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ABSTRACT

Identifying transcription factor (TF) binding sites (TF-
BSs) is important in the computational inference of
gene regulation. Widely used computational meth-
ods of TFBS prediction based on position weight
matrices (PWMs) usually have high false positive
rates. Moreover, computational studies of transcrip-
tion regulation in eukaryotes frequently require nu-
merous PWM models of TFBSs due to a large num-
ber of TFs involved. To overcome these problems we
developed DRAF, a novel method for TFBS predic-
tion that requires only 14 prediction models for 232
human TFs, while at the same time significantly im-
proves prediction accuracy. DRAF models use more
features than PWM models, as they combine infor-
mation from TFBS sequences and physicochemical
properties of TF DNA-binding domains into machine
learning models. Evaluation of DRAF on 98 human
ChIP-seq datasets shows on average 1.54-, 1.96- and
5.19-fold reduction of false positives at the same
sensitivities compared to models from HOCOMOCO,
TRANSFAC and DeepBind, respectively. This obser-
vation suggests that one can efficiently replace the
PWM models for TFBS prediction by a small number
of DRAF models that significantly improve prediction
accuracy. The DRAF method is implemented in a web
tool and in a stand-alone software freely available at
http://cbrc.kaust.edu.sa/DRAF.

INTRODUCTION

Information on the regulation of transcription forms a ba-
sis for understanding regulatory mechanisms of gene activa-
tion or repression in living organisms. Transcription factor
(TF) proteins are a key component of gene regulatory net-
works (1). They bind promoters and other gene regulatory
regions (2) in a sequence-specific manner and control gene
expression through such interactions (3). TF binding sites
(TFBSs) on DNA are short sequences located in the gene
regulatory regions, typically from few to about 20 base-pairs
(bp) in length. Accurate detection of TFBSs is frequently
an intermediate step in the computational reconstruction
of gene regulatory networks (4).

Both computational and experimental methods have
been used for TFBS discovery. For experimental ap-
proaches, there are numerous in vivo and in vitro high-
throughput methods that have been developed, as reviewed
in (5). Significant progress has been made in the experi-
mental technologies for this purpose, enabling large-scale
studies of transcription regulation. For example, high-
throughput ChIP-seq experiments from the ENCODE
project (6) have investigated about 200 human TFs in less
than a hundred cell lines. Despite the progress that has been
made, these numbers are far lower than the estimated num-
ber of TFs that are encoded in the human genome or that
might regulate a single tissue (7). Therefore, the need for ef-
ficient computational methods to predict TFBSs remains.
Indeed, computational approaches for identifying TFBSs
have been used successfully (8–11), varying from simple pat-
tern matching methods to more complex models (12–15).

Pattern matching methods based on position weight ma-
trices (PWMs) attempt to predict a TFBS by screening a
candidate sequence of interest, with a model derived from
experimentally determined binding sites for a TF (16). Al-
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though proposed a few decades ago PWM-type models re-
main the most widely used models for TFBS predictions,
primarily due to their simplicity. However, a PWM model
has several disadvantages. First, it is very sensitive to the
quality and size of the set of TFBSs DNA sequences used to
derive the PWM model (17). Second, the PWM prediction
models of TFBSs frequently result in a high rate of false-
positive predictions (18). Third, conventional PWMs do not
model dependencies between individual positions within
the TFBSs (19). Fourth, frequently one or more models for
the TFBSs of a single TF are developed to capture vari-
ability among TFBS sequences and to improve individual
model performance. This results in a significant number of
TFBS models available in major bioinformatics resources.
For example, 426 TFBS models are used to represent 401
TFs in HOCOMOCO (20), while 1082 TFBS models in
JASPAR (21) represented 1059 TFs. In the TRANSFAC
database (version 2012.2) (22), for 5760 TFs a total of 2170
TFBS models are used. One should note that PWM models
of TFBSs do not include any information about the com-
position and structure of TFs that bind to them.

Obviously, there has been a challenge to develop mod-
els that predict TFBSs with high specificity and sensitivity.
Classical TFBS PWM models have been improved to in-
corporate nucleotide k-mer relationships (23) or remote de-
pendencies of nucleotide positions (24). Also, more flexible
approaches have been implemented to develop customized
models of TFBSs, such as those based on Bayesian net-
works (25), Hidden Markov Models (HMM) (14) and re-
cently deep learning of Neural Networks (NN) (26). Vari-
ous methods have incorporated sequence-specific and struc-
tural features of DNA for prediction of TFBSs, for example,
DNA shape (27,28), or local chemical and structural prop-
erties (29). Some other approaches, like (30) used additional
information such as DNA accessibility.

However, the approaches mentioned above do not use in-
formation from TFs that bind TFBSs. A lot of research has
been done toward incorporating TFs properties into mod-
els for TFBS predictions with the hope to improve models
and their prediction accuracy. Some examples of such work
are the use of empirical protein–DNA binding energies or
structure knowledge (31,32).

Also, a variety of computational approaches has been de-
veloped based on modeling TF-TFBS interactions. Qian et
al. (33) used gene ontology (GO) annotations of TFs to de-
note the presence or absence of each GO term in the TF de-
scription in their predictive model of TF-TFBS links. This
work was later extended (34) to include GO annotations of
the TF target (TFT) genes in the TF-TFBS links, result-
ing in the use of TF-TFT-TFBS triplets that improved the
accuracy of predictions. An apparent deficiency of this ap-
proach occurs when two TFs share the same GO descrip-
tions but have different binding sites. The associated prob-
lem is that GO annotation of TFs does not have sufficient
resolution and this further reduces the capability of predict-
ing distinct TFBSs. Moreover, such methods are not appli-
cable for studies of TFs that do not possess enough GO
functional annotations. Another approach that includes the
amino acid properties of TFs in a model was implemented
in (35), where only six physicochemical properties of amino
acids were used to describe a TF.

