
a percentage change:

ΔRijðCkÞ¼RijðCkÞ � RijðbaseÞ
RijðbaseÞ � 100 (13)

This procedure was repeated for different network configurations
endowed with different sets of heterogeneities. The statistics of these
percentage changes were plotted as histograms (e.g., Fig. 5C), or were
plotted against their respective input correlation values that were binned
(e.g., Fig. 7B) using a procedure similar to the output correlation vs. input
correlation plot mentioned above.



Fig. 5. Virtual knockout of individual ion channels from granule cells resulted in differential and variable impact on channel decorrelation in networks
endowed with distinct heterogeneities and receiving identical afferent inputs. A, Difference in firing rates (Eq. (12)) for all granule cells in the network, rep-
resented as quartiles. Firing rate of each cell was computed from the spike count of the cell for the entire 1000 s traversal of the virtual animal. p values were obtained
using Wilcoxon signed rank test, where the change in firing rate was tested for significance from a “no change” scenario. ***: p < 0.001. B, Cumulative distribution of
inter-neuronal pairwise firing rate correlation coefficients for networks built with either the base models, or with models after virtual knockout of individual ion
channels. Shown are plots for the base model network and for the networks built with GC neurons where one of the 7 ion channels was virtually knocked out. C,
Distribution of percentage changes in correlation coefficients for neuronal responses from the VKM network, compared to the respective base model coefficients.
Shown are plots corresponding to percentage changes in networks built with GC neurons where one of the 7 ion channels was virtually knocked out. For (A–C), plots
are shown for simulations performed with three distinct networks and associated virtual knockouts: network with a fully mature GC population (left), network with a
GC population of heterogeneous age (center) and network with a fully immature GC population (right). Note that all three networks are endowed with intrinsic and
synaptic heterogeneities. All neurons in the network received identical afferent inputs.
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2.9. Computational details

All simulations were performed using the NEURON simulation
environment (Carnevale and Hines, 2006), at 34 �C with an integration
time step of 25 μs. Analysis was performed using custom-built software
written in Igor Pro programming environment (Wavemetrics). Statis-
tical tests were performed in statistical computing language R (www
.R-project.org).

A relatively small network (compared to (Mishra and Narayanan,
2019)) was employed in this study owing to the computational
complexity of the knockout simulations, each involving different
network configurations, simulations and analyses, spanning the 7
ion-channel VKMs in GC and 2 ion-channel VKMs in BC, and for the
expression or absence of different forms of heterogeneities. Simula-
tions in this study were performed and results analyzed for a total of
40 ((base model þ 7 GC VKMs þ 2 BCE VKMs) � (4 sets of hetero-
geneity configurations)) distinct network configurations, with each
configuration entailing a period of 1000 s virtual traversal (with a
simulation integration time step dt of 25 μs), accompanied by corre-
lation and firing rate analyses spanning these large time series arrays.
However, the impact of network size on our conclusions was assessed
in a subset of simulations with networks that were constructed with
500 GCs and 75 BCs.
10
3. Results

The primary objective of this study was to address the question on
whether and how the elimination of individual ion channels impact
channel decorrelation in a DG network endowed with distinct forms of
biological heterogeneities. The very nature of the question involved
sequential traversal across three distinct scales of analyses (ion channels-
neurons-network), and required that we account for the different bio-
logical heterogeneities expressed in the DG. Therefore, we built a multi-
scale DG network, which was constructed from a heterogeneous popu-
lation of biophysically constrained and electrophysiologically validated
conductance-based neuronal models for both GCs (Fig. 1A) and BCs
(Fig. 1B). The afferent inputs to the DG network from the medial and
lateral entorhinal cortices were driven by the position of a virtual animal
traversing a 1 m � 1 m arena (Fig. 1C). We constrained the local
excitatory-inhibitory connectivity and scaled the afferent inputs from the
EC such that the firing rates of GCs and BCs matched their electrophys-
iological counterparts from in vivo recordings from awake-behaving an-
imals. We recorded firing rates from all granule cells within the network
and employed them for further analyses. This configuration provided us
with an ideal setup to understand the impact of components in the mo-
lecular scale (ion channels) on functional outcomes (channel decorrela-
tion) at the network scale, after rigorously accounting for cellular-scale

http://www.R-project.org
http://www.R-project.org
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physiological properties and how they emerge from interactions among
disparate ion channels expressed at the molecular scale. We then
employed appropriate techniques developed earlier (Mishra and Nar-
ayanan, 2019) to incorporate four distinct forms of heterogeneities into
this network (Fig. 1D), to analyze the impact of eliminating individual
ion channels on channel decorrelation in networks configured with
different sets of these heterogeneities. As a first step in our analyses, we
assessed the impact of virtually knocking out individual ion channels on
single-neuron properties of the heterogeneous GC and BC populations.

3.1. Multiple ion channels differentially impact different single-neuron
physiological features of granule and basket cells

The variable expression of a plethora of ion channels in individual
neuronal subtypes, along with the interactional complexity involving
other ion channels, bestows a neuron with its signature physiological
characteristics. Whereas certain ion channels play a dominant role in
mediating specific sub- and supra-threshold properties of neuron (e.g.,
action potential generation through an interplay between fast sodium
and delayed-rectifier potassium ion channels), others play a regulatory
role by modulating or refining fine details of neuronal physiology (e.g.,
modulation of neuronal firing rate by transient potassium ion channels).
How do the 9 different active ion channels expressed in GCs and the 4
different active ion channels in BCs impact their respective physiological
measurements?

