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Functional interactors of three 
genome-wide association study 
genes are differentially expressed 
in severe chronic obstructive 
pulmonary disease lung tissue
Jarrett D. Morrow1, Xiaobo Zhou1, Taotao Lao1, Zhiqiang Jiang1, Dawn L. DeMeo1,2, 
Michael H. Cho1,2, Weiliang Qiu1, Suzanne Cloonan3, Victor Pinto-Plata4, Bartholome Celli2, 
Nathaniel Marchetti5, Gerard J. Criner5, Raphael Bueno6, George R. Washko2, Kimberly Glass1, 
John Quackenbush7, Augustine M. K. Choi3, Edwin K. Silverman1,2 & Craig P. Hersh1,2

In comparison to genome-wide association studies (GWAS), there has been poor replication of gene 
expression studies in chronic obstructive pulmonary disease (COPD). We performed microarray gene 
expression profiling on a large sample of resected lung tissues from subjects with severe COPD. 
Comparing 111 COPD cases and 40 control smokers, 204 genes were differentially expressed; none 
were at significant GWAS loci. The top differentially expressed gene was HMGB1, which interacts with 
AGER, a known COPD GWAS gene. Differentially expressed genes showed enrichment for putative 
interactors of the first three identified COPD GWAS genes IREB2, HHIP, and FAM13A, based on gene 
sets derived from protein and RNA binding studies, RNA-interference, a murine smoking model, and 
expression quantitative trait locus analyses. The gene module most highly associated for COPD in 
Weighted Gene Co-Expression Network Analysis (WGCNA) was enriched for B cell pathways, and shared 
seventeen genes with a mouse smoking model and twenty genes with previous emphysema studies. As 
in other common diseases, genes at COPD GWAS loci were not differentially expressed; however, using 
a combination of network methods, experimental studies and careful phenotype definition, we found 
differential expression of putative interactors of these genes, and we replicated previous human and 
mouse microarray results.

Chronic obstructive pulmonary disease (COPD) is characterized by progressive airflow obstruction accompanied 
by chronic inflammation. It is the third leading cause of morbidity and mortality worldwide1. Although cigarette 
smoking is the major risk factor, multiple studies have demonstrated a genetic component to COPD suscepti-
bility2–5. Genome-wide association studies (GWAS) have identified multiple genetic loci associated with COPD 
susceptibility, with replication of the results across different populations6–8.

Many published studies have performed microarray gene expression profiling in COPD lungs9–17. In con-
trast to the GWAS, there has been minimal overlap between the differentially expressed genes identified in each 
microarray study18; greater overlap has been found for differentially expressed pathways. These microarray stud-
ies have been limited by variable definitions of COPD, incomplete consideration of past and current smoking sta-
tus, failure to consider quantitative traits and COPD heterogeneity (such as emphysema and airway disease), and 
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until recently, small sample sizes19,20. The COPD microarray studies have not found robust differential expression 
of the genes at GWAS loci, which has been shown in other complex diseases and traits, including coronary heart 
disease, height, type 2 diabetes, and autism21–24. Although most GWAS single nucleotide polymorphisms (SNPs) 
are likely regulatory variants and perhaps eQTLs25–28, the magnitude of effect of these SNPs on gene expression 
may be too subtle to capture with genome-wide expression studies in disease tissue.

We hypothesized that the genes identified at COPD GWAS loci (GWAS genes) may point to pathways and 
interacting gene networks important for COPD pathogenesis, and that genes in these pathways may be dif-
ferentially expressed in lung tissues. However, the pathways relevant for many COPD GWAS genes are largely 
unknown. Therefore, we focused on the first three identified COPD GWAS genes, which have the strongest asso-
ciation signals: IREB2 (iron responsive element binding protein 2), HHIP (hedgehog interacting protein) and 
FAM13A (family with sequence similarity 13 member A)6, for which multiple omics datasets have been previ-
ously generated. Other COPD GWAS genes lacked the breadth of omics data required for a similarly thorough 
study. We used these available data, from in vitro and in vivo models29–32 and in silico analyses, to identify gene sets 
functionally related to these genes. We merged these results with gene expression profiling from human COPD 
lung tissues and former smoker controls to demonstrate that the genes related to the GWAS genes, but not the 
GWAS genes themselves, were differentially expressed in the disease-relevant tissue.

A Weighted Gene Co-expression Network Analysis (WGCNA) was performed to identify gene modules associ-
ated with COPD status, as network medicine approaches33,34 provide insight into the understanding of complex dis-
ease and have been applied to the study of COPD32,35,36, heart disease21, diabetes23 and autism spectrum disorder24.  
By leveraging these methods in lung tissue, and examining interacting gene set enrichment, co-expression net-
works and pathways instead of individual genetic determinants, this study sought to identify key genes and gene 
modules involved in the molecular pathogenesis and etiology of COPD.

Results
Gene expression association with phenotype variables. We performed microarray gene expres-
sion profiling on lung tissue samples from 111 COPD cases and 40 control smokers with normal lung func-
tion (Supplemental Table S1). The differential expression analysis using R and the package limma (see Methods) 
identified 214 probes (mapped to 204 genes) associated with COPD at a 5% FDR; the top results are provided in 
Table 1 and all significant results may be found in Supplemental Table S2. The top differentially expressed probe 
is annotated to HMGB1. This probe was also the top gene expression association with lung function measures 
forced expiratory volume in 1 sec (FEV1)% predicted and the ratio of FEV1 to forced vital capacity (FVC). None 
of the previously identified genome-wide significant COPD GWAS genes (p-value <  5e-8) from the NHGRI-EBI 
Catalog (www.ebi.ac.uk/gwas/) were significantly differentially expressed (Table 2). A summary of the results 
for the other COPD-related phenotypes is provided in Supplemental Table S3. There were 1,556 differentially 
expressed probes (mapped to 1,366 genes) at a 5% FDR for FEV1%predicted and 1,689 differentially expressed 
probes (mapped to 1,429 genes) for the ratio of FEV1 to FVC. In lung function analyses in COPD cases only, the 
numbers of differentially expressed probes were lower and the overlap with the results for the full cohort was 
modest (Supplemental Figure S1). However, nearly half of the case-only results are recapitulated in the full-cohort 
analyses.