To reduce deficiencies of high false positive rates of the
existing models and the need for a large number of models,
in this study we developed a method, DRAF, for predict-
ing TFBSs. DRAF combines in a novel manner: (i) physic-
ochemical and structural properties of the DNA binding
domains of TFs, specifically AAindex properties, the DNA
binding domain family classification and the amino acid
binding mode preference to DNA bases, and (ii) nucleotide
sequences of TFs’ target TFBSs. To model the relation-
ship between TFs and their associated TFBSs, DRAF uses
random forests (RFs) machine learning models. Through
a number of experiments, we show here that DRAF can
significantly reduce the false positive rate of TFBS predic-
tion while using small number of required TFBS prediction
models. We developed only 14 DRAF models to encode the
TF-TFBS relationships of 232 TFs. Each of these 14 mod-
els corresponds to one TFBS length (we used 14 models for
TFBS lengths from 7 to 20). A DRAF model correspond-
ing to one TFBS length encodes information of TF-TFBS
relationships for several TFs whose binding sites are of that
length. The TF-TFBS relationships of all 232 TF were pos-
sible to capture in these 14 models. Through a comprehen-
sive comparison study, we demonstrated that for 98 hu-
man ChIP-seq datasets related to TF binding and obtained
from ENCODE (6), the DRAF models generate at the same
sensitivity level significantly less false positive predictions
than PWM models from HOCOMOCO and TRANSFAC
databases or the DeepBind (26) models. We believe that
the structure and the incorporation of properties from the
DNA binding domains of TFs and the way they have been
used in the DRAF RF prediction models were the key to
achieve this high prediction accuracy as compared to other
models. The implementation of the DRAF prediction mod-
els of TFBSs is available at http://cbrc.kaust.edu.sa/DRAF.

MATERIALS AND METHODS

Datasets

TF and TFBS sequences. We used TFBS sequences from
the HOCOMOCO (20) database version 9, whereby TFBSs
were selected based on the PWM thresholds with a P-value
< 0.0005 (as explained in (20)). P-values were computed
by the MACRO-APE (http://autosome.ru/macroape, (36)).
Consequently, 139,085 TFBS sequences of 426 TFBS mod-
els corresponding to 401 human TFs were obtained. Due
to a larger number of parameters in the DRAF models that
have to be tuned, as compared to the PWM models, we ex-
amined only TFs that have at least 15 associated TFBSs.
We further discarded all TFs that did not have DNA bind-
ing domains in the Pfam database (37). This reduced the
initial set of 426 TFBS models (associated with 401 TFs)
to 250 TFBS models (associated with 232 TFs) with a total
of 110,399 corresponding TFBS sequences (Supplementary
Table S1). The amino acid sequences of these 232 TFs were
obtained from UniProt (38).

TF domains. Protein domain information was obtained
from the Pfam database. We used domains that are anno-
tated as ‘DNA binding domain’ in at least three out of a
total five annotation sections used in Pfam (Pfam, Seq-info,
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Pdb, GO and Interpro). We restricted our study to manu-
ally curated DNA binding domains (i.e. Pfam-A), having
the highest significance score and an E-value of <0.1. As
TFs may have multiple DNA binding domains, we selected
for such TFs the domain of the lowest E-value. Finally, each
TF was represented by the amino acid sequence of its asso-
ciated DNA binding domain.

Modeling TF-TFBS links

Encoding TF properties. Each TF was encoded by three
sets of characteristics: (i) (Properties A) the physicochemi-
cal properties obtained from the AAindex database version
9.1 (updated on 31 March 2008) (39) of amino acids within
its associated DNA binding domain, (ii) (Properties B) the
DNA binding domain family classification and (iii) (Prop-
erties C) the amino acid binding mode preference to DNA
bases obtained from (40,41). For the first set of properties,
we used numerical values of 544 physicochemical character-
istics of amino acids available in the AAindex database. A
feature i of TF j is the average value of the physicochemi-
cal property in the sequence of the DNA binding domain
of TF j weighted by the relative occurrences of individual
amino acids in the sequence:

Featurei
(
TF j

)

=
20∑

Amino Acid k=1

Freqk

length(TFj ) ∗ Property Valuei (k) ,
(1)

where Freqk is the number of times amino acid k is found
in the sequence of the DNA binding domain of TF j ;
Property Valuei (k) is the numerical value of physicochemi-
cal property i for amino acid k; length (TF j ) is the number
of amino acids in the sequence of the DNA binding domain
of TF j . We used the same formula for each of the 544 fea-
tures, which resulted in a 544-dimensional vector for each
TF j .

Since all TF DNA binding domains that we obtained
from the Pfam database belong to 72 domain families, we
needed 7-binary digits (that can represent 2∧7 = 128 com-
binations) to encode them and this represents Properties B
of TFs that we employed. While 55% of the TFs have only a
single DNA binding domain, the remaining 45% have more
than one and we selected one of these domains as explained
earlier. Properties C of TF were determined and encoded as
follows. Amino acids were classified into three categories ac-
cording to their binding mode preference to DNA bases (41)
(as shown in Supplementary Table S2). These categories are:
(i) they bind to DNA bases through hydrogen bonds, (ii)
they bind to DNA bases through van der Waals contacts
or (iii) they do not have propensity to interact with DNA
bases. Because the last three properties describe a TF, we
used the weighted occurrence of amino acids in these three
categories of amino acid binding preferences to DNA bases:

Featurek = 1,2,3
(
TF j

) = Freqk

length
(
TF j

) , (2)

where Freqk is the total number of occurrences of amino
acids that belong to category k (the three categories we de-
scribed) in the sequence of the DNA binding domain of

TF j ; length (TF j ) is the number of amino acids in the se-
quence of the DNA binding domain of TFj. Thus, the final
set of features used to describe a TF consists of 554 ( = 544
+ 7 + 3) features.