To understand the contribution of these voltage-gated ion channels
on single-neuron physiology of the heterogeneous populations of GCs
and BCs, each independently exhibiting ion-channel degeneracy (Mishra
and Narayanan, 2019), we turned to virtual knockout models. Here, each
conductance in a given model was independently set to zero, and the 9
single-cell physiological measurements were recomputed after this vir-
tual knockout of the ion channel (Fig. 2). We repeated VKMs for all the
126 models and 9 ion channels in GC population (Fig. 1A), and the 54
models and the 4 ion channels in BC population (Fig. 1B), spanning all
the 9 physiological measurements for both populations (Fig. 3). As NaF
and KDR ion channels didn’t alter sub-threshold measurements signifi-
cantly (examples in Fig. 2), and the absence of either of these ion chan-
nels resulted in loss of action potential firing or repolarization, we have
not included these VKM results. In addition, as the firing rate of the
neuron in response to 50 pA current changed only for a small proportion
of models and knockouts, we have not incorporated that measurement
into our results. Therefore, we analyzed 8measurements each from VKMs
for 7 ion channels in the GC population, and VKMs for 2 ion channels in
the BC population (Fig. 3).

Examples of virtual knocking out each of the 9 ion channels in 4
different GC models are depicted in Fig. 2. These examples illustrate the
differential and variable response of individual models to ion channel
knockouts. Firstly, considering the example model #36 (Fig. 2A), we
noticed that the changes observed in the sub-threshold (input resistance,
Fig. 2A, left) and supra-threshold (firing rate for 150 pA pulse current
injection, Fig. 2A, right) responses were differential, with reference to
knocking out different ion channels. For instance, knocking out the CaN
ion channels did not change the input resistance or firing rate whereas
knocking out BK ion channels introduced large changes to input resis-
tance and firing rate; but knocking out either NaF or KDR ion channels
altered firing rate without altering input resistance significantly. These
observations pointed to different measurements in the samemodel being
differentially sensitive to different ion channel knockouts. Second, valid
model #36 (Fig. 2A) and #50 (Fig. 2B), respectively represent the min-
imum (100� (231–214)/214¼ 7.9%) andmaximum (100� (287–156)/
156¼ 83.9%) percentage change in Rin after virtual knockout of HCN ion
channels. Thus, whereas the contribution of HCN ion channels to Rin is
low for model #36, the contribution is higher for model #50. However,
the contribution of BK ion channels to Rin is high for model #36, whereas
it is lower for model #50. This represents the variability in the depen-
dence of different models on the same ion channel in regulating a given
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physiological measurement, and demonstrates that the contribution of a
given structural component to a functional measurement is heteroge-
neous (Rathour and Narayanan, 2019). This observation is further
emphasized by valid model #100 (Fig. 2C) and #41 (Fig. 2D), respec-
tively representing the minimum (100 � (22–15)/15 ¼ 46.6%) and
maximum (100 � (60–11)/11 ¼ 445%) percentage change in f150 after
virtual knockout of L-type calcium ion channels.

These examples emphasize the need to assess models employing un-
biased stochastic searches, and the need to account for the heterogene-
ities inherent to neuronal populations. If a hand-tunedmodel, which let’s
say arrives at parameters that are close to one of these four models, the
conclusions would be based solely on the ion channel composition in that
single hand-tuned model, arriving at biased conclusions about the role of
specific ion channels in regulating specific measurements across the
entire population of neurons. Thus, the heterogeneous population
arrived employing the unbiased stochastic search and the VKM approach
together enabled recognition and quantification of the differential and
variable dependence of different measurements on distinct ion channels
in disparate models. Specifically, the terms differential and variable are
employed here to emphasize two distinct findings: (i) the effect of a
single ion channel knockout is not the same across different physiological
measurements studied, implying a differential impact across measue-
ments; and (ii) the effect of knocking out a specific ion channel on a
single physiological measurement is not the same, thus constituting a
variable impact.

3.2. Differential impact of voltage-gated potassium and HCN ion channels
on intrinsic properties of granule and basket cells

Of the two voltage-gated potassium ion channels incorporated into
GC models, the absence of the non-inactivating KDR ion channels
resulted in improper repolarization of action potentials, and did not
considerably alter sub-threshold properties (e.g., Fig. 2). The lack of
transient KA VKMs significantly altered all supra-threshold measure-
ments (Fig. 3A–F), with greater impact on AP amplitude (Fig. 3A) and AP
half-width (Fig. 3B), also manifesting significant variability across
models (Fig. 3A–F). Importantly, although elimination of a potassium ion
channel is generally expected to increase excitability, in a large propor-
tion of models, we observed a counterintuitive reduction in firing rate
after virtual knockout of KA ion channels (Fig. 3F). However, such
counterintuitive changes to firing rates have been explained through
functional interactions across ion channels (Kispersky et al., 2012), and the
interactions between KA and other repolarizing channels have been
shown to explain similar counter-intuitive results observed with changes
in KA ion channel conductances (Anirudhan and Narayanan, 2015;
Narayanan and Johnston, 2010).

In our case, the explanation emerged from the impact of KA ion
channels on other measurements (Fig. 3 and Fig. S1). Specifically, in KA
VKMs, the AP amplitude (Fig. 3A) and AP half width (Fig. 3B) are
considerably larger, implying a higher degree of voltage-dependent
activation of KDR ion channels (Fig. S1B) and a larger influx of cal-
cium through the voltage-gated calcium ion channels (Fig. S1C),
resulting from the large-amplitude and wide action potentials. This, in
turn, results in a larger fraction of the other repolarizing ion channels
(KDR, SK and BK) opening (Fig. S1D), reflected in a larger after-
hyperpolarization (Fig. 3D, Fig. S1A) and a higher adaptation (Fig. 3E,
Fig. S1A). The large afterhyperpolarization leads to a longer time for the
membrane to charge up to threshold, and together with the higher
adaptation resulted in the observed reduction in firing rates in the large
proportion of models. Thus, the relative dominance of other ion chan-
nels in the repolarization kinetics and the enhanced action potential
amplitude in the absence of KA ion channels explains the counterintuitive
reduction in firing rate in their VKMs. As expected from the inactivating
nature of these ion channels and the hyperpolarized resting potentials of
GCs, KA ion channels did not significantly affect subthreshold mea-
surements (Fig. 3G and H).
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The lack of hyperpolarization-activated cyclic nucleotide gated ion
channels (HCN or h) in GCs introduced large and variable changes to
input resistance (Fig. 3G) and sag ratio (Fig. 3H), given its expression at
rest as well as its hyperpolarization-induced activation profile. This
robust impact on sub-threshold properties of neuron also translated to
mild changes to other supra threshold measurements (Fig. 3A–F).

