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Abstract

The fight against cancer is hindered by its highly heterogeneous nature. Genome-wide

sequencing studies have shown that individual malignancies contain many mutations that

range from those commonly found in tumor genomes to rare somatic variants present only

in a small fraction of lesions. Such rare somatic variants dominate the landscape of genomic

mutations in cancer, yet efforts to correlate somatic mutations found in one or few individu-

als with functional roles have been largely unsuccessful. Traditional methods for identifying

somatic variants that drive cancer are ‘gene-centric’ in that they consider only somatic vari-

ants within a particular gene and make no comparison to other similar genes in the same

family that may play a similar role in cancer. In this work, we present oncodomain hotspots,

a new ‘domain-centric’ method for identifying clusters of somatic mutations across entire

gene families using protein domain models. Our analysis confirms that our approach creates

a framework for leveraging structural and functional information encapsulated by protein

domains into the analysis of somatic variants in cancer, enabling the assessment of even

rare somatic variants by comparison to similar genes. Our results reveal a vast landscape of

somatic variants that act at the level of domain families altering pathways known to be

involved with cancer such as protein phosphorylation, signaling, gene regulation, and cell

metabolism. Due to oncodomain hotspots’ unique ability to assess rare variants, we expect

our method to become an important tool for the analysis of sequenced tumor genomes,

complementing existing methods.

Author summary

The analysis of somatic variants in sequenced tumor samples is important for understand-

ing the molecular disruptions that underlie the vast differences in individual cancer phe-

notypes or response to treatment. In order to understand which somatic mutations are

functionally important for the initiation or progression of cancer, traditional analyses are
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‘gene-centric’ in that they focus on single genes with high mutation frequency in tumor

samples. However, many genes with experimental evidence of cancer involvement are

found to be mutated in only a few tumor samples, hampering the data-driven identifica-

tion of important genes. In our analysis, we leverage decades of important findings from

structural genomics into the study of somatic variants by utilizing conserved protein

domain families. Our method identifies ‘oncodomain hotspots’, sites within protein

domain families with high mutation frequency in tumor samples. This enables our

method to assess the importance of even rare variants by comparing to other genes with

the same protein domain. By incorporating the structural and functional context encapsu-

lated in protein domain families, we can identify even rare somatic variants in 5,437

genes, 3,041 of which are novel gene associations to cancer but are similar in structure

and/or function to known cancer genes.

Introduction

In recent years, studies analyzing sequenced tumor genomes have seen a drastic increase in their

sample sizes, growing from only a handful samples to cohorts of several thousand patients. This

rise in availability of sequenced tumor samples has enabled the comparative analysis of tumors

originating from different tissues, revealing a diverse tissue-specific genomic landscape of muta-

tional patterns [1–6]. Revelations of this complexity observed in sequenced tumor samples has

led to new insights into cancer genomics. However, identifying which somatic variants are the

“drivers” behind initiation or progression of cancer is confounded due to the high prevalence of

“passenger” mutations that occur with low frequency but are thought to have no functional effect

[7,8]. Thus, despite the increase in tumor-derived data, we are unable to understand whether the

vast majority of somatic variants in tumor samples have any functional role.

Towards understanding which somatic variants influence the initiation or progression of

cancer, much work has been devoted to the cataloging of sequencing data in repositories like

the Catalog of Somatic Variants in Cancer (COSMIC) [9] and to manually curated lists of

genes with evidence of cancer involvement in GeneCards [10], the Cancer Gene Census

(CGC) [11], the NCI Cancer Gene Index [12], the “proto-oncogene” and “tumor suppressor”

classifications in the UniProt [13] database, the Network of Cancer Genes [14], and the

TSGene database [15]. Massive ongoing sequencing projects like The Cancer Genome Atlas

(TCGA) have discovered thousands of genes that are mutated in only a small fraction of

tumors yet may still be important for cancer initiation or progression [7,16–18]. This has led

to a rise in the availability of tools for analyzing and visualizing data [19–23] and also for iden-

tifying genes in tumor samples that are likely to harbor somatic variants that drive cancer initi-

ation or progression [1,2,24,25]. Traditionally, methods for identifying important genes in

tumor samples identify genes that are significantly enriched with somatic variants by cluster-

ing somatic variants by genes for statistical analysis. Clustering variants by gene regions is

the natural choice since genes are units of inheritance and much is known about the function

of particular genes. Not surprisingly, gene-centric studies of TCGA data have been able to

recapitulate much of the knowledge about cancer genetics derived from decades of studies

[1,2,6,24,25]. For instance, methods like the Cancer Mutation Prevalence Score (CaMP Score)

in Sjöblom et al. [1], Wood et al. [2], and MutSigCV in Lawrence et al. [24] employ frequency-

based analyses to identify regions of the genome (i.e., genes) that contain more mutations than

expected by chance given a background of randomly occurring passenger mutations. How-

ever, the gene-centric analysis of individual cancer data relies on the relative frequency of all

Oncodomains
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variants in a gene in sequenced tumor samples and is likely to miss variants that influence can-

cer progression that occur with relatively low frequency in the population. Even in the early

years of such gene-centric data-driven analyses of sequenced tumor genomes like the CaMP

Score, it was discovered that the genomic landscapes of somatic mutations in cancer were

dominated by ‘gene hills’, or gene regions that are mutated at a low frequency. Indeed, it has

been shown that even well-studied genes in cancer are mutated in only a small portion of

tumor samples [18,26]. Thus, to identify infrequently mutated genes that play a role in cancer

progression, other methods have been developed for clustering low frequency gene-mutations

together with other genes with a common functional role. For example, clustering variants

from genes on the same pathway [24,27–30], ontological term [28,31], or protein interacting

partners [32,33]. Additionally, akin to tools for predicting deleterious variants in other dis-

eases, machine learning methods [34–36] have been developed to determine which variants

are likely to influence cancer progression. For instance, the Cancer-specific High-throughput

Annotation of Somatic Mutations (CHASM) [34], is a machine learning predictor trained to

classify between variants known to drive cancer progression and putatively neutral variants

using properties of genomic and protein sequence, predicted protein structure, and multiple

sequence alignments.