TFBS representation. Each TFBS that consists of L
nucleotides was represented using a vector of length
4*L obtained as follows. Each of the four nucleotides
(A, C, G, T) in the TFBS sequence was encoded by a
four-digit binary number as follows: A as 0001, C as
0010, G as 0100 and T as 1000. A TFBS is then repre-
sented as a vector of length 4*L by concatenating the
binary sequences corresponding to its nucleotide sequence
as described. For example, ‘ACTCCGAT’ will be rep-
resented by ‘00010010100000100010010000011000’.
The TFBSs of the selected 232 TFs (associated
with 250 TFBS models) have 14 distinct lengths
L ∈ {7 bp, 8 bp, 9 bp, . . . , 19 bp, 20 bp}.
Combining TF and TFBS descriptions. Both TF and TFBS
features were combined into one TF-TFBS feature vector as
follows. Suppose that Ti and Bj are the feature row-vectors
for TFi and TFBSj, respectively. We define the combined
TF-TFBS feature vector D as:

D = [
Ti , Bj

]
. (3)

For example, when L = 12 bp, the TF-TFBS link is en-
coded by a 602-dimensional vector (554 TF features plus
12 × 4 TFBS features). If a TF is associated with N TFBSs,
then we will have N TF-TFBS link vectors, where the first
part, TF vector, remains the same across all N vectors.

Removal of duplicate feature vectors. After generating fea-
ture vectors, we kept all the 110,399 unique TF-TFBS fea-
tures to train and test the DRAF models.

Data preprocessing

Normalization. To remove the bias that arises from dif-
ferent ranges of values used for TF and TFBS features, we
normalized each feature by scaling minimum and maximum
values to 0 and 1, respectively, as follows:

x′
i = xi − min (X)

max (X) − min (X)
, (4)

where xi is the original feature value and x′
i is the value af-

ter normalization. X is the vector of feature values xi across
all samples. min(X) and max(X) are the minimum and the
maximum values of X, respectively. In addition, the feature
vectors are of different lengths due to varying TFBS lengths.
Since a separate model is built for each of the 14 TFBS
lengths, this does not cause any problems in the analysis.

TF feature selection. It is widely acknowledged that irrele-
vant and weakly relevant features may decrease the accu-
racy of predictions (42). We examined several feature se-
lection methods on the training datasets, namely, the min-
imum redundancy maximum relevance (mRMR) method
(43), individual feature ranking using the AUC (Area Un-
der the ROC Curve) method, and the forward sequential
feature selection method with 10-fold cross validation based
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on support vector machine (SVM) classifier and using ac-
curacy as the evaluation function (44). Note that mRMR
also uses the forward feature selection strategy combined
with a backward feature selection strategy. We found that
the mRMR method yielded the highest accuracy. Conse-
quently, we used the mRMR method to identify TF prop-
erties of relevance to distinguish between the two classes of
data (see the next section). We selected the top N features
with the highest mRMR scores out of the initial set of 554
features. We evaluated different values of N (N = 10, 20,
30, . . . , 210), and found that N = 150 and N = 180 yielded
the highest F-measure score (see Supplementary Figure S1).
Thus, we used N = 150.

Positive (true) and negative (false) data

Positive data. The ‘positive’ dataset consists of 110,399
TF-TFBS links (‘positive’ links) that correspond to 232
TFs and their associated 110,399 TFBS sequences obtained
from the HOCOMOCO data as explained earlier.

Negative data. For each TF-TFBS link we produced a pre-
sumably ‘false’ TF-TFBS link by preserving the TF feature
part of the feature vector, but randomly selecting sequences
from human chromosomes 4 and 22 to correspond to the
‘TFBS’ sequence part in the feature vector. These two chro-
mosomes were used because chromosome 4 has the lowest
(∼38%) GC content, while chromosome 22 is one of the
two chromosomes that have the highest (∼48%) GC content
among all human chromosomes. From the initial ‘negative’
TF-TFBS set, we excluded all TF-TFBS links that were also
contained in the ‘positive’ dataset, which resulted in the fi-
nal ‘negative’ data. ‘Positive’ and ‘negative’ data were given
different class labels. Finally, for each ‘positive’ TF-TFBS
link, we created 10 ‘negative’ TF-TFBS links to make the
number of ‘negative’ samples 10 times higher than the num-
ber of ‘positive’ samples.

Training and test datasets. We split all data into 14 groups
corresponding to the 14 different TFBS lengths that we con-
sidered. Then, separately for each of these groups, we gener-
ated training and test datasets, and based on that we devel-
oped one prediction model for each of the groups. Note that
for 214 out of the 232 TFs, each of the groups was associ-
ated with mutually distinct sets of TFs assigned to the group
based on length of their TFBSs, i.e. if a TF was associated
with one of the groups, it did not appear associated with
any of the other groups. The remaining 18 TFs were associ-
ated with two groups because they have two sets of TFBSs
corresponding to different TFBS lengths. We pooled ‘pos-
itive’ and ‘negative’ datasets together, and using uniform
random sampling selected 70% of the data for training and
the 30% for testing. This division was made at random on
the TF level, such that 70% of the TF-TFBS links of a par-
ticular TF were used for training and the remaining 30%
were used for testing. Such training and testing data were
pooled separately for each length of TFBSs. In addition, we
performed 5- and 10-fold cross-validations for each length
of TFBSs using the whole respective dataset, and reported
the obtained results from each experiment. We set thresh-
olds on the model outputs that yield the highest accuracy on

the training dataset and used these thresholds when evalu-
ating the model performance on the test datasets. The same
is done in cross-validation experiments.

Random forests TFBS prediction model

DRAF uses RF (45) to model the relationship between TFs
and their associated TFBSs. An RF model is an ensemble of
decision tree (DT) models. The training data is divided be-
tween DTs in RF and each tree is trained with a subset of the
data. This division of data occurs on the features (not the
samples), such that each DT receives the entire training data
for M randomly selected features (with replacement). In the
testing phase, the class prediction of an unknown sample is
provided by each DT and the RF model counts the votes
and assigns the class label to the class with the most votes.