Probe name Log Fold Difference* p-value FDR q-value Gene symbol

ILMN_1676938 − 0.9164 5.40E-010 1.77E-005 HMGB1

ILMN_3187508 − 0.6609 1.70E-009 2.79E-005 FLJ40504

ILMN_2050921 − 0.6510 3.16E-009 3.46E-005 C3orf78

ILMN_2398474 − 0.7957 2.11E-008 1.73E-004 RAP1B

ILMN_3245015 − 0.6185 3.18E-008 2.09E-004 LOC440563

ILMN_1665333 − 0.7186 6.52E-008 3.57E-004 SUMO2

ILMN_1705330 − 0.7185 8.61E-008 4.04E-004 CDC42

ILMN_1656898 − 0.7223 1.31E-007 5.37E-004 PTCD1

ILMN_3266294 − 0.6043 1.66E-007 6.05E-004 SREK1IP1

ILMN_1696031 − 0.5292 1.99E-007 6.22E-004 C15orf21

ILMN_1691485 − 0.6776 2.08E-007 6.22E-004 GTF2H2

ILMN_3191922 − 0.8825 2.28E-007 6.24E-004 FLJ46111

ILMN_2068122 − 0.6563 3.42E-007 8.63E-004 TMEM65

ILMN_3239871 − 0.5563 4.85E-007 1.07E-003 ARPP19

ILMN_3219808 − 0.5897 4.90E-007 1.07E-003 HNRNPA1

ILMN_1716246 0.8208 5.94E-007 1.22E-003 FRZB

ILMN_3183789 − 0.3577 7.60E-007 1.47E-003 UQCRFS1

ILMN_1799837 − 0.6066 1.07E-006 1.95E-003 POTEM

ILMN_2141398 − 0.6715 1.32E-006 2.24E-003 VEZT

ILMN_1674399 0.3467 1.40E-006 2.24E-003 ZNF143

Table 1. Top 20 genes differentially expressed in COPD vs. control. *Reference group is controls: positive log 
fold difference corresponds to higher expression in cases.

http://www.ebi.ac.uk/gwas/
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Pathway enrichment tests were performed using the gene symbol annotations for the 214 probes (204 unique 
genes) differentially expressed by COPD case/control status (Supplemental Table S4). The two nominally signif-
icant Reactome results (FDR ≤  0.1) were Regulation of actin dynamics for phagocytic cup formation::2029482 and 
Fcgamma receptor (FCGR) dependent phagocytosis::2029480. The higher false discovery rate threshold was chosen 
to highlight pathways or processes that may be of interest in future studies. The GO results identified a broad 
group of pathways, with processes related to protein modification and apoptosis being dominant.

Interactor enrichment in differentially expressed genes. While we did not observe differential 
expression of genes at GWAS loci, we noted that the top differentially expressed gene, HMGB1 (high mobility 
group box 1), has been identified as an important interacting partner of AGER (advanced glycosylation end 
product specific receptor)37, a gene implicated by GWAS for emphysema susceptibility38–40. This led us to test 
whether interacting partners of other COPD GWAS genes were also differentially expressed. The available  
in vitro, in vivo, and in silico datasets, described in the Methods section, defined sets of genes that may interact 
with COPD GWAS genes HHIP, FAM13A, and IREB2. These were tested for enrichment within the 204 COPD 
differentially-expressed genes. Table 3 shows that the genes differentially expressed in COPD lungs are enriched 
for interacting partners of IREB2, HHIP and FAM13A. There was similar enrichment in the 1,366 genes with 
expression associated with FEV1% predicted and the 1,429 genes associated with FEV1/FVC ratio. In the UpSet41 
plot of the intersecting genes across the enrichment results (Supplemental Figure S2), the rows correspond to 
the rows of Table 3, and the gene sets for each row are the genes that overlap with the 204 differentially expressed 
genes (column three of Table 3). The intersecting genes for each column are listed in Supplemental Table S5. 
HMGB1 and CD79A were present in the intersection of IREB2 RNA immunoprecipitation sequencing 
(RIP-seq) and the FAM13A trans-eQTL overlaps, and SERPINE2 was found in the overlap for IREB2 RIP-seq 
(Supplemental Table S5 and Supplemental Figure S2). POU2AF1 and BCL11A were present in overlaps involving 
two different Hhip+/− mouse smoking models. BCL2 was found in the intersection of gene list overlaps for an 
Hhip+/− mouse model, IREB2 RIP-seq and FAM13A trans-eQTL.

Gene Probe P-value
FDR 

q-value
Log fold 

difference*

MMP12 ILMN_2073758 0.02 0.30 0.91

HHIP ILMN_1675453 0.04 0.42 0.41

AGER ILMN_1729777 0.11 0.59 − 0.31

IREB2 ILMN_1726554 0.12 0.60 0.21

DLC1 ILMN_1698020 0.16 0.66 − 0.24

CHRNA5 ILMN_1770044 0.19 0.67 0.12

RAB4B ILMN_1761896 0.33 0.80 0.096

FAM13A ILMN_1800267 0.34 0.80 − 0.09

CHRNA3 ILMN_2154157 0.53 0.89 0.13

RIN3 ILMN_1731736 0.64 0.93 0.07

TGFB2 ILMN_1812526 0.89 0.98 − 0.03

Table 2. Differential expression results for putative genes at previously identified genome-wide significant 
COPD and emphysema GWAS loci (probe with highest ranking result shown). *Reference group is controls: 
positive log fold difference corresponds to higher expression in cases.