In recent work, Nehrt et al. [37] and Yang et al. [38] have shown the value of analyzing can-

cer somatic variants by clustering variants within a gene sub-region, i.e., the protein domain.

Protein domains are the functional, structural, and evolutionary units of proteins [39,40],

mediate approximately 75% of protein-protein interactions [41], and mutations in different

domain regions of the same gene can have functionally and phenotypically distinct effects

[42]. So, protein domain level studies have shown great potential to analyze tumor variants, in

particular because they overcome the inability to distinguish functionally relevant variants due

to the modularity and polyfunctionality of genes. In their domain-centric studies, somatic vari-

ants from TCGA of two [37] and later twenty [38] tumor types were analyzed to identify spe-

cific domain regions within genes that are significantly mutated in somatic tumor samples. In

Nehrt et al., it was discovered that domain regions within a single gene can display heteroge-

neous mutation patterns that are unique between Breast Invasive Carcinoma and Colorectal

Adenocarcinoma. Extrapolated to the plethora of cancer types available in the TCGA project,

Yang et al. further defined these unique domain mutational patterns, highlighting patterns

specific to any of these cancer types. In these previous domain-centric analyses, statistical mea-

sures were performed to identify domain families that are frequently mutated often with muta-

tions from multiple genes with a common protein domain. In this work, we develop a novel

method to identify “oncodomains”, or protein domains in which somatic variants from one or

more genes encoding the domain occur more frequently at specific sites (i.e., oncodomain hot-

spots) than expected by chance. These oncodomain hotspots correspond to specific positions

within an entire family of genes, which enables our method to study even extremely rare

somatic variants via inference to other genes with similar somatic variant patterns. We argue

that since protein domains are the structural and functional units of proteins, protein domains

are the ideal framework for comparison to other genes since they are manually curated to

match the structure and known functional features of domain family members, providing an

inherent functional explanation of how somatic variants can contribute to cancer. To clarify,

the approaches by Nehrt et al. and Yang et al. identified domain families that were enriched

with somatic mutations but they did not, however, analyze the position-specific mutational

patterns between different genes that share a common protein domain as in this work. The

oncodomain concept introduced here is motivated by results from our earlier studies on

known disease mutations. In Peterson et al. [43–45], we performed a domain-centric study to

cluster all known disease variants into common domain regions from all human proteins.

Oncodomains
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Results from these studies hinted at protein domain positions of functional relevance for the

analysis of variants from the OMIM [46] and Swiss-Prot [47] databases. Specifically, known

disease variants tend to cluster at specific domain sites more than expected by chance and

these ‘position-based domain hotspots’ tended to be located on functional features and con-

served residues, properties that were also found for variants that have been experimentally

determined to be phenotypically altering in yeast [45]. Here we tested the hypothesis of

whether cancer somatic variants also present similar patterns of aggregation as known disease

variants. To address this question, we developed a new statistical framework in which we con-

trol for population-level frequency information and the large proportion of cancer passenger

mutations. Oncodomain hotspots are derived exclusively from somatic mutations from

sequenced tumor samples and represent a novel approach for assessing which somatic muta-

tions are likely to influence the initiation or progression of cancer.

Although domain-centric models have been previously developed in Nehrt et al., Yang

et al., the oncodomain method differs in substantial ways. Firstly, these studies were region-

based in that entire domain regions were assessed for cancer significance, not specific positions

within the domain family. Although Yang et al. identifies mutational hotspots, these hotspots

are specific to a particular gene and contain no information from other genes sharing a com-

mon protein domain. Furthermore, the hotspots in Yang et al. do not consider variants from

all domain regions as they restrict their analysis to domains that are significant in their region-

based model. Secondly, oncodomains are inherently family-based in that somatic variants are

aggregated to the domain-level and significance of a specific family member is ascertained by

referencing all members of the family. Although Nehrt et al. analyzed domain regions from all

genes sharing a common domain, the regions were concatenated and treated as a single, large

gene and thus no positional information was used. Thirdly, the study conducted by Yang et al.
only considers somatic variants that are predicted to be “potentially damaging” via the IntO-

Gen-mutation platform [48] and removes all other somatic variants from the analysis. The

IntOGen-mutation platform is a meta-predictor that classifies variants as “potentially damag-

ing” primarily on the observed frequency in tumor samples and the results of several variant

predictors, SIFT [49], PolyPhen-2 [50], VEP [51], and MutationAssessor [52]. This contrasts

with oncodomain hotspots, which consider all somatic variants no matter the observed fre-

quency and does not utilize machine learning methods to remove variants predicted to have

no functional impact. Notably, filtering the data using variant predictors is problematic since it

will bias the remaining variants towards conserved sites, functional features, structurally

important residues, and even domain regions since this information is used in the variant pre-

dictors to assess deleteriousness.

In this work, we compare the results of oncodomain hotspots to genes with evidence of can-

cer involvement from the Cancer Gene Census, the NCI Cancer Gene Index, the Network of

Cancer Genes, TSGene, and UniProt and to mainstream methods for the classification of can-

cer variants from tumors. Specifically, we compared to a gene-centric method, MutSigCV, two

domain-centric approaches developed by Nehrt et al. and Yang et al., and a multi-feature

machine learning predictor trained to distinguish drivers from passengers, CHASM. We dem-

onstrate that oncodomain hotspots not only overlap well with the cancer genomics literature

and the results of both gene- and domain-centric methods, but also that our method is unique

in the ability to detect variants that occur with low frequency in tumor samples but have evi-

dence of cancer involvement or are predicted to be driver mutations by CHASM. Due to the

ability of oncodomain hotspots to leverage relevant structural and functional context to iden-

tify even rare somatic variants with high potential to drive cancer development, we hope for

oncodomain hotspots to become an important tool for large-scale analysis of sequenced

somatic tumor samples, complementing existing tools.