The TFs and the associated TFBSs are represented as TF-
TFBSs links. The 250 TFBS models associated with 232
TFs fall into 14 groups according to the length of their
TFBS sequences (Supplementary Table S1). We built 14 pre-
diction models accordingly, such that one model represents
all TF-TFBS links with a common TFBS length. Each pre-
diction model is represented as an ‘RF’ composed of an en-
semble of 80 decision trees. We tested a range (10, 20, . . . ,
150) of the number of DTs in the ensemble and found that
an RF composed of 80 DTs results in the highest accuracy
on the training data (see Supplementary Figure S2). In the
training phase, the model was trained with all TF-TFBS
links in the training set that belong to ‘positive’ and ‘neg-
ative’ classes. In the testing phase, the trained model was
used to predict the ‘positive’ or ‘negative’ class of a partic-
ular TF-TFBS link sample in the test dataset, after the fea-
tures in the test dataset were normalized using parameters
obtained from scaling of the training dataset. Tests by cross-
validation were done in a standard way using the scaling as
explained above, and the test results reported here were the
average across all the folds.

Model evaluation metrics

The quality of the model was evaluated by accuracy, sen-
sitivity, specificity, precision, F-measure and the Matthew’s
correlation coefficient to allow for comparison with other
existing prediction methods. These performance measures
are defined as follows:

Accuracy = TP + TN
TP + FN + TN + FP

, (5)

Sensitivity (Recall) = TP
TP + FN

, (6)

Specificity = TN
FP + TN

, (7)

Precision = TP
TP + FP

, (8)

Fmeasure= 2 ∗ (precision ∗ recall)
(precision + recall)

= 2 ∗ TP
2 ∗ TP + FN + FP

, (9)
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MCC= TP ∗ TN − FP ∗ FN
√

(TP + FP) (TP + FN) (TN + FP) (TN + FN)
, (10)

TP (true positive) represents correctly predicted ‘positive’
TF-TFBS links, TN (true negative) represents correctly pre-
dicted ‘negative’ links, FP (false positive) represents ‘nega-
tive’ links incorrectly predicted as ‘positive’ links and FN
(false negative) represents ‘positive’ links incorrectly pre-
dicted as ‘negative’ links.

Comparison of DRAF RF models with other machine learn-
ing model

We compared the prediction results of the DRAF RF
models with three other types of machine learning mod-
els, namely NN, SVMs and Gaussian Mixture Regression
(GMR) models. For each model, we set parameters to pro-
vide the highest accuracy on the training dataset. For NN,
we tested the feed-forward back-propagation network with
two and three hidden layers, each with either 100 or 200 neu-
rons, and using sigmoid functions for hidden layers and a
linear transfer function for the output layer. Based on the
accuracy obtained from testing these options on the train-
ing data, we finally used the feed-forward back-propagation
network with three hidden layers and the sigmoid trans-
fer function, each layer with 100 neurons, and a linear out-
put layer. The maximum number of epochs to train was set
to 500 and the learning rate was set to 0.05 with the tar-
geted maximum error of 1*10−5. For SVM (46), we tried
four different types of kernels, namely linear, polynomial,
radial basis and sigmoid. We used the radial basis func-
tion (46) within the LIBSVM (47) implementation of SVM,
which provided the highest accuracy on the training data.
We tested different values for the gamma (0.0625, 0.125,
0.25, 0.5, 1 and 2) and the regularization (cost) (0.5, 1, 2,
4 and 8) parameters. The kernel parameter values, which
provided the highest accuracy on the training dataset, were
set to 0.125 and 8 for the gamma and regularization param-
eters, respectively. For GMR, we used the implementation
from (48) and tested a different number of Gaussian com-
ponents (5, 10, 15, 20 and 25). We finally set the number of
Gaussian components to 20 as it provided the best perfor-
mance.

DRAF model validation on ChIP-seq data

ChIP-seq data. To measure the capability of the DRAF
models to predict TFBSs with high sensitivity and speci-
ficity, we evaluated the DRAF models using independent
ChIP-seq datasets. For this purpose, we used sequences of
all human ENCODE ChIP-seq peaks that were processed
and assigned signal scores by the ENCODE uniform pro-
cessing pipeline (6). Consequently, we retrieved 690 ChIP-
seq datasets that related to 165 unique TFs evaluated in dif-
ferent cell types, and 58 of these 165 TFs were among the
232 TFs we used to construct the DRAF models. For each
of these 58 TFs, we selected all corresponding ChIP-seq
datasets from all available cell types. From each dataset, we
used the top 500 sequences, having the highest peak enrich-
ment scores. We selected only ChIP-seq datasets that have
not been used for derivation of any of the TFBS DRAF
prediction models. This resulted in a total of 98 ChIP-seq

datasets, each of which consists of 500 sequences. These 98
ChIP-seq datasets correspond to 27 distinct TFs.

TFBS extraction from ChIP-seq data. The TFBS part in
the TF-TFBS feature vector was constructed from each
ChIP-seq peak sequence of length N, using sliding windows
of length L to extract sequences. Windows started from the
first position of the peak sequence and were shifted by one
nucleotide until the end of the peak sequence was reached.
This resulted in a total of N-L+1 TFBS sequence parts from
one ChIP-seq peak sequence. The same number of TFBS
sequence parts was extracted from the reverse complement
sequence of the ChIP-seq peak sequence, resulting in a to-
tal of 2*(N-L+1) TFBS sequence parts. This was done for
each sequence of the ChIP-seq peaks. For example, if a par-
ticular ChIP-seq peak sequence had (N = 100 bp), and the
TFBS length (L = 10), then we extracted 91 TFBS sequence
parts from this ChIP-seq peak and 91 TFBS sequence parts
from the reverse complement sequence. Then, each of these
TFBS sequence parts was represented in the same binary
representation explained above. The TF part of the feature
vector consists of the features of the TF for which the ChIP-
seq data are generated. Subsequently, TF-TFBS links were
constructed by associating the TF part of the feature vec-
tor with each of the corresponding TFBS parts. Finally,
we used the DRAF model to examine all these TF-TFBS
links and predict correct TF-TFBS associations. A ChIP-
seq peak sequence was declared to be correctly predicted
(i.e. true positive) if at least one of the 2*(N-L+1) TF-TFBS
links was identified by the DRAF model to be a positive
link (i.e. the TFBS is a correct binding site for the associ-
ated TF). If none of the 2*(N-L+1) TF-TFBS links belong-
ing to a particular ChIP-seq peak sequence was predicted
by the DRAF model as a positive link, then this ChIP-seq
peak sequence was considered as a false negative. To evalu-
ate the quality of DRAF model predictions on the ChIP-seq
dataset, we plotted the sequence logo for all the ChIP-seq
predictions made by the DRAF model for each TF using
the WebLogo tool (49), and compared the sequence logo
with the standard TF sequence logo obtained from HOCO-
MOCO.