Experiment

Number 
of genes or 
proteins*

Overlap 
with 204 

COPD genes

Enrichment 
p-value for 

COPD genes

Overlap with 
1,366 FEV1% 

predicted genes

Enrichment 
p-value for FEV1% 

predicted genes

Overlap with 
1,429 FEV1/
FVC genes

Enrichment 
p-value for 

FEV1/FVC genes

IREB2 RIP-seq 4008 64 2.4e-5 359 3.6e-11 400 < 1.0e-12

HHIP affinity purification 216 5 0.062 34 1.8e-6 45 1.6e-11

FAM13A affinity purification 97 0 1 8 0.31 8 0.35

Hhip+/+ vs. Hhip+/− mouse, 6 mo smoke 492 15 0.00011 60 2.7e-6 61 5.4e-6

Hhip mouse, genotype x smoke interaction 549 12 0.0082 46 0.054 46 0.095

IREB2 Irp2+/+ vs. Irp2−/− mouse knockout 31 0 1 3 0.33 3 0.36

HHIP shRNA knockdown 266 3 0.49 20 0.30 19 0.46

FAM13A siRNA knockdown 598 13 0.0063 54 0.011 61 0.0013

IREB2 trans-eQTLs at p <  0.05 1612 31 0.00023 171 1.4e-10 159 1.7e-6

HHIP trans-eQTLs at p <  0.05 1560 21 0.087 143 2.4e-05 156 9.4e-7

FAM13A trans-eQTL at p <  0.05 1753 38 2.7e-06 209 < 1.0e-12 194 8.7e-12

Table 3. Enrichment of functional interactors of COPD GWAS genes in the gene expression results 
(differentially expressed genes with FDR < 0.05). *Unique gene annotations found in the final expression 
data.
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In a COPD GWAS dataset8, nominal association with case-control status was observed for SNPs anno-
tated to BCL2 (rs1481031, p =  0.0003), BCL11A (rs191541310, p =  0.007), POU2AF1 (rs2282637, p =  0.008), 
HMGB1 (rs117938771, p =  0.01), and SERPINE2 (rs6721140, p =  0.03). No association was observed for CD79A 
(rs112580282, p =  0.2).

Cis-eQTL analysis. For the HHIP (rs11724319, p =  0.03) and FAM13A (rs2609255, p =  0.001) eQTLs, the 
risk allele dosage corresponds to increased expression, while for the IREB2 eQTL (rs2009746, p <  1.0e-10) the 
risk allele dosage corresponds to decreased expression8.

Network analysis. A weighted gene co-expression network was constructed to group together co-expressed 
genes prior to pathway analysis42,43. The final network consisted of 17 modules, ranging in size from 30 to 5,518 
probes (Supplemental Table S6). There was high correlation within the modules as expected, with the mean 
module membership (MM), or mean correlation of gene expression with the module eigengene, varying from 
0.53 to 0.79 across all modules. The grey module is a grouping of probes with outlying gene expression pro-
files and was not considered further. Tests of association between phenotype variables of interest and the mod-
ule eigengenes were performed for each model (see Methods), and the results were summarized in a heatmap 
(Fig. 1). Only the cyan module (number of probes =  90) was significantly associated with COPD case-control 
status (FDR <  0.05); however, the cyan module and brown module (number of probes =  4505) were associated 
with multiple COPD-related phenotypes, including case-control status, two measures of lung function – FEV1% 
predicted and FEV1/FVC ratio – and emphysema, measured as low attenuation areas < − 950 HU on chest com-
puted tomography (CT) scans. The probes within the cyan module and the top probes from the brown module 
after sorting by gene significance and module membership values, are listed in Supplemental Tables S7 and S8; 
putative driver genes for the two modules are highlighted at the top. We define driver genes by gene significance 
(GS) FDR < 0.05 in COPD differential expression analysis and higher module membership (MM) correlations. 
These include CD79A (GS =  0.03, MM =  0.93) and POU2AF1 (GS =  0.03, MM =  0.91) for cyan, and HMGB1 
(GS =  1.77e-5, MM =  0.84) for the brown module. The probes annotated to AGER were found in the grey mod-
ule, and therefore co-expression with other genes, including HMGB1, was not observed (Pearson r =  0.09 for 
HMGB1:AGER). The gene network in the cyan module is shown in Fig. 2. In this module, CD79A and POU2AF1 
have high degree (high number of edges) and therefore appear as hubs. Seventeen genes in this module over-
lap with the mouse Hhip+/+ vs. Hhip+/− 6 month smoking model gene set (Supplemental Table S7, enrichment 
p-value 6.5e-14), demonstrating that pathways associated with lung damage and B cell aggregate formation32 
are shared across species. This module includes 9 genes (15 probes) associated with emphysema in a previous 
lung tissue microarray expression study10 and 14 genes (17 probes) found to be differentially expressed between 
emphysema and bronchiolitis44. The brown module was relatively large and did not demonstrate sub-structures 
like those observed in the cyan module; sub-structures could have informed a network pruning step. In the 
COPD case-control analysis, the top probes annotated to HHIP, FAM13A and IREB2 were found in the grey, grey 
and blue modules, respectively.

Pathway enrichment tests were performed for the genes in the cyan and brown modules (Supplemental  
Tables S9 and S10). In contrast to the pathway enrichment results for the top COPD associated genes, the path-
ways enriched in the cyan module are more specific, demonstrating enrichments for B cell related processes. For 
the brown module, the results are mixed and broad, highlighted by RNA processing, apoptosis, immune system, 
and protein modification pathways.