In the BC population, very similar to their counterparts in the GC
population, HCN ion channels dominantly influenced sub-threshold
measurements (Fig. 3G and H). However, in contrast to majority of the
GC models, here VKMs of KA ion channels exhibited strong increase in
firing rate (Fig. 3F), which was consistent with a lack of change in AP
amplitude (Fig. 3A) and half width (Fig. 3B) in KA VKMs of these
neurons.

3.3. Differential impact of voltage-gated calcium and calcium-activated
potassium ion channels on intrinsic properties of granule cells

The granule cell model employed in this study expressed three
voltage-gated calcium ion channels. We noted that the elimination of
the non-inactivating CaL ion channels had the largest impact on ISI
ratio (Fig. 3E) and firing rate (Fig. 3F), but showed very little effect on
both subthreshold measurements (Fig. 3G–H). There was significant
variability on how these ion channels altered firing rate and ISI ratio
Fig. 6. Virtual knockout of individual ion channels from granule cells resulted
endowed with distinct heterogeneities and receiving heterogeneous afferent inp
represented as quartiles. Firing rate of each cell was computed from the spike coun
obtained using Wilcoxon signed rank test, where the change in firing rate was teste
distribution of inter-neuronal pairwise firing rate correlation coefficients for netwo
individual ion channels. Shown are plots for the base model network and for the n
knocked out. In comparing the graphs in panel B to those in Fig. 5B, note that the X
Distribution of percentage changes in correlation coefficients for neuronal response
Shown are plots corresponding to percentage changes in networks built with GC neur
are shown for simulations performed with three distinct networks and associated virt
GC population of heterogeneous age (center) and network with a fully immature GC
synaptic heterogeneities. Neurons in the network received heterogeneous afferent in
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on different models (Fig. 3E and F). Elimination of the inactivating N-
type calcium ion channels did not introduce large changes in any of
the sub- or supra-threshold measurements considered here, and the
variability across models was lower as compared to the variability
across CaL VKMs. VKMs of the low-voltage activated inactivating CaT
ion channels exhibited small and variable changes in AP threshold
(Fig. 3C), fast afterhyperpolarization (Fig. 3D), ISI ratio (Fig. 3E) and
firing rate (Fig. 3F). In addition, given their low-voltage activation,
CaT ion channels also impacted input resistance to a small extent
(Fig. 3G).

Turning to calcium-activated potassium ion channels, the VKMs of
either BK or SK ion channels showed the largest and highly variable
impact on ISI ratio (Fig. 3E) and on firing rate (Fig. 3F), having relatively
weaker impact on the other sub and supra threshold measurements.
Based on the similarity in the outcomes of knocking out CaL or the
calcium-activated potassium ion channels on physiological responses, we
reasoned the increase in excitability after CaL knockouts to be conse-
quent to their interactions with the calcium-dependent potassium ion
channels. Our BC model did not contain any calcium- or calcium-
activated potassium channels.

Together, our analyses of the impact of different ion channels on
single-neuron physiology of the heterogeneous GC and BC populations
demonstrated differential and variable dependence of the various
in differential and variable impact on channel decorrelation in networks
uts. A, Difference in firing rates (Eq. (12)) for all granule cells in the network,
t of the cell for the entire 1000 s traversal of the virtual animal. p values were
d for significance from a “no change” scenario. ***: p < 0.001. B, Cumulative
rks built with either the base models, or with models after virtual knockout of
etworks built with GC neurons where one of the 7 ion channels was virtually
axes of graphs in this panel span –0.5 to 0.5, and not –1 to 1 as in Fig. 5B. C,
s from the VKM network, compared to the respective base model coefficients.
ons where one of the 7 ion channels was virtually knocked out. For (A–C), plots
ual knockouts: network with a fully mature GC population (left), network with a
population (right). Note that all three networks are endowed with intrinsic and
puts.
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physiological measurements on these ion channels. Importantly, the
mapping between ion channels and physiological measurements was
many-to-many (but not all-to-all), where different ion channels affected
any given measurement (differential) and any specific ion channel altered
several measurements (variable).
3.4. Virtual knockout of individual ion channels across GCs introduced
differential and variable scaling of firing rate profiles and associated spatial
maps in DG network

We built a model of the DG microcircuit comprised of GCs and BCs,
receiving local-circuit connections and afferent inputs that were driven
by the movement of virtual animal, to assess the impact of ion-channel
elimination on network function. We computed the firing rate profile
and associated spatial maps of individual GCs for the entire arena
(Fig. 1C), and assessed the impact of individual ion-channel knockouts
from GCs on their firing rate profiles and spatial maps with reference to
the virtual animal traversal (Fig. 1C). In performing VKM simulations at
the network scale, everything else in the network was set identical to
baseline conditions, including the specific spatio-temporal trajectory of
the virtual animal in the arena, except for knocking out one specific ion
channel from all GCs in the network. The procedure was repeated for the
7 GC ion channels, and the firing rates of networks built with the VKMs
were compared with those of the network with base models, under two
scenarios involving neurons in the network receiving identical (Figs. 4
and 5) or heterogeneous (Fig. S2, Fig. 6) afferent inputs.