‘Negative’ data. The ChIP-seq data facilitated the estima-
tion of the DRAF model sensitivity. However, to estimate
the model’s specificity, we constructed the ‘negative’ (back-
ground, false) datasets for each ChIP-seq peak dataset. We
want to point out that there is no good way to construct
background sets for testing TF DNA binding. For this we
used the whole human chromosome 21 (average CG con-
tent ∼41%) as follows. First, we excluded from chromosome
21 all TFBS sequences used for training, as well as all re-
gions covered by the ENCODE ChIP-seq peaks for a spe-
cific TF that belongs to any cell type that was available in
the ENCODE datasets. We also excluded the DNA acces-
sible regions based on the data we downloaded from EN-
CODE (30) (the uniform DNAse I Hypersensitivity clusters
merged from multiple cell types). The remaining portion of
the chromosome 21 represent a good background test set
since any TFBS prediction there will be more likely real false
positive. We also note that none of the models we evaluated
in this study uses information about accessibility of DNA
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(contrary, for example, to the model from (30)). The model
that receives only DNA sequence as the input, as is the
case with DRAF and other models we tested here, does not
know if that sequence is accessible or not and could make
predictions there anyway. This corresponds to the real sce-
nario in which these models will be applied and using such
background better reflects the actual performance, particu-
larly in a genome-wide testing.

The remaining parts of chromosome 21 were used to ex-
tract negative data as follows. Let us assume that the con-
sidered ChIP-seq dataset corresponds to a TF that has TF-
BSs of length L. Then, we used sliding windows of length
L to extract sequences. Windows started from the first po-
sition of chromosome 21 and were shifted by 1 nt until the
end of the chromosome sequence was reached. Every such
extracted sequence was discarded if it contained ambigu-
ous nucleotides. Feature vectors describing potential TF-
TFBS links were compiled in the same way as explained
previously, by associating the TF properties with the TFBS
representation for all extracted sequences and their reverse
complements. After that, we removed from the TF-TFBS
collection all links that were found in the training dataset
of the corresponding DRAF model. The number of TF-
TFBS links in the ‘negative’ dataset varies from one TF to
another depending on the excluded regions from chromo-
some 21. This is due to: (i) the overlap with ChIP-seq peaks,
(ii) the excluded TF-TFBS links because of the overlap with
the training dataset and (iii) the TFBS length L. For these
reasons, preparation of the ‘negative’ data from chromo-
some 21 differs from one TF to another. Finally, we used the
DRAF models to predict if these presumed TF-TFBS links
would correspond to the positive (true) or negative (false)
links. If a particular TF-TFBS link of the ‘negative’ set was
incorrectly predicted as ‘positive’, we considered this link as
a false positive prediction; similarly, the TF-TFBS link cor-
rectly predicted as a ‘negative’ link, was considered a true
negative prediction.

Comparison between the DRAF models, PWM models (HO-
COMOCO, TRANSFAC) and DeepBind models on ChIP-
seq peaks and their respective background datasets

Position weight matrix (PWM) models. We compared
the predictive performance of the DRAF models with the
PWM models obtained from the HOCOMOCO (version 9)
and TRANSFAC (version 2012.2) databases. For each of
the 27 TFs that we considered that correspond to the 98
ChIP-seq test dataset, we used the corresponding HOCO-
MOCO and TRANSFAC PWMs that model the respective
TFBSs. After that, we scanned the ChIP-seq peaks and the
chromosome 21 (as explained in the previous section) us-
ing MEME FIMO (50) to report PWM matching scores
on these sequences. At different sensitivity levels (10, 20,
. . . , 90%) we compared the predictions obtained from the
DRAF models with those obtained from the PWM models.

DeepBind models. We repeated the same comparison that
we performed between the DRAF models and the PWM
models but this time with DeepBind models. We found 24
out of the 27 TFs that we tested using ENCODE ChIP-seq
data to have a DeepBind model. This resulted in a compar-

ison of the DRAF models with the DeepBind models in 87
out of the total 98 ChIP-Seq datasets that we retrieved from
the ENCODE data.

RESULTS

New method for prediction of TFBSs

We developed a novel method, DRAF, for the prediction of
TFBSs, which requires one predictive model per one length
of TFBSs, irrespective of the number of TFs that have the
binding sites of that length. Consequently, we developed 14
such models covering TFBS lengths from 7 to 20 bp. To
describe TF-TFBS links, we used physicochemical proper-
ties of the DNA binding domains of TF proteins and com-
bined them with the sequence properties of their DNA bind-
ing sites. From all these properties we derived feature vec-
tors corresponding to each TF-TFBS link. We applied the
mRMR (43) feature selection method to the features that
correspond to the TF portion of the feature vector describ-
ing the TF-TFBS links. With features that remain, we devel-
oped RF models (45) for predicting TFBSs. Figure 1 depicts
major steps in DRAF modeling. Details of the method are
reported in the ‘Materials and Methods’ section.