Oncodomains
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Materials & methods

Mapping somatic variants to specific protein domain positions

Somatic Variants from 5,848 patients from The Cancer Genome Atlas (TCGA) [53] were

mapped to specific positions within protein domain models to identify clusters. TCGA MAF

files were obtained on July 7th, 2014 for 20 cancer types: Adrenocortical Carcinoma (ACC),

Bladder Urothelial Carcinoma (BLCA), Brain Lower Grade Glioma (LGG), Breast Invasive

Carcinoma (BRCA), Colon Adenocarcinoma (COAD), Glioblastoma Multiforme (GBM),

Head and Neck Squamous Cell Carcinoma (HNSC), Kidney Chromophobe (KICH), Kidney

Renal Clear Cell Carcinoma (KIRC), Liver Hepatocellular Carcinoma (LHIC), Lung Adeno-

carcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC), Ovarian Serous Cystadenocar-

cinoma (OV), Pancreatic Adenocarcinoma (PAAD), Prostate Adenocarcinoma (PRAD),

Rectum Adenocarcinoma (READ), Skin Cutaneous Melanoma (SKCM), Stomach Adenocar-

cinoma (STAD), Thyroid Carcinoma (THCA), and Uterine Corpus Endometrial Carcinoma

(UCEC). Only validated exonic variants were used, resulting in 1,326,954 unique exonic vari-

ants across 20 cancer types. The number of patients and variants for each of the 20 cancer

types studied is enumerated in Table 1. To map protein domain models to specific positions

within human proteins, a human protein database containing 54,372 proteins was created

with 33,963 proteins from RefSeq [54] and 20,409 proteins from Swiss-Prot [55] downloaded

via NCBI’s E-utilities [56]. Since redundant protein entries exist between the RefSeq and

Swiss-Prot databases, we selected only one representative protein for each unique Entrez gene

ID, either the longest Swiss-Prot protein, or the longest RefSeq protein if no Swiss-Prot protein

was listed for the gene ID. In addition, to avoid redundancy between isoforms produced by a

single gene, we used only the longest protein product for analysis. Protein domain models

Table 1. Number of patients, somatic variants, oncodomains, and oncodomain hotspots for each cancer type.

Cancer

Type

Number of

Patients

Number of Exonic

Somatic Variants

Number of Pfam

Oncodomains (fdr(t) =

0.05)

Number of Pfam

Oncodomains (fdr(t) =

0.01)

Number of Pfam

Oncodomain Hotspots

(fdr(t) = 0.05)

Number of Pfam

Oncodomain Hotspots

(fdr(t) = 0.01)

ACC 91 41,451 44 42 67 62

BLCA 130 39,312 31 17 73 31

BRCA 977 90,490 68 41 255 123

COAD 270 125,522 148 108 646 435

GBM 291 22,166 32 21 69 47

HNSC 306 74,008 4 3 7 6

KICH 66 3,835 1 1 1 1

KIRC 422 55,092 52 36 139 70

LGG 289 14,817 20 17 45 33

LIHC 202 92,840 74 49 364 182

LUAD 542 255,972 142 77 1,550 1212

LUSC 138 49,997 30 21 210 116

OV 375 21,207 16 10 49 43

PAAD 91 46,505 41 29 73 42

PRAD 259 9,437 7 6 18 11

READ 116 34,259 52 31 106 67

SKCM 344 290,341 345 200 1,742 1,258

STAD 289 148,520 119 78 828 574

THCA 402 7,458 8 7 12 7

UCEC 248 240,546 258 161 1,547 1,186

https://doi.org/10.1371/journal.pcbi.1005428.t001

Oncodomains
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from CDD [57] and Pfam [58] were obtained from the Conserved Domain Database (CDD

version 2.25). HMMer’s semi global implementation [59] was used to map these domain mod-

els from human proteins. Finally, illustrated in Fig 1, proteins with somatic variants were

aligned to specific positions within each domain model by using HMMer’s alignment with an

E-Value threshold� 0.001 where variants on gap regions of the domain model were assigned

to the last position before the gap. To build the CDD protein domain set with minimal redun-

dancy on the models, we selected only root domains (obtained from ftp://ftp.ncbi.nlm.nih.

gov/pub/mmdb/cdd/cdtrack.txt). The final domain sets that map to human proteins contain

4,377 and 4,118 protein families from CDD and Pfam respectively.

Identifying cancer-specific oncodomain hotspots within protein domain

families

In previous work by Peterson et al. [43,44] and Yue et al. [60] it was shown that variants with

known cancer relevance from the OMIM and UniProt databases tend to cluster at positions

within protein domains. However, the inclusion of patient frequency information is critical for

the analysis of TCGA somatic variants from sequenced tumor samples and for the identification

of driver mutations, but requires a new statistical framework that includes patient frequency

into the analysis. Thus, in this work, we developed a mutational score to classify protein domain

Fig 1. Depiction of the process of mapping variants to domain positions to find oncodomain hotspots.

https://doi.org/10.1371/journal.pcbi.1005428.g001

Oncodomains

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005428 April 20, 2017 6 / 24

ftp://ftp.ncbi.nlm.nih.gov/pub/mmdb/cdd/cdtrack.txt
ftp://ftp.ncbi.nlm.nih.gov/pub/mmdb/cdd/cdtrack.txt
https://doi.org/10.1371/journal.pcbi.1005428.g001
https://doi.org/10.1371/journal.pcbi.1005428


positions derived from individual patient data using a local false discovery rate (FDR) with a

Zero-Inflated Poisson (ZIP) null distribution. We applied this methodology separately for each

cancer type and for each protein domain model and defined high scoring protein domain posi-

tions as those with a q-value< 0.05. The details and derivation of this statistical approach can

be found in a separate work by Gauran et al. [61] but briefly, the formulation used is as follows.