Discussion
In a microarray study of surgically-resected human lung tissue from ex-smoking severe COPD subjects and con-
trols, we discovered 214 differentially expressed probes, corresponding to 204 unique genes. We found that none 
of the significant genes from previous COPD GWAS in the NHGRI-EBI Catalog or emphysema GWAS39 were 
differentially expressed. As the top differentially expressed gene was HMGB1, a known interactor of the COPD 
and emphysema gene AGER, we sought to determine whether there was differential expression of the putative 
interactors for the first three identified COPD GWAS genes: IREB2, HHIP and FAM13A. Using a combination of 
experimental datasets and network analyses, we observed strong enrichment for putative interactors of IREB2, 
HHIP, and FAM13A. We identified a gene co-expression module strongly associated with COPD, and enriched 
for B cell functions. This module contained seventeen overlapping genes compared to the Hhip+/− smoking 
mouse model32, highlighting a cross-species signal of B cell related pathogenesis in COPD and emphysema. Using 
the strict phenotype definition of severe COPD in former smokers, we were able to replicate significant gene and 
B cell pathway findings from a previous emphysema gene expression study10, in contrast to the poor replication 
in many previous COPD microarray studies18.

Our top differentially expressed gene was HMGB1. The protein encoded by HMGB1 is an interacting partner 
of AGER (which encodes the emphysema biomarker sRAGE), a replicated lung function and emphysema asso-
ciated gene38,39,45. Plasma HMGB1, along with sRAGE, has been found to be higher during acute exacerbations 
in COPD patients and lower during convalescence46. Increased HMGB1 has been observed in blood and lung of 
smokers with COPD relative to healthy smokers47. There is also evidence of elevated HMGB1 protein levels in the 
sputum48 and bronchoalveolar lavage (BAL)37 of COPD patients. The nature of HMGB1 involvement in COPD 
is unclear49, and the reduced expression of the HMGB1 gene in our COPD lung tissue study, in contrast to the 
increased protein levels in sputum and BAL in these previous studies, and in a study of plasma levels in COPD 
patients50, requires further investigation; differences in smoking status, disease severity and tissue of origin may 
explain the differing results. HMGB1 was a driver gene in the brown module, which was associated with COPD, 
lung function and emphysema.
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Our analysis also identified interacting genes that may play a role in COPD pathogenesis. SERPINE2 (sepin 
peptidase inhibitor clade E member 2) has been suggested as a COPD and asthma susceptibility gene51,52, and 
CD79A (CD79a molecule, immunoglobulin-associated alpha) was identified as a putative driver gene for the cyan 
module. Another putative driver for the cyan module, POU2AF1 (POU class 2 associating factor 1), was present 
in the intersection with the Hhip+/− mouse smoking model. BCL2 (Bcell CLL/lymphoma 2) has been implicated 
in COPD via regulation of apoptosis through mitochondrial maintenance functions53–55.

Construction of co-expression networks is a method to group similarly expressed probes into correlated 
network modules, with potentially common functions. Using WGCNA, we identified modules associated with 
COPD, lung function and quantitative CT emphysema. The cyan module was most significantly associated with 
COPD status, and the pathway enrichment analyses provided insight into the functions of the module genes, 
namely B cell activation, proliferation, aggregation and signaling. This is consistent with the histologic findings of 
lymphoid aggregates in severe COPD patients and the importance of immune pathways in COPD56–61. In addi-
tion, lymphoid aggregates were observed in the lungs of the Hhip+/− smoking mouse32; the overlap of 17 genes 
in the cyan module with the mouse Hhip+/+ vs. Hhip+/− 6 month smoke gene set provides further evidence of a 
cross-species signature of B cell involvement in COPD.

Figure 1. Heatmap of module association with phenotype variables (color scale for adjusted p-value). The 
top number in each cell corresponds to the FDR q-value and the bottom number is the beta coefficient from 
the linear regression model. COPD =  COPD case-control status, FEV1.PP =  forced expiratory volume in 1 sec, 
percent predicted; FEV1FVC =  ratio of FEV1 to forced vital capacity (FVC); LAA950 =  Low attenuation areas 
at − 950 HU on chest computed tomography (CT) scans; perc15 =  15th percentile of the lung density histogram 
on chest CT scans; SRWA-Pi10 =  square root wall area of a hypothetical airway with 10mm internal perimeter. 
The phenotype variables FEV1, FEV1FVC and perc15 decrease with COPD, while LAA950 and SRWA-Pi10 
increase with disease.
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In a previous study restricted to former smokers, B cell receptor signaling pathways were enriched in genes 
whose expression was associated with emphysema severity10. Nine of the 127 genes that were differentially 
expressed in the Campbell et al. study are found in our cyan module, demonstrating replication of the B cell 
signature. A key member of this overlap set is CD79A, which is a hub gene in the cyan module. The gene BCL11A 
(B-cell CLL/lymphoma 11A) was also replicated. BCL11A is a transcription factor critical to B cell develop-
ment62,63. In contrast to previous COPD gene expression studies20, our study and the Campbell et al. study both 
included subjects with severe COPD and eliminated the effects of current smoking on gene expression by limiting 
to former smokers64,65, allowing for replication of results at both the gene and pathway level. The second putative 
driver gene for the cyan module POU2AF1, was also identified in a study of emphysema by Faner et al.44 and is a 
B-lymphocyte specific transcription factor66. In this recent study, also of former smokers44, we observed replica-
tion of our results at the gene level.

In COPD and other complex diseases, there is often little overlap between genes at GWAS loci and differ-
entially expressed genes in the target tissue20–24, despite the fact that most GWAS associations are likely due to 
regulatory variants. We found that genes that potentially interact with COPD GWAS genes were differentially 
expressed. These GWAS genes identified relevant pathways, but they themselves were not differentially expressed. 
It has been shown that GWAS genes tend to be located on the periphery of gene interaction networks and are not 
hub genes67; GWAS genes were not found in the hubs of our co-expression modules. Genetic variants affecting 
hub genes may be too deleterious to cells to be maintained in the population. Using network and pathway meth-
ods, we are able to capture the overall genetic perturbation and relate it to the gene expression analysis.