Selected features of TFs

To describe each TF, 150 features, including AAindex
(39) properties, DNA binding domain family classification
(37), and amino acid binding mode preference to DNA
bases (41), were selected using the mRMR feature filtering
method. In the 14 models corresponding to different TFBS
lengths, on average, out of the 150 selected features, 145 are
AAindex properties, while 5 reflect other properties we in-
troduced (see below). Therefore, on average, one out of four
AAindex properties (27% = 145/544) and one out of two
other features (50% = 5/10) were selected through this fil-
tering. Of the 145 selected AAindex properties, on average,
115 can be classified into six groups, while 30 are ‘unclassi-
fied’ according to (39) (see Supplementary Figure S3). We
notice that almost half of the selected features from AAin-
dex (46%) are placed in the ‘hydrophobicity’ or ‘alpha and
turn propensity’ groups. Although this may highlight the
role of these two categories in predicting the TF affinity to
TFBSs, we also notice that the distribution in groups of our
AAindex selected features reflects well the distribution of
all the 544 AAindex properties (see Supplementary Figure
S3). The remaining five selected features represent the other
properties we introduced, namely the DNA binding domain
family classification and the amino acid binding mode pref-
erence to DNA bases. In particular, on average, four out
of seven features (57%) used to describe the DNA binding
domain family, and one out of three features (33%) used
to represent the amino acid binding mode preference, were
selected. This suggests that the features we added to those
from AAindex have a high information value for predicting
TF-TFBS links in the method we used.

TF-TFBS predictions by DRAF models

DRAF models were first trained using sets of ‘true’ TF-
TFBS links, derived from HOCOMOCO and having DNA
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Figure 1. The input data, training procedure and usage of the DRAF models for prediction of TF-TFBS links. Sequences of TFs and their TFBSs are
represented in TF-TFBS links using physicochemical properties of TFs and binary representation of TFBSs. Then, the DRAF models were constructed
for each group of TFs depending on the TFBS length. Finally, the DRAF models were tested using the holdout test dataset and another set of ChIP-seq
peak data and their associated background datasets. The DRAF models aim at predicting which TF-TFBS link suggests a valid TFBS for a particular TF.

binding domains for TFs in the Pfam database (see ‘Mate-
rials and Methods’ section), and ‘false’ TF-TFBS links ob-
tained by randomly selecting sequences from human chro-
mosomes 4 and 22 for the TFBSs. They were then used
to predict TFBSs of TFs. In order to measure the capa-
bility of the DRAF models to predict the TF-TFBS links,
we used two different testing strategies, one based on hold-
out dataset and another based on cross-validation meth-
ods. In the holdout approach (see details in the ‘Materi-
als and Methods’ section), the average accuracy, sensitiv-
ity, specificity and precision obtained from applying all 14
DRAF models to the test data were 99.16, 92.53, 99.86 and
98.57%, respectively (Figure 2A and Supplementary Table
S3). These results were obtained using thresholds on the
model output scores that provided the highest accuracy on
the training data. We repeated the same experiments on
the test data using the thresholds that provided the highest
specificity and the highest sensitivity on the training data
(Figure 2A; Supplementary Tables S4 and 5).

In addition, Figure 2B depicts the receiver operating
characteristic (ROC) curve for 14 models. The area under
ROC is extremely high (AUC = 0.9991). This shows that
the DRAF models could predict the TF-TFBS relationship
with very high accuracy for all modeled TFs.

We repeated the evaluation experiments using also the 10-
and 5-fold cross-validations. The average accuracy, sensitiv-
ity, specificity and precision obtained from applying all 14
DRAF models using a 10-fold cross-validation were 99.40,
97.71, 99.58 and 95.97%, respectively. Supplementary Ta-
bles S6–8 show the prediction results with a 10-fold cross-
validation for all 14 models using the thresholds giving the
highest accuracy, specificity and sensitivity, respectively, on
the training data. Supplementary Tables S9–11 show simi-
lar results to those given in Supplementary Tables S6–8 but
obtained using a 5-fold cross-validation.

Finally, we compared the prediction results of the DRAF
models with NN, SVMs and GMR models (see ‘Materials
and Methods’ section). DRAF models outperformed other
models in terms of accuracy, specificity and precision (Sup-
plementary Figure S4 and Table S12). That is, DRAF mod-
els yielded an average accuracy, specificity and precision of
99.16, 99.86 and 98.57%, respectively, which is better than

the next best results of 99.06, 99.49 and 95.08%, respec-
tively, obtained by the NN models. With the achieved ac-
curacy and specificity being similar between the two mod-
els, the precision of DRAF models was higher. The DRAF
models, however, yielded lower sensitivity than NN and
SVM, but the sensitivity was higher than with the GMR
models (Supplementary Figure S4 and Table S12).

As a final check, to assess the effect of the GC content on
the DRAF predictive power, we repeated the training and
testing experiment with background sequences extracted
from chromosome 21, which has a GC content close to the
average GC content of the human genome. The obtained av-
erage accuracy, specificity and precision (99.07, 99.82 and
98.04%, respectively) were extremely similar to those ob-
tained with the background sequences extracted from chro-
mosomes 4 and 22 (Supplementary Tables S13–15).

Evaluation of DRAF models using ChIP-seq data

We evaluated the predictive performance of the DRAF
models on the 98 ENCODE ChIP-seq datasets (see ‘Ma-
terials and Methods’ section). We changed the thresholds
on the model output scores to obtain the predictions at dif-
ferent sensitivity levels (10, 20, . . . , 90%) and monitored
the capability of the DRAF models to recognize the back-
ground sequences as ‘false’ TFBSs (this was measured using
the average distance between predictions made on the back-
ground sequences (51)). The results show that the DRAF
models accurately predict TFBSs on sequences of ChIP-
seq peaks, while maintaining high specificity of predictions
on the background sequences (Supplementary Dataset 1).
For example, using conventional performance measures, the
DRAF models yield at the sensitivity level of 80%, with
an accuracy and specificity (averaged over 98 ChIP-seq
datasets) of 99.89 and 99.89%, respectively (Supplementary
Dataset 1).

We examined the similarity of the predicted TFBSs in the
ChIP-seq peaks with the known TFBSs for each TF used
in this study. The sequence logos for TFBS predictions at
different sensitivity levels show high levels of similarity to
known sequence logos obtained from HOCOMOCO (20)
for the corresponding TFs (Figure 3 and Supplementary
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Figure 2. The prediction performance of the DRAF models on the holdout test dataset. (A) The DRAF models were applied on the holdout test data
using different threshold settings for the models’ prediction scores that provided the highest accuracy (pink bar), the highest sensitivity (green bar) and the
highest specificity (blue bar), on the training dataset. (B) The ROC curve (true positive rate versus false positive rate) was performed for the predictions
obtained from all the 14 DRAF models on the holdout test dataset. The AUC for the DRAF models is 0.9991.