At the protein domain-level which often encompasses several genes, each position within

the domain contains j = 0,1,. . .jmax somatic mutations from patients with the same cancer type

and we define nj as the number of domain positions with j somatic variants. We developed a

local false discovery rate method using a zero-inflated Poisson distribution as the null distribu-

tion for non-significantly mutated positions. Each protein domain was considered separately

to remove the influence of region-based cofactors (replication timing, expression, etc.) since

each domain position is aligned to the same set of proteins. Our goal is to find the cutoff of j
which separates non-significantly (f0(j)) and significantly (f1(j)) mutated positions. The

observed count of mutations are from a mixture distribution, where

p0h ¼ Prðnon� significantÞ

p1h ¼ PrðsignificantÞ

f0ðjÞ ¼ density if non� significant

f1ðjÞ ¼ density if significant

Where f0 is assumed to follow a Zero Inflated Poisson (ZIP) distribution while f1 could be

any other (discrete) distribution. ZIP models are considered useful for the analysis of count

data with a large amount of zeros because it allows for two sources of overdispersion by mixing

a Poisson distribution with zero-inflation. For a given position, we assume that the number of

mutations j is generated by one of the two distributions f0(j) or f1(j) so the probability density

function of the mixture distribution is

f ðjÞ ¼ p0f0ðjÞ þ p1f1ðjÞ

Then, we define the local FDR at t as

fdr tð Þ ¼
p0f0ðtÞ
f ðtÞ

Which indicates that f dr(t) is the posterior probability that a position with j = t is non-sig-

nificant. The interpretation of the local FDR value is analogous to the frequentist’s p-value

wherein local FDR values less than a specified level of significance provide stronger evidence

against the null hypothesis. In this work, unless noted otherwise, we use a cutoff of f dr(t) =

0.05, which would indicate that only 5% our oncodomain hotspots are false discoveries.

When comparing regions of the genome (i.e., genes in the CaMP score and MutSigCV),

methods must account for “covariates” that are thought to influence the background rate of

passenger mutations for that particular genomic region, such as replication timing, gene

expression, chromatin state (open/closed), and mutation context (e.g., C to G in CpG sites, G

to C in GpA sites, etc.). When analyzing an aligned position within the same family of genes,

the altered mutation rate of the aligned gene regions does not differ between aligned positions

and thus does not need to be modeled. This is correct for all covariates with the exception of

mutational context, which may differ between aligned positions. However, we determined that

using synonymous variants to estimate the background probability of passenger mutations

Oncodomains
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was inappropriate. Firstly, it is well known that many synonymous variants are drivers that re-

occur in cancer and are not distributed randomly [62–64]. Secondly, the frequency of occur-

rence of synonymous variants is often different than that of the nonsynonymous variants,

making them inappropriate to use to estimate the null model. Thus, using a randomly distrib-

uted background of equal size to the observed nonsynonymous variants was chosen.

Overlap with functional features and conserved positions

To assess the significance of overlap between oncodomain hotspot positions and positions that

have known function, functional feature annotations for each protein position were obtained

from UniProt on July 18th 2015. To determine the conservation of each domain position j, we

employed the AL2CO [65] algorithm for assessing entropy via the following formula:

Hjh ¼ �
X

i¼1;20

pðai; jÞlnðpðai; jÞÞ

Here, p(ai,j) is the amino acid frequency for amino acid ai at position j and Hj is the AL2CO

score at position j. Positions were considered to be conserved if they were greater than or

equal to the average AL2CO score plus one standard deviation. Pearson’s correlation coeffi-

cient and Fisher’s exact test with Bonferonni correction were used to assess significance of hot-

spot position overlap with functional features or conserved residues.

Comparison to other methods & cancer-related databases

To compare to other methods, significantly mutated genes were obtained using MutSigCV

v1.4, significantly mutated domains were obtained from the results of Nehrt et al. and Yang

et al., and the results of CHASM were obtained from the Firehose project [19]. To compare to

cancer-related databases, the Gene Ontology database [66] along with the pfam2go annota-

tions were obtained on August 21st 2015, the NCI Cancer Gene Index was obtained on March

7th, 2016, the Network of Cancer Genes was obtained on March 4th, 2016, and the TSGene

database was obtained on March 4th, 2016, the Cancer Gene Census [11] on November 6th,

2015, and the UniProt [13] “proto-oncogene” and “tumor suppressor gene” classifications

were obtained on November 7th, 2015. Gene Ontology category enrichment was performed

using Fisher’s exact test with Bonferroni correction.

Results

Oncodomains and cancer-specific oncodomain hotspots

In this work, we define oncodomains as families of protein domains in which somatic variants

from one or more genes containing the same domain form a hotspot. Oncodomain hotspots

are defined as protein domain positions where somatic variants for a specific cancer type

occur more frequently than expected by chance (see Materials & Methods). A comparison of

the number of oncodomains and oncodomain hotspots identified for different fdr(t) cutoffs

along with the number of patients and exonic somatic variants for each cancer type is shown

in Table 1. For simplicity, we will refer to the results obtained using the fdr(t) cutoff of 0.05 for

the remainder of this analysis. In this study, we identify 185 protein domain families from

CDD and 673 from Pfam across 20 cancer types as oncodomains. Within these families, 2,126

oncodomain hotspots were identified on CDD domains and 3,563 hotspots were identified on

Pfam domains. Overall, the quantity and location of the hotspots were found to be highly het-

erogeneous between cancer types. We find the number of oncodomains and oncodomain hot-

spots to be highly variable between cancer types ranging from only 1 or 7 hotspots in KICH

Oncodomains
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and HNSC respectively, to a maximum of 1,742 hotspots identified in SKCM. In our dataset,

TCGA cancer types had an average of 74 (standard deviation of 89.8) oncodomains and an

average of 309 (standard deviation of 571) oncodomain hotspots. The frequency of hotspots

across the 20 cancer types was highly heterogeneous with nearly 400 domain models being sig-

natures for only one cancer type while 21 were common to ten or more cancer types (S1 Fig &

S1 File). A full list of all oncodomains and the cancer-specific oncodomain hotspots for each

cancer type can be found in S2 File.