We demonstrated significant differential gene expression related to COPD in this study; however increased 
sample sizes in future studies will improve the power for gene identification. Inclusion of subjects with mild to 
moderate COPD will be necessary to determine whether B cells and other pathways are relevant earlier in the 
disease course, as infections are a common component of more severe COPD. Additional CT scan data in future 
studies should allow us to dissect COPD phenotypes of emphysema and airway disease. Data from specific cell 
types would provide more specificity than homogenized lung tissue. In addition, the variation in significance seen 
across our interactor enrichment results was not surprising given the different potential mechanisms of interac-
tion and the heterogeneity with respect to species and cell types. Future studies may involve other COPD GWAS 
genes beyond the top three in the current study, as additional omics datasets are generated for those genes. Given 
the presence of samples from patients undergoing lung nodule resection surgery, we note that no enrichment 
for cancer related gene sets was observed in our REACTOME pathway analyses, which argues against bias by 

Figure 2. Module that was significantly associated with COPD case-control status (cyan module sub-
network). Node size is proportional to the node degree and the color is related to the p-value in the differential 
expression analysis for COPD status (red lower p-value and green higher p-value).
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cancer diagnosis. With respect to GWAS integration, a more complete set of loci and integration across multiple 
putative functional variants, along with more uniform interaction measurement methods would provide a deeper 
understanding of the subtle effects of genetic variants. Although candidate eQTL analyses were included in this 
study, a future direction would be a genome-wide eQTL analysis28,68 to examine the direct association between 
COPD GWAS loci and the expression of genes of interest, including the genes identified in these interactor and 
network analyses.

By incorporating gene expression, experimental interaction, and network methods, we found significant dif-
ferences in expression for genes interacting with genes at COPD GWAS loci. Our methodology could be applied 
to expression data from target tissues in other common diseases. Network analyses highlighted the importance 
of B cell pathways in COPD, which was recapitulated in the human lung tissue and a mouse smoking model. 
Replication of previous gene expression results was made possible by careful attention to subject enrollment, 
including former smokers with severe COPD. Consistent phenotype definitions are likely to be important for 
other diseases as well.

Methods
Study Population. Lung tissue samples were collected from subjects undergoing thoracic surgery for lung 
transplantation, lung volume reduction surgery or lung nodule resection at three medical centers: Brigham 
and Women’s Hospital (Boston, MA), St. Elizabeth’s Hospital (Boston, MA) and Temple University Hospital 
(Philadelphia, PA). Subjects provided written informed consent for use of excess lung tissue for research. IRB 
approval was obtained at the three centers. All subjects were former smokers, who quit smoking at least one 
month prior to surgery. Distant normal tissue was used from nodule resection samples. Phenotypes extracted 
from the medical records included demographics, anthropometrics, smoking history, and spirometry to measure 
lung function. COPD cases had severe or very severe airflow obstruction (GOLD grades 3-4)1. Control smokers 
had normal lung function. When available, chest computed tomography (CT) scans were retrieved for quantita-
tive image analysis using 3-D Slicer software (www.slicer.org). Emphysema was assessed by the fraction of lung 
voxels with attenuation less than − 950HU (LAA-950) and by the 15th percentile of the lung density histogram 
(Perc15). Airway disease was quantified by the square root wall area of a hypothetical 10mm internal perimeter 
airway (SRWA-Pi10)69.

Lung tissue gene expression profiling. Lung tissue samples were snap frozen and stored at − 80 °C. 
RNA and DNA were simultaneously extracted from the homogenized lung tissue using the AllPrep kit (Qiagen, 
Valenica, CA). RNA quality was assessed on a BioAnalyzer (Agilent, Santa Clara, CA). Gene expression profil-
ing was performed using HumanHT-12 BeadChips (Illumina, San Diego, CA). Quality control was performed 
using quantile, signal-to-noise, correlation matrix, MA, and principal component analysis (PCA) plots using 
R statistical software (v 3.2.0) to identify outliers and samples with questionable or low-quality levels, distribu-
tions, or associations. In addition, information from other omics data for this cohort was used to cross-check for 
sample issues during the data cleaning process. This process yielded 151 samples for analysis. There were 32,831 
probes retained, after filtering for low variance and percentage of high detection p-values, which denote probes 
mapped to low expressed genes. This set of probes contains 20,794 unique gene symbol annotations. These data 
were background corrected, log2 transformed and quantile normalized using the R Bioconductor package lumi70. 
Microarray data has been deposited in Gene Expression Omnibus (GEO accession GSE76925).

RNA-interference. To find genes that could be targets of FAM13A, three FAM13A siRNA (Ambion, S19751, 
S19752 and S19753) were transfected into 16HBE cells. The experiment was controlled using Ambion Silencer 
Negative Control #1 siRNA (Ambion, 4390843). This control siRNA has no significant sequence similarity to 
human gene sequences. Cells were collected 48 hours after transfection for RNA extraction, and microarray 
expression analyses were performed using Illumina HT12 microarrays. Comparisons were made using 2-way 
ANOVA to determine differentially expressed probes between siRNA-treated and control cells. The intersec-
tion of differentially expressed probes from all three comparisons became the final gene list for FAM13A siRNA 
experiments.

External Datasets. As previously reported, microarray gene expression profiling was performed in human 
bronchial epithelial cells (Beas-2B) stably infected with four different lentivirus-based shRNAs against HHIP 
and one non-targeting shRNA (control), using the Illumina HT12 gene expression platform31. To identify differ-
entially expressed probes after HHIP silencing, two linear regression models were used. The set of significantly 
differentially expressed genes found using both models became the analysis gene list.

Affinity purification followed by mass spectrometry (AP-MS) was performed to identify proteins that bind to 
either HHIP71 or FAM13A30. Briefly, HEK 293 cells were transfected with FLAG-tagged HHIP or control vector. 
Seventy-two hours after transfection, cells were lysed, and protein complexes were immunoprecipitated with 
an anti-FLAG antibody. HHIP-bound proteins were identified by mass spectrometry. Identified proteins were 
mapped to genes and the control results were subtracted from the experimental results to produce a final gene list 
for comparison with COPD expression results.