Figure 3. Sequence logos for the predicted TFBS sequences on the human ChIP-seq datasets using the DRAF models. The figure shows different sequence
logos obtained from the DRAF-predicted TFBS sequences from ChIP-seq datasets at different sensitivity levels. The complete set of sequence logos for
the 98 ENCODE ChIP-seq datasets are provided in Supplementary Table S16.

Table S16). This suggests that each of the 14 DRAF models
was capable of capturing the DNA binding patterns of the
TFs encoded by the respective DRAF model.

Next, we compared on the 98 ChIP-seq datasets the per-
formance of the DRAF models with the HOCOMOCO
PWM models, TRANSFAC PWM models and DeepBind
models. For this purpose, we set thresholds on the DRAF
model prediction scores that yielded the highest F-measure
scores on the training data (see ‘Materials and Methods’
section). Note that this training data is independent from
98 ChIP-seq datasets and associated background sequences.
We used these thresholds when evaluating the model perfor-
mance on the ChIP-seq datasets (see ‘Materials and Meth-
ods’ section). The results show that the DRAF models
achieve a higher specificity on the background data com-
pared to the other three types of models, while having a
better or at least the same sensitivity levels (Supplementary
Datasets 2–4). The previous results were obtained by com-
paring the performance of DRAF and other models on EN-

CODE ChIP-seq datasets using thresholds that provided
the highest F-measure scores on the training data. In addi-
tion, we repeated this comparison between the considered
models by comparing their performance at different sen-
sitivity levels (see ‘Materials and Methods’ section). At all
studied sensitivity levels, the DRAF models outperformed
HOCOMOCO, TRANSFAC and DeepBind models, pro-
viding a higher precision (positive predictive value) on the
98 background datasets (for HOCOMOCO, TRANSFAC)
and 87 background datasets (for DeepBind), each corre-
sponding to one of the ChIP-seq dataset (see ‘Materials
and Methods’ section). Overall, for the individual ChIP-seq
datasets, the DRAF models yielded precision on the back-
ground datasets (averaged over all sensitivity levels) higher
than each of the HOCOMOCO, TRANSFAC and Deep-
Bind models in 78.57% (77 out of 98 ChIP-seq datasets),
92.86% (91 out of 98 ChIP-seq datasets) and 91.95% (80
out of 87 ChIP-seq datasets), respectively (Supplementary
Datasets 1, 5 and 6).
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Figure 4. Comparison of the DRAF, HOCOMOCO, TRANSFAC and DeepBind models. In (A) different sensitivity levels (averaged over all ChIP-seq
datasets) were used. The X-axis represents the sensitivity level (Top: 10, 20. . . 50% and Bottom: 60, 70. . . 90%) and the Y-axis represents the average distance
(in nt) between false positive prediction occurrences on the background sequences (from chromosome 21) averaged over the all corresponding tested ChIP-
seq datasets. (B) ROC curves that correspond to DRAF, HOCOMOCO, TRANSFAC and DeepBind predictions per sensitivity averaged across the all
corresponding tested ChIP-seq datasets.

Figure 5. Summary of comparison between the DRAF, HOCOMOCO, TRANSFAC and DeepBind models. (A) Boxplots show the average distance (in
nt) between FP predictions on the background sequences (from chromosome 21) at different sensitivity levels obtained from testing the corresponding
models on the ChIP-seq datasets and averaged over all the datasets at each sensitivity level. The diamonds on the boxplots show the mean values. (B)
Graph shows the fold decrease of the average distance between FP predictions on the background sequences (from chromosome 21) at different sensitivity
levels for TRANSFAC, HOCOMOCO and DeepBind models relative to DRAF (Supplementary Table S17).

In 882 experiments (9 threshold values × 98 ChIP-seq
datasets for HOCOMOCO and TRANSFAC), and 783 ex-
periments (9 threshold values × 87 ChIP-seq datasets for
DeepBind), the DRAF models yielded precision (averaged
over all sensitivity levels) higher than each of the HOCO-
MOCO, TRANSFAC and DeepBind models in 69.05%
(609 out of 882 experiments), 92.27% (820 out of 882 exper-
iments) and 91.95% (720 out of 783 experiments), respec-
tively.

In the ‘Materials and Methods’ section, differences in
the total number of ChIP-seq datasets related to TRANS-
FAC and DeepBind are described. Another measure that
we used to compare the models was the average distance be-

tween false positive predictions on the background datasets
(see ‘Materials and Methods’ section), averaged over all the
tested background datasets. We found that at each of the
tested sensitivity levels, DRAF models provided a signifi-
cantly smaller number of false positive predictions than any
of the other three types of models (Figures 4A, B and 5A;
Supplementary Figure S5 and Supplementary Datasets 1, 5
and 6). The DRAF models provided on average 1.54-, 1.96-
and 5.19-fold reduction of false positives at the same sensi-
tivities compared to models from HOCOMOCO, TRANS-
FAC and DeepBind, respectively (Figure 5B, Supplemen-
tary Table S17, Supplementary Datasets 1, 5 and 6).



e72 Nucleic Acids Research, 2018, Vol. 46, No. 12 PAGE 10 OF 12

Table 1. Reported prediction results from different studies

Studya
Number of
TFs

Number of
unique TFBSs

Dataset size
(Total
TF-TFBS
links)

True TF-TFBS
links

False
TF-TFBS links Testing method Highest accuracy

Qian Z. et al.
(reported in
(33))

480 2,341 10,206 3,356 6,850 Leave one out 76.6%

Qian Z. et al.
(reported in
(34))

143 571 10,430 3,430 7,000 Leave one out 87.9%

Cai, Y. et al.
(reported in
(35))

599 2,402 35,410 3,541 31,869 Leave one out 91.1%

DRAF models
(on the
datasets from
this study)

232 44,710 1,214,389 110,399 1,103,990 30% holdout 99.16%

aThis table shows the prediction accuracy of the DRAF models on the holdout dataset (30% of the total), and the other models as reported in the original
references (33–35) that used different TF-TFBS test datasets. Our holdout dataset is 34-, 116- and 119-fold larger than the datasets from (35), (34) and
(33), respectively. The test dataset for DRAF has 364 317 (positive and negative) TF-TFBS links which is more than 10 times larger than the next largest
dataset used in (35).