We find a strong correlation between the total number of exonic somatic variants and the

number of oncodomains / oncodomain hotspots (Pearson’s Correlation 0.92 and 0.98 respec-

tively). Compared to the number of exonic variants, the number of patients in each cancer type

was not as strongly correlated to the number of oncodomains (Pearson’s Correlation: 0.14) or

oncodomain hotspots (Pearson’s Correlation: 0.21), which is to be expected since the number

of somatic variants per tumor is known to be highly variable between cancer types [25]. How-

ever, the importance of including more sequenced patients for research is highlighted in S1

Table. To address this, a bootstrapping analysis was performed 100 times for the three largest

TCGA sets (LUAD, SKCM, and UCEC) to calculate oncodomains and oncodomain hotspots

using only 75% and 50% of the available patients and, separately, the available exonic somatic

variants. Results for bootstrapping patients or variants both suggest that more oncodomains

and oncodomain hotspots will be identified when more data become available, as expected.

We also tested the effect of combining patients from all cancer types to observe whether

oncodomains and oncodomain hotspots differ from the cancer-specific hotspots analysis. In

this separate analysis, we observe an increase of 82 oncodomains and 1,469 oncodomain hot-

spots (Pfam only) when combining all data types together that were not identified when ana-

lyzing the sets individually (S3 File). Results from the combined dataset also show that 247

oncodomains and 1,251 oncodomain hotspots that were previously identified when analyzing

individual datasets are no longer significant in the combined dataset. This, however, is to be

expected due to the disproportionate number of patients in each cancer type, removing much

of the cancer-specific signals.

Cancer-specific heterogeneity in oncodomain family somatic mutation rates

Like genes, protein domains have been shown by Nehrt et al. and Yang et al. to display heteroge-

neity in the prevalence of somatic variants from patients with different cancer types. However,

no study yet has explored the mutation patterns of domain families that appear several times

throughout the human genome. In our analysis, we observed this heterogeneity in the prevalence

of somatic variants between different cancer types and also between the frequencies in which

members of a particular domain family are involved. For example, in S2 File, the hotspots formed

on a particular oncodomain are found to be highly heterogeneous in the quantity and location

for a given cancer type. Depicted in Fig 2 for the Ras-like GTPase family (Fig 2A) and the calcium

binding domain of the Epidermal Growth Factor (Fig 2B), the intensity of color at each residue

represents the number of cancer types in which that residue was found to be an oncodomain hot-

spot across the 20 cancer types. In these structural representations, the frequency or specific loca-

tion in which somatic variants occur is highly heterogeneous between cancer types, a property

that would normally be ignored by traditional region-based analyses that group all positions

within a gene or domain region into a single bin when testing for significance.

Enrichment of functional features, conserved residues, & ontological terms

The overlap between oncodomain hotspots and functional features for each protein residue in

the UniProt database were ranked by their Fisher’s exact test p-value with Bonferroni

Oncodomains
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correction and are listed in Table 2. Overall, we found that oncodomain hotspots significantly

occur on functional feature sites (p-value: 3.63E-87), a finding that is not true for somatic vari-

ants overall, which do not occur significantly at functional feature sites (p-value> 0.05). Inter-

estingly, the specific residue of the functional feature that is mutated is heterogeneous between

cancer types, as seen in the comparison between the frequency of mutated sites in Fig 3A and

the residues involved with the active site in Fig 3B. Additionally, we found a significant overlap

between oncodomain hotspots and conserved residues (p-value: 1.45E-09). However, conser-

vation and functional feature annotation do not correlate with oncodomain hotspots (Pear-

son’s correlation coefficients of 0.009 and 0.048 respectively), indicating that this information

alone is insufficient for determining which functional or conserved residues will be important

for cancer initiation or progression. For genes with a somatic variant in an oncodomain

Fig 2. Hotspot frequency of the Ras-like GTPase oncodomain and the calcium binding Epidermal Growth Factor domain. Structural

representations of the Ras-like GTPase (cd00882) oncodomain family (A) and the calcium binding domain of the epidermal growth factor-like

(cd00054) oncodomain family (B).

https://doi.org/10.1371/journal.pcbi.1005428.g002

Table 2. Enrichment of residues with functional feature annotation.

Hotspot Enrichment for Functional Feature

Annotation on Protein Positions

Feature Name P-Value

Nucleotide binding site 2.8E-155

DNA binding site 3.3E-141

Calcium binding site 2.5E-11

Active site 1.7E-7

Metal binding site 3.5E-3

https://doi.org/10.1371/journal.pcbi.1005428.t002
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hotspot, enrichment was performed for categories of genes in the Molecular Function and Bio-

logical Process divisions of the Gene Ontology database (S2 Table). For Pfam oncodomains,

Gene Ontology term enrichment was performed using the pfam2go annotations (S3 Table).