The impact of virtually knocking out each of the 7 GC ion channels on
firing rate profiles and spatial map profiles of four different example GCs
residing in two distinct networks are shown in Fig. 4 (identical afferent
inputs) and Fig. S2 (heterogeneous afferent inputs). Reminiscent of
Fig. 7. The impact of virtual knockout of individual ion channels on the deg
knocked out, and reduced in the presence of immature neurons. A, Pairwise re
input correlation, for the base model network and for networks built with GC neurons
in response (output) decorrelation in VKM networks with reference to the corresp
correlation. For (A–B), plots are shown for simulations performed with three distin
population (left), network with a GC population of heterogeneous age (center) and ne
are endowed with intrinsic and synaptic heterogeneities. In all cases, network outcom
or heterogeneous afferent input, respectively. Note that the input correlation is unity f
specific pairs of inputs when the network receives heterogeneous inputs.
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observations with single-neuron physiological measurements (Fig. 3), we
found differential impact of different ion channel knockouts on the pro-
files of the same neuron, and variable impact of knocking out the same ion
channel on different neurons within the same network. For instance, in
Fig. 4, in GC #50 (Fig. 4A), deletion of either HCN or BK ion channels
resulted in large increases in firing rate, whereas KA VKMs exhibited
reductions in firing rates and the other knockouts did not elicit significant
differences in firing rate profiles across space. With reference to vari-
ability in the impact of knockouts, in GC #44 within the same network
(Fig. 4B) recorded during the same virtual traversal, BK, CaL or CaT
VKMs did not have a significant effect, but deletion of CaL, SK or HCN ion
channels resulted in increased firing rates and KA VKMs again exhibited
reduced firing rates. The firing rate changes were introduced by knock-
outs belonged to two broad categories: multiplicative scaling, where
changes were restricted to the locations where the base model fired (e.g.,
SK VKM of GC #44 compared to its baseline of Fig. 4B), and additive
scaling, where there was a shift in the entire firing profile (e.g., HCN VKM
of GC #44 compared to its baseline of Fig. 4B). In some cases, we
observed a combination of multiplicative and additive scaling (e.g., BK
VKM of GC #50 compared to its baseline of Fig. 4A). As the network
depicted in Fig. 4 received identical EC inputs, it may be noted that the
place field locations were identical across the two cells, with differences
only in firing rates between these two cells and across knockouts. We
confirmed these observations to also extend to a network endowed with
afferent heterogeneities (Fig. S2). Specifically, the differential (e.g., SK vs.
BK VKMs of GC #84 in Fig. S2) and variable (e.g., BK VKMs of GC #84 in
Fig. S2A vs. GC #44 in Fig. S2B) responses to ion channel knockouts in
the same set of neurons within the same network during the same virtual
traversal were observed. Firing rate changes were scaled either multi-
plicatively (e.g., KA VKMs of GC #44 in Fig. S2B) or additively (e.g., HCN
ree of channel decorrelation depends on the specific ion channel being
sponse (output) correlation plotted as a function of the corresponding pairwise
where one of the 7 ion channels was virtually knocked out. B, Percentage change
onding channel decorrelation in the base model, plotted as functions of input
ct networks and associated virtual knockouts: network with a fully mature GC
twork with a fully immature GC population (right). Note that all three networks
es are represented as solid or open circles, when the network received identical
or networks receiving identical inputs, whereas input correlation is dependent on



Fig. 8. Functional resilience to ion-channel elimination introduced by the incorporation of immature neurons was prevalent in a larger network. A,
Pairwise response (output) correlation plotted as a function of the corresponding pairwise input correlation, for the base model network and for networks built with
GC neurons where 3 of the 7 ion channels was virtually knocked out. B, Percentage change in response (output) decorrelation in VKM networks with reference to the
corresponding channel decorrelation in the base model, plotted as functions of input correlation. For (A–B), plots are shown for simulations performed with three
distinct networks and associated virtual knockouts: network with a fully mature GC population (left), network with GC population of heterogeneous age (middle) and
network with a fully immature GC population (right). Note that all the networks are endowed with intrinsic and synaptic heterogeneities.
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VKMs of GC #44 in Fig. S2B) or both (e.g., BK VKMs of GC #44 in
Fig. S2A). However, as the network depicted in Fig. S2 received het-
erogeneous EC inputs, the place field locations were different between
the two cells within the same network during the same virtual traversal.
Virtual knockouts, however, merely scaled the firing rates of individual
cells, without altering the position of place fields where a given cell was
firing (e.g., compare the firing profiles and spatial maps of GC #84 in
Fig. S2A under baseline conditions and in the VKM network).

3.5. Virtual knockout of individual ion channels across GCs resulted in
larger changes in firing rate profiles in networks containing immature
neurons

We quantified these variable and differential responses of neural
firing to the virtual knockout of different ion channels across the entire
population of GCs for network receiving identical (Fig. 5A) or heteroge-
neous (Fig. 6A) EC inputs, with different degrees of neurogenesis-driven
structural heterogeneity. With reference to degrees of structural hetero-
geneities, we employed three configurations (Mishra and Narayanan,
2019): two networks with fully mature or fully immature GC populations,
which did not have any structural heterogeneities and a network that was
endowed with a heterogeneous structural properties (Figs. 5 and 6).
Whereas the fully mature population refers to a scenario where there are
no new neurons integrated into the circuit, the fully immature population
is an artificial setting where all neurons are immature with less surface
area and the heterogeneous population is reflective of a more natural
milieu where neurons are at different stage of maturation. Although the
quantitative changes in firing rate were dependent also on the specific
kind of structural heterogeneities expressed in the network, the direction
and strength of changes in GC firing rate in a network were similar to
those at the single-neuron scale (compare Figs. 5A and 6A with Fig. 3F).
Specifically, in a large proportion of GCs, knockout of CaL or BK ion
channels introduced large increases in firing rate, elimination of CaN or
CaT or HCN or SK ion channels resulted in relatively smaller increases in
firing rate, and KA ion channel VKMs exhibited relatively small reduction
in firing rate compared to their respective base models. Interpretations of
14
changes, however, should not be drawn from the summary statistics, but
should be driven by heterogeneities (Rathour and Narayanan, 2019;
Marder and Taylor, 2011). It should be noted that there are significant
differences in different neurons in the same network during the same
virtual traversal in terms of which ion channel plays a dominant role in
altering firing rate (Figs. 4–6; Fig. S2).