Because the IREB2 protein binds mRNA, RNA immunoprecipitation sequencing (RIP-Seq) was used to identify 
IREB2 targets29. IREB2-RNA complexes were immunoprecipitated from the Beas2B cells and whole transcriptome 
sequencing was performed. Two replicates in stimulated cells, with deferoxamine (DFO) and DFO-free controls 
(CTL), were included. In all cases, IREB2 was precipitated, along with IgG (background). The software application 
HOMER72 was used to call peaks accounting for the background using an hg19 read alignment, and four compari-
sons were made: CTL/IgG, CTL/DFO, DFO/IgG, and DFO/CTL. Peaks common between CTL/IgG and CTL/DFO, 
CTL/IgG and DFO/IgG, or DFO/IgG and DFO/CTL were mapped to genes and defined the IREB2 target gene list.

http://www.slicer.org
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Homozygous deletion of Hhip in mice is embryonic lethal73. Therefore, Hhip+/− heterozygous mice (C57BL/6 
background) and wild-type littermates were exposed to cigarette smoke or filtered air for six months32. RNA 
was extracted from mouse lungs and profiled in Illumina MouseRef-8 arrays. The differentially expressed genes 
(FDR <  0.10) were mapped to human orthologs for comparisons to the human lung tissue.

The GeneChip Mouse Gene 1.0 ST Array (Affymetrix) was used to assess gene expression in the Irp2 (IREB2 
gene in humans) knockout and WT mice29. The expression difference between the Irp2 knockout and WT mice 
was quantified using an unpaired two-tailed t-test. A set of genes was created using the human orthologs from 
these results.

Differential gene expression and pathway analyses. Microarray batch effects were identified using 
MDS plots, and these along with latent effects were addressed by using surrogate variables, obtained via the R/
Bioconductor package SVA74, as covariates in the linear models. For each expression probe or module eigengene, 
we fitted a linear regression model to detect association with variables of interest using R statistical software  
(v 3.2.0). In the microarray data analysis, an empirical Bayes shrinkage method was used to obtain a moderated 
t-test statistic and its p-value in limma75; the log fold change (logFC) values from limma are reported here as fold 
difference for improved clarity. Adjustment for multiple testing controlled for false discovery rate (FDR). The 
regression models for each clinical phenotype, including covariates, are provided in Supplemental Table S11. We 
found no significant association with time since smoking cessation, so this variable was not included as a covar-
iate in subsequent analyses. Using the hypergeometric test in the GeneAnswers package76, we examined enrich-
ment of curated gene sets from the Reactome database and from the biological process (BP) category in the gene 
ontology (GO) database. Hypergenometric tests were performed using the phyper function in the stats R package 
to observe enrichment of interactors in the differentially expressed gene sets with respect to the background 
(genes represented in the expression data following QC).

Weighted Gene Co-expression Analysis (WGCNA). The WGCNA method was used to identify groups 
of probes that have similar expression characteristics in the sample population, using the R package WGCNA43. 
Signed networks were built using biweight midcorrelation as the correlation function, and a soft thresholding 
power of 12. WGCNA produces a set of modules (labeled by color), each containing a set of unique probes. The 
module eigengenes were used in the regression models35 from Supplemental Table S11. Driver or hub genes 
within each module were identified using previously described methods35, and through observation of the degree 
for each node.

Genotyping. Genomewide genotyping of extracted lung DNA was performed using the 
HumanOmni2.5Exome-8 V1.0 BeadChip (Illumina, Inc; San Diego, CA) and quality control assessment was 
performed using Python and R scripts and PLINK 277. Subject data were excluded after examining missingness, 
relatedness, sex, and inbreeding. Relatedness was examined using rgGRR and KING78, and sex assignment was 
based on X homozygosity estimates; discordant samples were removed. Principal components were generated 
for the lung tissue cohort and HapMap3 Public Release #3 panel using EIGENSTRAT79, and two additional sub-
jects were subsequently excluded based on genetic ancestry that differed from reported. Manufacturer-identified 
poorly performing markers, duplicate markers, indels and markers exhibiting ambiguous or failed mapping were 
removed. Markers with missingness > 1%, Hardy-Weinberg equilibrium deviation (p-value <  1e-7) or minor 
allele frequency < 5% were excluded. To account for population stratification, two principal components (based 
on the Tracy-Widom statistic) for the Caucasian population were retained for use in the statistical analysis.

Candidate gene expression quantitative trait locus (eQTL) analysis. The eQTL analyses were per-
formed using the 117 Caucasian subjects for whom both expression and genotyping data were available. The 
R/Bioconductor package Matrix eQTL80 was used to perform eQTL analysis to identify associations between 
genotype and gene expression levels, adjusted for the covariates age, sex, pack-years of smoking and two ancestry 
principal components. In addition, an iterative method was used to determine the number of expression matrix 
principal components (PC) to add as covariates to the model to mitigate batch effects. This procedure involves 
finding the number of PC covariates that produces a maximum number of significant (FDR <  0.05) cis-eQTLs 
(window of 1 Mb) using genotyping data from chromosome 21 and 22. The maximum was achieved with 13 PCs, 
and these were included as covariates in the eQTL analyses. Candidate cis-eQTL and trans-eQTL analyses were 
performed using all probes in the microarray analysis that passed QC and the 108 markers (p-value <  1.0e-5) 
from a recent GWAS for COPD case-control status8 that were available in our genotyping data and annotated by 
proximity to the three candidate genes of interest. All nominally significant trans-eQTL results (p-value <  0.05) 
for the three top cis-eQTLs located in each of the three loci (IREB2 rs2009746, HHIP rs11724319, FAM13A 
rs2609255) were used to produce each gene list.