Comparison to other methods & databases

Overall, we found that oncodomain hotspots identify more protein domains, genes, and

somatic variants than other methods, many of which are rare variants. Due to the lack of a

good benchmarking set, we compared the results of our method to the results of other meth-

ods for analyzing somatic tumor genomes and to databases of genes with evidence of cancer

involvement. In comparison to other domain-centric methods (Nehrt et al. and Yang et al.,
Fig 4A), oncodomain hotspots recapitulate 80 / 157 (51%) of Pfam domain models while iden-

tifying 593 novel Pfam models. At the gene-level in Fig 4B, genes with variants in an oncodo-

main hotspot identify 440 / 779 (56%) of genes with variants significant in CHASM, 469 /

1,373 (34%) of genes identified by region-based methods (MutSigCV, Nehrt et al., and Yang

et al.), and 4,587 genes were unique to oncodomain hotspots. Of these 4,587 genes unique to

oncodomain hotspots, we found 1,546 / 4,587 (34%) genes to have evidence of cancer involve-

ment from the Cancer Gene Census, the NCI Cancer Gene Index, the Network of Cancer

Genes, the Uniprot “proto-oncogene” and “tumor suppressor gene” classifications, and the

TSGene databases (Fig 4C) which were not detected by MutSigCV or CHASM. As depicted in

Fig 3. Overlap of oncodomain hotspots with the active site of the catalytic domain of protein kinases. Structural representation of the frequency

of oncodomain hotspots across 20 cancer types (A) compared to the active site residues (B) for the PKc / cd00180 oncodomain.

https://doi.org/10.1371/journal.pcbi.1005428.g003
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Fig 5, the majority of the remaining genes detected only by oncodomain hotspots (2,738 /

3,041; 90%) are either members of domain families for which cancer relevance is known (e.g.,

kinases, growth factors, and immunoglobins) or are annotated with GO terms that have

known cancer relevance (e.g., signal transduction, metabolic process, and cell adhesion).

Oncodomain hotspots enable the functional analysis of rare somatic

variants

Rare variants are thought to play an important role in cancer and, thus, frequency-based meth-

ods are inherently ill-suited to assess their relevance in cancer due to their low prevalence in

tumor samples. However, by comparing to other genes within the same domain family, onco-

domain hotspots have the ability to infer functional relevance of variants that occur infre-

quently in tumor samples. Indeed, variants implicated only by oncodomain hotspots occurred

in an average of 1.1 (variance of 0.34) tumor samples compared to variants implicated by Mut-

SigCV that occurred in an average of 2.1 (variance of 64.4) tumor samples (t-test p-value: 3.5E-

259). On the other hand, as expected, oncodomain hotspots implicate many of the frequently

occurring variants that would be identified by other methods since the variants in oncodomain

hotspots that were also identified by MutSigCV occur in an average of 2.2 (variance of 59.3)

tumor samples.

Discussion

Distinguishing between drivers and passengers in sequenced tumor samples is a challenging

task in cancer biology. However, traditional methods that rely solely on frequency of somatic

variants for identifying driver variants are limited due to the lack of sequenced patients, even

with the thousands of patients that have been sequenced in TCGA. As noted in Sjöblom et al.
and Wood et al., the genomic landscapes of somatic mutations are dominated by “gene hills”,

or infrequently mutated genes that do not reach statistical significance but may still be relevant

in cancer. Thus, new methods are needed in order to functionally characterize these rare vari-

ants and their importance in cancer. As shown in previous studies, Nehrt et al. and Yang et al.,

Fig 4. Comparison of oncodomain hotspots to other methods and databases.

https://doi.org/10.1371/journal.pcbi.1005428.g004
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domain-centric analyses have the potential to identify somatic mutational patterns unique

to specific cancer types that would normally be overlooked by gene-centric analyses that con-

sider only whole proteins and not the modular regions within. Such approaches can help

improve our understanding of the molecular perturbations leading to cancer initiation and

progression and enable the identification of new targets for cancer-specific drug research.

However, these approaches consider only variation between domain regions within a single

gene and, as such, ignore similar, often rare variants in other members of the same protein

family that may play a similar role in cancer or may also affect drug treatments. In this study,

by leveraging the knowledge of conserved regions of proteins that can occur several times

throughout the genome (i.e., protein domains), we are able to infer functional and structural

relevance of rare somatic variants by comparing them to similar variants in other genes shar-

ing a common protein domain. This novel concept also allows us to observe heterogeneity in

mutation prevalence between members of a protein family—patterns which can be unique for

particular cancer types.

Fig 5. Types of genes identified only by oncodomain hotspots.

https://doi.org/10.1371/journal.pcbi.1005428.g005
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In this work, we identify “oncodomain hotspots”, or positions within protein domain regions

that harbor more somatic variants than expected by chance by aligning similar domain regions

from multiple genes across all patients for a given cancer type (Fig 1). Overall, we found the loca-

tion and intensity of oncodomain hotspots to be highly heterogeneous between cancer types.

For example, as enumerated in S2 File, we found that position five on the Ras-like GTPase

(Fig 2A) was the most frequently occurring hotspot on cd00882, appearing in 10 cancer types

(BLCA, BRCA, COAD, LUAD, OV, PAAD, READ, SKCM, STAD, and UCEC) and represents

a portion of the GTP/M2+ binding site. However, this hotspot was not found in THCA, where

oncodomains identified, instead, a hotspot on position 307. Similarly, in LIHC, oncodomain did

not identify position five or 307 as hotspots but we reported a hotspot at seven other positions,

two of which can only be found in LIHC. Thus, some hotspot patterns are common in several

cancers while others are unique to a specific cancer type. In the Ras-like GTPase alone, we find

one hotspot unique to COAD, two hotspots unique to LIHC, five hotspots unique to LUAD, six

hotspots unique to SKCM, three hotspots unique to STAD, and 20 hotspots unique to UCEC.