Quantitatively, although the strength of afferent drive was scaled
depending on the maturity (surface area) of the neuron to ensure that
network firing rates were comparable across the three networks, VKMs
resulted in larger changes in firing rates in networks endowed with
immature neurons. This was irrespective of whether the network
received identical (Fig. 5A) or heterogeneous (Fig. 6A) afferent inputs.
This should be expected because of the higher excitability of the rela-
tively immature neurons, whereby even smaller changes to currents
(here due to loss of specific ion channels) result in larger changes to
voltage responses. Together, virtual knockout of individual ion channels
across GCs resulted in differential and variable scaling of firing rate
profiles and associated spatial maps, with larger changes observed in
networks where immature neurons were present.

3.6. The impact of eliminating individual ion channels on channel
decorrelation was differential and variable in networks endowed with
different heterogeneities

The anatomical location of the DG, its unique features of sparse and
diverse connectivity in conjunction with the expression of adult neuro-
genesis has led to postulates of its role in response decorrelation and
pattern separation. Channel decorrelation, one form of decorrelation of
network responses, is assessed by computing pair-wise correlations
across temporally aligned outputs of individual neurons (information
channels) within the network, when inputs corresponding to a single
virtual arena traversal arrive onto the network. It has been established
that distinct forms of network heterogeneities could synergistically
interact with each other in mediating channel decorrelation in the DG,
apart from establishing a dominance hierarchy among these forms of
heterogeneities when they co-expressed (Mishra and Narayanan, 2019).
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Does altering neuronal intrinsic properties through virtual knockout of
individual ion channels regulate channel decorrelation in the DG
network?

We plotted the distribution of pairwise correlation coefficients of
firing rate profiles of the different GCs in the network, for the base
network (where all ion channels were intact), and for each of the 7 GC
VKMs. We repeated this procedure for scenarios where inputs from EC
were identical (Fig. 5B) or heterogeneous (Fig. 6B), for different degrees
of structural heterogeneity in each case. We found differential effects of
knocking out different ion channels on channel decorrelation in these
networks. Consistent with previous observations (Mishra and Narayanan,
2019), we noted that the degree of decorrelation observed in networks
with heterogeneous afferent inputs (Fig. 6B) was higher than networks
with identical afferent inputs (Fig. 5B). We also confirmed prior obser-
vations (Mishra and Narayanan, 2019) that the impact of different
structural heterogeneities on networks receiving identical EC inputs was
higher than the impact on networks receiving heterogeneous EC inputs
(compare the base model distributions of correlation coefficients across
the three different forms of heterogeneities in Fig. 5B vs. Fig. 6B).
However, qualitatively, the effects of knocking out different ion channels
on channel decorrelation were consistent across different network con-
figurations, each endowed with distinct afferent and structural hetero-
geneities (Figs. 5B and 6B).

Specifically, across the different network configurations, elimination
of either BK or CaL ion channels from the GCs of the network resulted in
large rightward shifts in the cumulative distribution of response corre-
lation coefficients, indicative of a reduction in channel decorrelation
(Figs. 5B and 6B). On the other hand, virtual knockout of KA ion channels
resulted in a significant leftward shift in the cumulative distribution of
response correlation coefficients, indicating enhanced decorrelation in
these networks. The other VKMs, of CaN, CaT, SK and HCN ion channels,
resulted in relatively smaller shifts to the correlation coefficient distri-
butions (Figs. 5B and 6B). These observations were further confirmed by
the distributions of VKM-induced percentage changes in correlation co-
efficients for networks receiving identical (Fig. 5C) or heterogeneous
(Fig. 6C) afferent inputs, and endowed with different degrees of struc-
tural heterogeneities.

Together, these analyses demonstrated that the impact of eliminating
individual ion channels from DG granule cells on network-scale channel
decorrelation was differential and variable, in heterogeneous networks
receiving either identical or heterogeneous afferent inputs.

3.7. Networks endowed with high-excitability immature neurons
manifested resilient channel decorrelation after virtual knockout of ion
channels

The correlation plots presented with scenarios where the DG network
received identical (Fig. 5) or heterogeneous (Fig. 6) afferent inputs were
with reference to the response correlation of the network output.
Whereas such macroscopic analyses of network outcome provides in-
sights about the overall ability of the network to discriminate, it is
essential that output correlations are assessed with reference to their
respective input correlations, spanning all pairs of neurons in the
network. Across pairs of neurons in the network, how did the elimination
of individual ion channels alter output response correlation as a function
of different input correlations? Did ion channel knockouts specifically
affect inputs with lower or higher correlation? Did the presence of
neurogenesis-induced structural differences in the DG network alter the
quantitative impact of different ion channel knockouts on channel
decorrelation?

To address these questions, we placed output correlation coefficients
of neuronal pairs into specific bins corresponding to their respective
input correlation coefficients, and plotted the statistics of output corre-
lations as functions of input correlations (Mishra and Narayanan, 2019).
Our experimental design involving identical and heterogeneous afferent
inputs provided us an ideal setting to assess output correlations over a
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broad span of input correlations. Specifically, whereas the network with
identical afferent inputs had an input correlation of unity across all
neuronal pairs, the network with heterogeneous afferent inputs was
endowed with a range of pairwise input correlation coefficients
depending on the specific nature of inputs that the neurons received
(Fig. 7A). As established earlier (Mishra and Narayanan, 2019), the base
network (where all ion channels were intact) manifested robust channel
decorrelation, whereby the average output correlation coefficients were
lesser than the average input correlation across all observed input cor-
relations (Fig. 7A; black traces).