GWAS results for interactors. The SNPs annotated by proximity to the interactor genes BCL2, BCL11A, 
POU2AF1, HMGB1, SERPINE2 and CD79A were downloaded from dbSNP. Association p-values for these SNPs 
were extracted from a published COPD case-control GWAS8.

Ethics Statement. Subjects provided written informed consent for use of excess lung tissue for research. 
IRB approval was obtained at Partners Healthcare (parent company of Brigham and Women’s Hospital), Temple 
University and St. Elizabeth’s Hospital. The methods for lung tissue research were carried out in accordance with 
the relevant guidelines. The mouse protocols were approved by the Institutional Animal Care and Use Committee, 
Harvard Medical School, and the methods were carried out in accordance with the relevant guidelines, as detailed 
in previous publications29,32,71.



www.nature.com/scientificreports/

9Scientific RepoRts | 7:44232 | DOI: 10.1038/srep44232

References
1. Vestbo,J. et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD 

executive summary. Am. J. Respir. Crit. Care Med. 187, 347–65 (2013).
2. Hersh, C. P. et al. Family history is a risk factor for COPD. Chest 140, 343–350 (2011).
3. McCloskey, S. et al. Siblings of patients with severe chronic obstructive pulmonary disease have a significant risk of airflow 

obstruction. Am J Respir Crit Care Med 164, 1419–1424 (2001).
4. Silverman, E. K. In Chronic Obstructive Pulmonary Disease: Pathogenesis to Treatment (eds. Organizer, D. C. & Goode, J. A.) 45–64 

(John Wiley & Sons, Ltd, 2000).
5. Silverman, E. K. et al. Genetic epidemiology of severe, early-onset chronic obstructive pulmonary disease. Risk to relatives for 

airflow obstruction and chronic bronchitis. Am. J. Respir. Crit. Care Med. 157, 1770–8 (1998).
6. Cho, M. H. et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat. Genet. 42, 200–202 (2010).
7. Cho, M. H. et al. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Hum. Mol. 

Genet. 21, 947–57 (2012).
8. Cho, M. H. et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet 

Respir. Med. 2, 214–25 (2014).
9. Bhattacharya, S. et al. Molecular Biomarkers for Quantitative and Discrete COPD Phenotypes. Am. J. Respir. Cell Mol. Biol. 40, 

359–367 (2009).
10. Campbell, J. D. et al. A gene expression signature of emphysema-related lung destruction and its reversal by the tripeptide GHK. 

Genome Med. 4, 67 (2012).
11. Ezzie, M. E. et al. Gene expression networks in COPD: microRNA and mRNA regulation. Thorax 67, 122–131 (2012).
12. Francis, S. M. et al. Expression profiling identifies genes involved in emphysema severity. Respir. Res. 10, 81 (2009).
13. Golpon, H. A. et al. Emphysema Lung Tissue Gene Expression Profiling. Am. J. Respir. Cell Mol. Biol. 31, 595–600 (2004).
14. Ning, W. et al. Comprehensive gene expression profiles reveal pathways related to the pathogenesis of chronic obstructive pulmonary 

disease. Proc. Natl. Acad. Sci. USA 101, 14895–14900 (2004).
15. Savarimuthu Francis, S. M. et al. Genes and Gene Ontologies Common to Airflow Obstruction and Emphysema in the Lungs of 

Patients with COPD. PLoS ONE 6, e17442 (2011).
16. Spira, A. et al. Gene Expression Profiling of Human Lung Tissue from Smokers with Severe Emphysema. Am. J. Respir. Cell Mol. Biol. 

31, 601–610 (2004).
17. Wang, I.-M. et al. Gene Expression Profiling in Patients with Chronic Obstructive Pulmonary Disease and Lung Cancer. Am.  

J. Respir. Crit. Care Med. 177, 402–411 (2008).
18. Zeskind, J. E., Lenburg, M. E. & Spira, A. Translating the COPD Transcriptome. Proc. Am. Thorac. Soc. 5, 834–841 (2008).
19. Chen, Z.-H., Kim, H. P., Ryter, S. W. & Choi, A. M. Identifying targets for COPD treatment through gene expression analyses. Int.  

J. Chron. Obstruct. Pulmon. Dis. 3, 359 (2008).
20. Hobbs, B. D. & Hersh, C. P. Integrative genomics of chronic obstructive pulmonary disease. Biochem. Biophys. Res. Commun. 452, 

276–286 (2014).
21. Huan, T. et al. A systems biology framework identifies molecular underpinnings of coronary heart disease. Arterioscler. Thromb. 

Vasc. Biol. 33, 1427–1434 (2013).
22. Lui, J. C. et al. Synthesizing genome-wide association studies and expression microarray reveals novel genes that act in the human 

growth plate to modulate height. Hum. Mol. Genet. 21, 5193–5201 (2012).
23. Taneera, J. et al. A Systems Genetics Approach Identifies Genes and Pathways for Type 2 Diabetes in Human Islets. Cell Metab. 16, 

122–134 (2012).
24. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011).
25. Maurano, M. T. et al. Systematic Localization of Common Disease-Associated Variation in Regulatory DNA. Science 337, 1190–1195 

(2012).
26. Murphy, A. et al. Mapping of numerous disease-associated expression polymorphisms in primary peripheral blood CD4+  

lymphocytes. Hum. Mol. Genet. 19, 4745–4757 (2010).
27. Nicolae, D. L. et al. Trait-Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from GWAS. PLoS Genet 

6, e1000888 (2010).
28. Obeidat, M. et al. Molecular mechanisms underlying variations in lung function: a systems genetics analysis. Lancet Respir. Med. 3, 

782–795 (2015).
29. Cloonan, S. et al. Mitochondrial iron as a therapeutic target for IRP2-regulated cigarette smoke-induced bronchitis and emphysema. 

Nat. Med. 22, 163–74 (2016)
30. Jiang, Z. et al. A Chronic Obstructive Pulmonary Disease Susceptibility Gene, FAM13A, Regulates Protein Stability of β -catenin. 