Interestingly, while we observe a stark heterogeneity between the location and intensity of onco-

domain hotspots between cancer types, our results show a significant overlap for oncodomain

hotspot location with conserved residues and functional feature sites. Thus, although oncodo-

main hotspots are heterogeneous, they tend to occur at different positions that are highly con-

served residues or at different positions that perform similar functions as seen in Fig 3 where

hotspots tend to occur spatially around the active site of the catalytic domain of protein kinases.

Overall, oncodomain hotspots identify many more domains (Fig 4A) than other domain-

centric methods like Nehrt et al. and Yang et al. and more genes (Fig 4B) than gene-centric

methods like MutSigCV or CHASM. Although not identified by other methods, 1,546 / 4,629

(34%) of genes identified only by oncodomain hotspots have evidence of cancer involvement

from the Cancer Gene Census, the NCI Cancer Gene Index, the Network of Cancer Genes, the

Uniprot “proto-oncogene” and “tumor suppressor gene” classifications, and the TSGene man-

ually curated databases (Fig 4C). Interestingly, we find variants in oncodomain hotspots on

392 genes from either the TSGene database or UniProt’s tumor suppressor gene annotations,

indicating that both oncogenes and tumor suppressors form hotspots at the domain-level, a

phenomenon previously discovered for tumor suppressor genes at the gene-level [67–69].

Moreover, as illustrated in Fig 5, the majority (90%) of the remaining 3,041 genes in Fig 4C

identified only by oncodomain hotspots are either members of domain families for which can-

cer relevance is known or are annotated with GO terms that are known to be important for

cancer. Overall, oncodomain hotspots find many new genes that display similar somatic vari-

ant patterns to other genes within the same domain family that are well-studied in cancer

genomics including 83 novel kinases (cd00180), 52 novel growth factors (cd00054 & cd00053),

33 novel Ras family members (cd00882), 26 novel cadherins (cd00031), 88 novel immunoglo-

bins (pfam00047), and 43 novel Kelch-like (KLHL) genes. Additionally, oncodomain hotspots

identify significant somatic variant clusters in the Melanoma Antigen (MAGE) family of genes

which were never significant in other methods as well as the Rho-like GTPase family, which

has known cancer involvement but is notorious for being somatically mutated only rarely

[70,71]. Oncodomain hotspots also identify many genes involved with cell adhesion and cell

junction organization, which are known to be important in cancer progression [72–74] and

metastasis [75,76], and genes involved with metabolism, which are also important in cancer

progression [77–79]. Furthermore, many genes involved with the extracellular matrix or extra-

cellular vesicles formed oncodomain hotpots, which are thought to be important in the regula-

tion of cancer progression and metastasis [80–85]. Oncodomain hotspots are also formed on

other gene families involved with processes thought to influence cancer initiation or progres-

sion such as ubiquitination [86–88], proteolysis [89–91], metabolic proteins [92,93], and genes
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involved with actin binding and the cytoskeleton [94–96]. Interestingly, oncodomain hotspots

also identify many membrane proteins, which are involved with signal transduction, which is

known to be relevant in cancer [97,98] and experimental evidence confirms the important reg-

ulatory role played by membrane proteins in cancer [99–105]. Our results also indicate a

strong pattern of variants occurring at specific domain family sites for genes involved with sig-

nal transduction, regulation of transcription, and nucleotide binding GO terms. Likewise, we

find oncodomain hotspots in domain families that serve as the molecular machinery of tran-

scription factors (zinc fingers, KRAB domains, and WD40 beta propellers) as well as ANK

domains, which mediate protein-protein interactions [106]. Thus, oncodomain hotspots reveal

a vast landscape of somatic variants that act at the level of domain families altering signaling

pathways and gene regulation to influence cancer.

Identifying the role in cancer, if any, of so-called “gene-hills” in Sjöblom et al. and Wood

et al. has been an important challenge since rare variants are thought to play an important role

in cancer [6,107,108], which has led to an increase in network-based analyses for functional

characterization [24,27–30]. A domain family-based analysis like oncodomain hotspots

enables the identification of many novel, often rare variants that occur more frequently in

specific positions within domain families than expected by chance. Indeed, when analyzing

entire families of proteins and not specific members therein, mutational patterns emerge

which suggest that rare variants play an important role since they often occur on genes with

known cancer relevance. For example, protein kinases harbor somatic variants in 3,634/5,848

(62.1%) of the tumors analyzed in this study yet only 27 / 465 human genes mapping to the

PKc (cd00180) domain model were considered significant by MutSigCV, 16 of which were sig-

nificant in only the PAAD cancer type. In Fig 6 and S2 Fig, we summarize the results of com-

paring MutSigCV and CHASM respectively against oncodomain hotspots to evaluate the

ability of these methods to identify rare and common variants relevant to cancer. The genes

selected are members of the PKc (cd00180) oncodomain family, the catalytic domain of pro-

tein kinases that are the most frequently mentioned in PubMed articles annotated with the

“cancer” MeSH term, effectively ranking them by how frequently they are mentioned in the

cancer literature. This family contains 465 genes encompassing all serine-threonine, tyrosine,

and dual specificity kinases in the human genome. Results in Fig 6 highlight the importance of

rare variants in cancer since many genes with known cancer relevance are not reported by

MutSigCV (shown in blue). Several instances exist where these MutSigCV and oncodomain

hotspots agree (purple) and also where MutSigCV finds significance where the oncodomain

method did not (green). Surprisingly, MutSigCV performed poorly for these genes since only

two of these genes (EFGR and BRAF) were significant in MutSigCV for any cancer type. When

compared to both MutSigCV and CHASM (S2 Fig), oncodomain hotspots still identify many

more variants than MutSigCV and CHASM combined. However, CHASM is a machine learn-

ing method and does not incorporate the frequency of the variant but instead utilizes 70 fea-

tures calculated from properties of genomic and protein sequence, predicted protein structure,

and multiple sequence alignments. CHASM’s Random Forest algorithm is trained on a set of

known driver mutations as a positive set and synthetically generated passenger mutations as a

negative set. Thus, while MutSigCV would not be able to implicate these rare variants due to

insufficient population frequency, CHASM uses properties learned from known driver muta-

tions, which often agree with oncodomain hotspots that utilize population frequency alone.