When we measured the output correlations as functions of their
respective input correlations after elimination of individual GC ion
channels, we made two important observations. First, in the presence of
immature neurons, either in a network that was constructed entirely with
immature neurons or in a network that was endowed with structural
heterogeneities, we found that the amount of VKM-induced changes in
channel decorrelation to be lesser compared to a network that was con-
structed of mature neurons (Fig. 7A). This was also reflected in the per-
centage changes observed in output correlation plotted as functions of
input correlations (Fig. 7B). Second, for a given VKM, the average per-
centage change in output correlation was invariant to the average input
correlation, across networks endowed with different structural and
afferent heterogeneities (Fig. 7B). This implies that under molecular
perturbations, in spite of the dominant nature of afferent heterogeneity
(Mishra and Narayanan, 2019) over local heterogeneities in mediating
channel decorrelation, elimination of different ion channels results in
differential impacts on response decorrelation. Although some VKMs
elicited an enhancement and other introduced a reduction in the corre-
lation coefficients, and although the quantitative changes were depen-
dent on the specific heterogeneities expressed in the network (Figs. 5–7,
Fig. S2), the average percentage changes in output correlation was
largely independent of the specific values of input correlation (Fig. 7B).
This observation extended to output correlation coefficients measured
for identical inputs (input correlation coefficient ¼ 1) as well (Fig. 7B).

To test the robustness of our conclusions to changes in network size,
we repeated our analyses in Fig. 7 with a larger network size comprised
of 500 GCs and 75 BCs (Fig. 8). Based on the above results on ion
channels whose knockout results in significant and large changes to
channel decorrelation, we selectively performed virtual knockout simu-
lations for three ion channels: BK, CaL and KA. Given the comparatively
large computational cost associated with such large conductance-based
networks, we performed the simulations for two network configura-
tions that were endowed with intrinsic and synaptic heterogeneities, but
differed only in terms of structural heterogeneity: a network comprised of
mature cells (Fig. 8A, left), other comprised of immature DG neurons
(Fig. 8A, right) and a third that was endowed with neurogenesis-induced
structural heterogeneities (Fig. 8A, middle). Consistent with our conclu-
sions with a smaller network, we found that networks comprised of
immature neurons were resilient to the ion channel perturbations as
compared to the network endowed with only intrinsic and synaptic
heterogeneity (Fig. 8).

Together, these analyses demonstrated that the impact of ion channel
elimination on channel decorrelation was lower in the presence of
structurally immature high-excitability neurons. In addition, these ana-
lyses show that for any given ion channel knockout, the average per-
centage change in output correlation was invariant to the specific values of
input correlation. Importantly these conclusions on functional resilience
in the presence of structurally immature neurons and on the invariance of
percentage changes in output correlation to specific values of input
correlations were robustly observed in networks of different sizes.

3.8. Virtual knockout of either the KA or the HCN ion channels from
basket cells did not significantly alter GC firing rates or network
decorrelation

Thus far, our analyses were confined to VKMs of GC neurons. What is



P. Mishra, R. Narayanan Current Research in Neurobiology 2 (2021) 100007
the impact of altering ion channel composition in the basket cells of the
network? We measured GC firing rates and decorrelation across GC re-
sponses in networks built with BCs lacking either the KA or the HCN ion
channels (Fig. S3). We compared these outcomes with the base network
(where all ion channels were intact), and found that elimination of either
KA or HCN ion channels from BCs did not considerably alter GC firing
rates across the network or introduce prominent changes in channel
decorrelation computed across GC responses. This was consistent across
networks with different configurations involving disparate combinations
of structural and afferent heterogeneities (Fig. S3). We noted these to be
simply a reflection of the relatively minor role played by the two ion
channels in regulating BC intrinsic properties (Fig. 3).

4. Discussion

In this study, employing sequential multi-scale analyses, we system-
atically assessed the impacts of eliminating individual ion channels on
single-neuron physiological properties, on network excitability and on
channel decorrelation in DG networks. At the single-neuron scale, our
analyses revealed that the mapping between ion channels and physio-
logical measurements was many-to-many. At the network scale, the
impact of knocking out individual ion channels was differential and
variable both in terms of affecting network firing rates and channel
decorrelation, but also was critically reliant on the specific local het-
erogeneities expressed in the DG network. Importantly, in the presence of
structurally immature neurons in the DG network, the impact of ion
channel elimination on channel decorrelation was considerably lower
when compared with a network exclusively constructed with structurally
mature neurons. These results highlight the role of local heterogeneities
in regulating the resilience of the DG network to large network-wide
perturbations to neuronal ion channel composition. Our analyses also
showed that for a given VKM, the average percentage change in output
correlation was invariant to the specific values of input correlation.

4.1. Heterogeneities in ion channel regulation of neuronal and network
physiology

The ubiquitously expressed variability in ion channel expression in
each of the several neuronal subtypes imparts unique features to single
neuron and network physiology. First, this variability forms the substrate
for ion-channel degeneracy where similar physiological outcomes are
achieved through disparate combinations of ion channels and their
properties. This provides neurons with considerable flexibility in main-
taining robustness of their signature physiological characteristics,
without strong constraints on ion channel expression profiles (Drion
et al., 2015; Rathour and Narayanan, 2019; Goldman et al., 2001; Marder
and Goaillard, 2006). Second, the variability in ion channel expression
profiles implies that the response of neurons to even identical stimuli
could be distinct, depending on the specific ion channels that are
expressed, on the state of the neuron, on the afferent stimulus and how
they activate/deactivate/inactivate the different ion channels, on the
impact of different neuromodulators, and on activity-dependent plas-
ticity profiles of and interactions among these ion channels. This allows
such intrinsic variability to form a substrate for decorrelating afferent
stimuli (Mishra and Narayanan, 2019; Padmanabhan and Urban, 2010).