Reported performance of other models

Performance comparison of DRAF models with other rel-
evant works is not straightforward, due to the differences
between approaches and the criteria used in different stud-
ies. In some of the previous studies (13,31,52–54) models
were assessed only for individual TFs or specific TF fami-
lies. For example, the model created by Ellrott et al. (53) was
evaluated on HNF4�; the model developed by Endres (31)
was evaluated only on Zif268; Alamanova and colleagues
(52) tested their model on few TFs such as P53 and NF-�B.
Liu and Bader (54) reported results on Mat-�2 and GCN4
bZIP. Chen and others used six TFs to test their model (13).

Therefore, we focused on the performance comparison of
the DRAF models and the reported results from (33–35).
Each of these studies used more than 100 TFs in the assess-
ment of models’ performances (Table 1). We used a much
more comprehensive and significantly larger dataset with 1
214,389 TF-TFBS links (true and false) (Table 1, Columns
2, 3 and 4). Our dataset is 34-, 116- and 119-fold larger than
the datasets used in (35), (34) and (33), respectively. The re-
sults show that the DRAF models, as evaluated on 30% of
the holdout data (364,317 TF-TFBS links), achieve a sig-
nificantly higher accuracy than the reported performance
of models in (33–35) that were evaluated on much smaller
datasets (Table 1).

DISCUSSION

We developed DRAF models to capture the relationship be-
tween TFs and their TFBSs. Each DRAF model is devel-
oped to capture relationships of all TFs whose TFBSs have
the same length. Consequently, we needed only 14 DRAF
models to represent TF-TFBS links that covered 232 hu-
man TFs and 250 TFBS sets. These TFBSs are grouped
into 14 distinct lengths (7, 8, . . . , 20 bp). PWMs and other
model types are typically developed for TFBSs for indi-
vidual TFs, resulting in numerous models (usually one or
more models for a single TF). However, in a much smaller
number of cases TFBSs of TFs from the same family are

used to develop one PWM model for that family. This is the
reason why major TFBS model databases (HOCOMOCO,
TRANSFAC and JASPAR) have a very large number of
TFBS models. In contrast, DRAF successfully reduces the
number of required models to only 14, based on the length
of the TFBSs we considered. One such prediction model can
thus be applied to a set of TFs whose TFBSs have the same
length. For 232 TFs, DRAF requires only 14 models; this
is ∼18 fold less than the corresponding 250 TFBS models
in HOCOMOCO, ∼54 fold less than the corresponding 749
TFBS models in TRANSFAC (231 TFs of the 232 TFs were
found TRANSFAC) and ∼50 fold less than the 704 TFBS
models in DeepBind (124 TFs of the 232 TFs were found in
DeepBind).

This reduction in the number of required models did not
decrease performance. On the contrary, the results show
that the DRAF models outperformed all three groups of
models. Furthermore, the DRAF models increased speci-
ficity by making false positive predictions on the back-
ground datasets, on average 1.54-, 1.96- and 5.19-folds
less frequent than the HOCOMOCO PWMs, TRANSFAC
PWMs and DeepBind models, respectively. This confirmed
the capability of DRAF models for the prediction of TFBSs.
This is most likely due to the choice of features in the DRAF
models, reflecting both the physicochemical and structural
properties of the TFs and the sequences of their associated
TFBSs and the more complex DRAF models than PWM
models. Furthermore, the RF models used in DRAF may
be able to capture nucleotide dependencies, thus overcom-
ing an intrinsic limitation of the classical (mononucleotide-
based) PWMs approach.

It should be noted that our testing approach relat-
ing to the ChIP-seq data involved validating models on
background data composed of the entire chromosome 21
(excluding data used in training, those overlapped with
ChIP-seq peaks when specific cell types were used, and
those that corresponded to DNA accessible regions). Such
chromosome-wide testing is useful in unbiased assessing
TFBS prediction models, as it does not involve creation
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of artificial background sequences. For example, DeepBind
models were evaluated on the ChIP-seq data using only the
top 500 even-numbered ChIP-seq peaks that were randomly
shuffled.

Although DRAF models demonstrate the lowest false
positive rates among the tested models, the absolute number
of false positive predictions is still noticeable (Supplemen-
tary Dataset 1). It is worth mentioning that our models pre-
dict binding sites in a non-cell-specific manner, thus some
binding sites may not be available for binding in a given
cell type and therefore do not intersect with the ChIP-seq
peaks for that cell type. Chromatin structure interferes with
TF binding via the modification of histones (6) and to a
lesser extent, via DNA methylation (55). Commonly used
computational strategies to compensate for the specifics of
the chromatin structure could be applied to enhance pre-
dictions, using information from histone modification data
or DNase I hypersensitivity regions (DNase-seq) for a cell
type of interest (56,57).

CONCLUSION

In this work, we modeled TF-TFBS interactions using
properties extracted from sequences of DNA binding do-
mains of TFs, and TFs’ DNA-binding domains using a
novel method (DRAF). RFs DRAF models were built for
all TFs sharing a common TFBS length. That is, for all 250
TFBS models obtained from the HOCOMOCO database
we developed 14 DRAF models representing 14 distinct
TFBS lengths we considered. The average DRAF’s predic-
tion accuracy of 99.94% is, to the best of our knowledge,
the highest of those currently reported on large datasets and
clearly demonstrates the advantages of the DRAF method
for TFBSs prediction.

Using the DRAF method we reduced the number of re-
quired models, yet, we demonstrated that at the same sensi-
tivity levels DRAF models achieve much higher specificities
than the HOCOMOCO, TRANSFAC and DeepBind mod-
els.
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