Furthermore, we find that oncodomain hotspots are capable of identifying more rare variants

in these kinases than other methods while still identifying the obvious variants that occur with

high frequency such as EGFR in LUAD and BRAF in THCA, SKCM, and LUAD. Moreover,

oncodomain hotspots are able to identify genes that are known to be associated with particular

cancer types where traditional methods may fail. For example the seven genes identified by
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oncodomain hotspots for COAD (ERBB2 [109,110], EGFR [111,112], KIT [113,114], BRAF
[115–117], RET [118,119], CDK4 [120–122], ALK [123–125], andMAPK1 [126–128]) are

reported to have been involved with COAD. Interestingly, all of these genes were found to be

mutated in only six or fewer patients with the exception of BRAF, which was mutated in 32

patients but was still not identified by MutSigCV or CHASM in S2 Fig. In other examples, the

SRC gene is a well-known oncogene involved in the PI-3K cascade but no other method is able

to detect any significance while oncodomain hotspots identify 8 somatic variants in oncodo-

main hotspots for LIHC, LUAD, SKCM, and UCEC where some evidence of SRC’s role is

known [129–131]. Even for genes that were significant in MutSigCV, oncodomain hotspots

are more sensitive as they identify those same genes as significant in more cancer types for

which they are known to play a role like BRAF in STAD [132–134], GBM [135–137], and

UCEC [138,139] and EGFR in COAD [111,112], STAD [140,141], and SKCM [142–144]. Indi-

cating the ability of oncodomain hotspots to implicate rare variants, 48 variants on these PKc

genes that were found in three or fewer tumor samples fell into oncodomain hotspots and five

of these variants were found in only a single tumor sample.

To conclude, in sequenced tumor samples, even somatic variants that are known to drive

tumor progression can occur with relatively low frequency. Our novel oncodomain method

for identifying likely driver variants reveals the structural and functional mutational patterns

on conserved protein domains that are unique to each cancer type. This allows us to infer func-

tional importance of even rare somatic variants via inference to somatic variants in other

genes sharing a common protein domain. Determining which variants are most important for

tumorigenesis will help elucidate the mechanisms driving tumor progression and could ulti-

mately provide a new set of drug targets for families of genes that display similar variation at

the structural and functional level. We expect oncodomain hotspots to be an integral tool for

assessing novel rare variants in tumor samples, complimenting other existing tools.

Fig 6. Heatmap of Patients with a Variant in an Oncodomain Hotspot for the PKc domain. Visual representation and hierarchical clustering of

oncodomain hotspots on genes that were significant in MutSigCV. For each gene in each cancer type, the number of patients in oncodomain hotspots is

quantified and the cell is color-coded if the gene had any patients in oncodomain hotspots (blue), if it was significant in MutSigCV (green) or both (purple).

Only the top ten genes based on the gene name’s co-occurrence with the “cancer” MeSH term are shown. Here, cancer types are grouped via hierarchical

clustering to show similar mutational patterns. Enumerated in each cell are the proportion of patients with a somatic variant in an oncodomain hotspot

(numerator) compared to the number of patients that had a somatic variant anywhere in the protein domain region (denominator).

https://doi.org/10.1371/journal.pcbi.1005428.g006
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Supporting information

S1 Fig. Frequency of oncodomain families across 20 cancer types. Frequency distribution of

the number of times pfam oncodomain families form a hotspot in 20 different cancer types.

(TIF)

S2 Fig. Heatmap of Patients with a Variant in an Oncodomain Hotspot for the PKc

domain. Visual representation and hierarchical clustering of oncodomain hotspots on genes

that were significant in CHASM or MutSigCV. For each cell, the ratio of patients with somatic

variants in a hotspot to patients with a somatic variant in the domain region is quantified.

Each cell is color-coded if the gene had any somatic variants of that cancer type in an oncodo-

main hotspot (blue), if it was significant in CHASM/MutSigCV (green), or both (purple).

Only the top ten genes based on the gene name’s co-occurrence with the “cancer” MeSH term

are shown. Here, cancer types are grouped via hierarchical clustering to show similar muta-

tional patterns. Enumerated in each cell are the proportion of patients with a somatic variant

in an oncodomain hotspot (numerator) compared to the number of patients that had a

somatic variant anywhere in the protein domain region (denominator).

(TIF)

S1 Table. Oncodomains and Oncodomain Hotspot Bootstrap Analysis. Bootstrap analysis

was performed to count the number of Pfam oncodomains and oncodomain hotspots with

only 75% or 50% of the available patients or available exonic somatic variants. The bootstrap-

ping process was repeated 100 times for each cancer type, bootstrap percentage, and local false

discovery rate cutoffs.
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S2 Table. Gene Ontology Enrichment. Enrichment of the Biological Process and Molecular

Function Gene Ontology ontologies for genes with at least one somatic variant in an oncodo-

main hotspot for any cancer type.

(DOCX)

S3 Table. Enrichment of Pfam Gene Ontology (GO) terms with oncodomains. Top twenty

enriched Gene Ontology terms with Pfam oncodomains from the pfam2go annotations using

Fisher’s exact test with Bonferroni correction.
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S1 File. Frequency of oncodomain occurrence across 20 cancer types.
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S2 File. List of oncodomains and corresponding oncodomain hotspots.
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S3 File. List of new oncodomains and oncodomain hotspots identified when combining

patients from all categories.
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