Third, depending on variable expression and the specific interactions
among different ion channels, emergent properties could result in
counter-intuitive observations that are perfectly explained by synergistic
interactions (Drion et al., 2015; Kispersky et al., 2012). For instance, an
increase in KA conductance is typically expected to reduce excitability,
consequently reduce the calcium influx into the cytosol and shift
frequency-dependent plasticity profiles to the right. However, under
certain scenarios, owing to interactions of these conductances with the
KDR conductance, an increase in KA conductance results in enhanced
calcium influx and leftward shifts to plasticity profiles (Anirudhan and
Narayanan, 2015; Narayanan and Johnston, 2010). Similarly, we
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observed a counter-intuitive reduction in firing rate as a consequence of
eliminating KA conductances. This was effectuated by the enhanced
activation of other potassium ion channels consequent to larger and
wider action potentials (Fig. 3).

Although the expression of KA conductances in DG granule cells has
been established (Beck et al., 1992; Peng et al., 2013; Alfaro-Ruiz et al.,
2019; Serodio and Rudy, 1998; Sheng et al., 1992; Varga et al., 2000;
Rhodes et al., 2004; Monaghan et al., 2008; Ruschenschmidt et al.,
2006), heterogeneities in the impact of acutely eliminating KA ion
channels have not been systematically assessed. Future studies should
employ different techniques to assess heterogeneities in the impact of
such elimination on neuronal firing rates. These experiments are espe-
cially important in light of the strong expression of calcium-activated
potassium ion channels in DG granule cells (Aradi and Holmes, 1999;
Mateos-Aparicio et al., 2014; Brenner et al., 2005; Sailer et al., 2002).
These acute blockade experiments should be coupled with systematic
location-dependent recordings of KA currents (Hoffman et al., 1997)
from the dendrites of DG granule cells, coupled with morphologically
realistic computational models accounting for subcellular ion channel
distributions (Beining et al., 2017). Such experiments would provide
important insights about the specific roles of gradients in ion channel
expression and spatiotemporal interactions between ion channels
(Rathour et al., 2016; Rathour and Narayanan, 2012a; Rathour and
Narayanan, 2012b, 2014).

In relation to the impact of neural heterogeneities mentioned above,
our previous study (Mishra and Narayanan, 2019) established de-
generacy in the emergence of channel decorrelation, specifically
demonstrating that disparate forms of heterogeneities could combine to
elicit similar levels of channel decorrelation. We had demonstrated that
local heterogeneities contribute to decorrelation of identical afferent
stimuli, and had established a dominance hierarchy among different
forms of heterogeneities, specifically showing afferent heterogeneities to
be the dominant form (Mishra and Narayanan, 2019). In contrast, here
our focus is on assessing the specific roles of individual ion channels in
channel decorrelation. In addition, we demonstrate a critical role for
distinct forms of local heterogeneities, specifically of
neurogenesis-induced structural heterogeneities, in providing functional
resilience in the face of perturbations. We have made explicit testable
predictions about individual ion channels, and explore in detail the
mechanistic basis for why results were the way they were (including
counterintuitive conclusions such as the ones involved with A-type po-
tassium ion channel knockout).

From the spatial encoding perspective, hippocampal place maps are
known to be flexible, whereby the neural code of space remaps to mirror
the animal’s behavioral experience (Dupret et al., 2010). One such
remapping is where the firing rate of a place cell could undergo changes
in response to environmental changes, with these changes also changing
in a field-specific manner (Leutgeb et al., 2005, 2007). Such rate
remapping has been postulated to permit the distinctiveness of sensory
events while maintaining the integrity of the spatial code (Renno-Costa
et al., 2010). Our results show that modulation of intrinsic properties,
either through neuromodulatory action or through activity-dependent
plasticity could form a putative substrate for rate remapping. Within
this framework, field-specific rate remapping (Leutgeb et al., 2005, 2007)
could be achieved through differential neuromodulatory tones that are
altered in a field-specific manner (as a potential consequence of behav-
ioral associations to individual fields).

Together, we propose that the multi-scale approach presented and
analyzed here, involving multiple forms of biological heterogeneities
could be employed as a powerful tool to assess the cascading impact of
lower-scale perturbations to higher-scale function. Although our analyses
has been focused on knockouts of individual ion channels, this approach
could be extended to the analyses of graded perturbations to ion channels
and to other molecular components, including receptors, pumps, trans-
porters and signaling molecules involved in regulating cellular
physiology.
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4.2. Variability breeds robustness: Implications for the expression of local
heterogeneities on ion channel regulation of channel decorrelation

Although there are several detailed studies on the variable role of
individual ion channels in altering single neuron physiology (previous
section), the extension of such analyses assessing the variable roles of
individual ion channels to network scale functions have been far and few
(Padmanabhan & Urban, 2010, 2014; Prinz et al., 2004; Morgan et al.,
2007; Schneider et al., 2012; Yim et al., 2015). Our analyses highlight the
importance of individual ion channels and local heterogeneities to
network-scale decorrelation even with the expression of the dominant
afferent heterogeneities.

From a memory-encoding standpoint, it has been argued that DG
neurons could act as engram cells, through changes in neuronal proper-
ties including cell-autonomous plasticity to membrane excitability (Tit-
ley et al., 2017; Tonegawa et al., 2018; Zhang and Linden, 2003; Yim
et al., 2015; Stegen et al., 2012; Rao-Ruiz et al., 2019; Josselyn and
Frankland, 2018; Kim and Linden, 2007; Gallistel, 2017). How do such
changes in intrinsic properties alter network-scale decorrelation? From a
pathophysiological standpoint, acquired or inherited channelopathies
are associated with several neurological disorders and have been shown
to be prevalent within the DG as well (Brenner et al., 2005; Kirchheim
et al., 2013; Young et al., 2009; Stegen et al., 2009; Bender et al., 2003;
Surges et al., 2012; Kohling and Wolfart, 2016; Beck and Yaari, 2008).
How does the network respond to such strong perturbations to ion
channel composition, especially from the functional standpoint of
response decorrelation? In addressing these questions, our analyses show
that mnemonic or pathophysiological intrinsic plasticity could alter the
degree of decorrelation, apart from providing a quantitative framework
to address this question in a neuron-specific and ion channel-specific
manner. We postulate that the expression of local heterogeneities could
help the network stay resilient to large ion channel perturbations. The
specific impact of these ion-channel perturbations to channel decorre-
lation would depend on several factors, including the identity of the ion
channel(s) involved, the answer to the question on what other compo-
nent(s) changed, the nature of inputs to the network, the interactions of
these altered components with other components in the network and the
specific sets of heterogeneities expressed in the network.

Furthermore, during the maturation process following generation of
new neurons, it has been established that certain ion channels might not
express during early stages of maturation (Lodge and Bischofberger, 2019;
Ambrogini et al., 2004; Overstreet-Wadiche et al., 2006; Over-
street-Wadiche and Westbrook, 2006; Piatti et al., 2006). Therefore, the
scenario analyzed here with the elimination of specific ion channels in
immature neurons is equivalent to the absence of these ion channels
during maturation.
4.3. Limitations and future directions

In our study, we had analyzed the impact of complete elimination of
individual ion channels. However, our conductance-based multi-scale
modeling framework could be employed to assess the impact of pertur-
bation to specific sets of ion channels that are observed under physio-
logical or pathophysiological conditions. In such scenarios, the
heterogeneous impact of changes could also be incorporated within the
framework to make specific predictions on how network function would
change under heterogeneous plasticity in different network components.
Although our analyses here are with reference to channel decorrelation,
future studies could explore the impact of individual ion channels on
pattern decorrelation within the same framework, which would provide
specific insights into the role of distinct forms of heterogeneities and
different ion channels on pattern separation. Such analyses should focus
on ion-channel regulation of separation of input patterns, encoded not
just as firing rate but also through temporal codes (Madar et al., 2019).
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In this study, our focus was on perturbations to ion channels
expressed in the GC and BC populations. The network model did not
incorporate other DG cell types, including the mossy cells, the molecular
layer perforant path-associated cells, the semilunar granule cells and
other interneurons that are prevalent within the DG (Amaral et al., 2007;
Li et al., 2012; Scharfman andMyers, 2012; Williams et al., 2007). Future
studies could explore the impact of heterogeneities and ion-channel
perturbations in these different neuronal subtypes on neuronal network
physiology. Furthermore, we incorporated adult neurogenesis into the
DG network through three changes: (i) structural changes in neurons
reflecting reduced surface area of granule cells thereby matching the
increased excitability of immature cells (Aimone et al., 2014; van Praag
et al., 2002); (ii) reduction of the overall afferent drive to neurons based
on their surface area, so that reduced drive in immature neurons coun-
terbalanced their high excitability Li et al. (2017); Mongiat et al. (2009);
Dieni et al. (2016); and (iii) the orthogonal afferent connectivity, actively
driven by adult neurogenesis (Li et al., 2017; Lodge and Bischofberger,
2019; Aimone et al., 2006, 2009; Luna et al., 2019), was incorporated as
afferent heterogeneities into the network model. Future models could
incorporate the array of neurogenesis-induced changes, including those
in the expression of ion channels, receptors, calcium handling and dif-
ferential plasticity profiles (Li et al., 2017; Lodge and Bischofberger,
2019; Aimone et al., 2006, 2009, 2014; Luna et al., 2019; van Praag et al.,
2002; Mongiat et al., 2009; Gonzalez et al., 2018; Stocca et al., 2008),
into heterogeneous network models that also account for activity-driven
plasticity and the emergence of afferent heterogeneities.

The testable predictions presented here on the specific roles of indi-
vidual ion channels could be electrophysiologically tested, both from the
single-cell and network perspectives employing pharmacological agents
to block specific ion channels or employing genetic methods to silence
specific ion channels. Our analyses also presents a specific testable pre-
diction on the role of neurogenesis-induced heterogeneities in confering
functional resilience of the DG network to molecular-scale perturbation.
These predictions could be directly tested by recording spike trains from
multiple DG granule cells as the animal traverses an arena in the presence
of ion channel blockers or manipulations that would alter adult neuro-
genesis, and computing channel decorrelation of firing rates across these
different neurons. In such analyses, interpretations should account for
potential compensatory and activity-dependent plasticity mechanisms
that follow the elimination of individual ion channels, and the possibility
of conjunctive changes in several ion channels induced by activity-
dependent plasticity or neuromodulation or pathological conditions
(Yim et al., 2015; Stegen et al., 2009, 2012; Young et al., 2009; Bender
et al., 2003; Surges et al., 2012; Beck and Yaari, 2008; Mishra and Nar-
ayanan, 2020a). In the context of compensatorymechanisms triggered by
ion-channel elimination, a limitation of our model is that analyses is
restricted to the acute impact of ion channel elimination. Future
computational studies could incorporate frameworks that account for
compensations triggered by ion-channel knockouts through conjunctive
changes in several channels (Srikanth and Narayanan, 2015; O’Leary,
2018; O’Leary et al., 2013; O’Leary et al., 2014) in analyzing the role of
compensations in excitability and DG decorrelation.
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