Am. J. Respir. Crit. Care Med 194, 185–97 (2016).
31. Zhou, X. et al. Gene expression analysis uncovers novel hedgehog interacting protein (HHIP) effects in human bronchial epithelial 

cells. Genomics 101, 263–272 (2013).
32. Lao, T. et al. Haploinsufficiency of Hedgehog interacting protein causes increased emphysema induced by cigarette smoke through 

network rewiring. Genome Med. 7, 12 (2015).
33. Haas, B. E. et al. Adipose co-expression networks across Finns and Mexicans identify novel triglyceride-associated genes. BMC Med. 

Genomics 5 (2012).
34. Silverman, E. & Loscalzo, J. Network Medicine Approaches to the Genetics of Complex Diseases. Discov. Med. 14, 143–152 (2012).
35. Morrow, J. D. et al. Identifying a gene expression signature of frequent COPD exacerbations in peripheral blood using network 

methods. BMC Med. Genomics 8, 1 (2015).
36. Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 

274–88 (2014).
37. Ferhani, N. et al. Expression of High-Mobility Group Box 1 and of Receptor for Advanced Glycation End Products in Chronic 

Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 181, 917–927 (2010).
38. Cheng, D. T. et al. Systemic Soluble Receptor for Advanced Glycation Endproducts Is a Biomarker of Emphysema and Associated 

with AGER Genetic Variants in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 188, 948–957 
(2013).

39. Cho, M. H. et al. A Genome-Wide Association Study of Emphysema and Airway Quantitative Imaging Phenotypes. Am. J. Respir. 
Crit. Care Med. 192, 559–569 (2015).

40. Manichaikul, A. et al. Genome-Wide Study of Percent Emphysema on Computed Tomography in the General Population. The 
Multi-Ethnic Study of Atherosclerosis Lung/SNP Health Association Resource Study. Am. J. Respir. Crit. Care Med. 189, 408–418 
(2014).

41. Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R. & Pfister, H. UpSet: Visualization of Intersecting Sets. IEEE Trans. Vis. Comput. 
Graph. 20, 1983–1992 (2014).

42. Horvath, S. Weighted Network Analysis. (Springer New York, 2011).
43. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
44. Faner, R. et al. Network Analysis of Lung Transcriptomics Reveals a Distinct B Cell Signature in Emphysema. Am. J. Respir. Crit. 

Care Med. 193, 1242–53 (2016).



www.nature.com/scientificreports/

1 0Scientific RepoRts | 7:44232 | DOI: 10.1038/srep44232

45. Repapi, E. et al. Genome-wide association study identifies five loci associated with lung function. Nat. Genet. 42, 36–44 (2010).
46. Zhang, Y. et al. Changes of HMGB1 and sRAGE during the recovery of COPD exacerbation. J. Thorac. Dis. 6, 734 (2014).
47. Ko, H.-K. et al. High expression of high-mobility group box 1 in the blood and lungs is associated with the development of chronic 

obstructive pulmonary disease in smokers. Respirology 19, 253–261 (2014).
48. Hou, C. et al. High mobility group protein B1 (HMGB1) in Asthma: comparison of patients with chronic obstructive pulmonary 

disease and healthy controls. Mol. Med. 17, 807 (2011).
49. Pouwels, S. D. et al. DAMPs activating innate and adaptive immune responses in COPD. Mucosal Immunol. 7, 215–226 (2014).
50. Mizumura, K. et al. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J. Clin. Invest. 124, 3987–4003 

(2014).
51. DeMeo, D. L. et al. The SERPINE2 Gene Is Associated with Chronic Obstructive Pulmonary Disease. Am. J. Hum. Genet. 78, 

253–264 (2006).
52. Himes, B. E. et al. Association of SERPINE2 with asthma. Chest. 140, 667–674 (2011).
53. Hodge, S., Hodge, G., Holmes, M. & Reynolds, P. N. Increased peripheral blood T-cell apoptosis and decreased Bcl-2 in chronic 

obstructive pulmonary disease. Immunol. Cell Biol. 83, 160–166 (2005).
54. Siganaki, M. et al. Deregulation of apoptosis mediators’ p53 and bcl2 in lung tissue of COPD patients. Respir. Res. 11, 46 (2010).
55. Zeng, H. et al. Apoptosis and Bcl-2 family proteins, taken to chronic obstructive pulmonary disease. Eur Rev Med Pharmacol Sci 16, 

711–727 (2012).
56. Baraldo, S. et al. Immune Activation in α  1 -Antitrypsin-Deficiency Emphysema. Beyond the Protease–Antiprotease Paradigm. Am. 

J. Respir. Crit. Care Med. 191, 402–409 (2015).
57. Brusselle, G. G., Demoor, T., Bracke, K. R., Brandsma, C.-A. & Timens, W. Lymphoid follicles in (very) severe COPD: beneficial or 

harmful? Eur. Respir. J. 34, 219–230 (2009).
58. Faner, R., Cruz, T. & Agusti, A. Immune response in chronic obstructive pulmonary disease. Expert Rev. Clin. Immunol. 9, 821–833 

(2013).
59. Hogg, J. C. et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 350, 2645–2653 

(2004).
60. Polverino, F. et al. B Cell–Activating Factor. An Orchestrator of Lymphoid Follicles in Severe Chronic Obstructive Pulmonary 

Disease. Am. J. Respir. Crit. Care Med. 192, 695–705 (2015).
61. van der Strate, B. W. A. et al. Cigarette Smoke–induced Emphysema: A Role for the B Cell? Am. J. Respir. Crit. Care Med. 173, 

751–758 (2006).
62. Liu, P. et al. Bcl11a is essential for normal lymphoid development. Nat. Immunol. 4, 525–532 (2003).
63. Singh, H., Medina, K. L. & Pongubala, J. M. R. Contingent gene regulatory networks and B cell fate specification. Proc. Natl. Acad. 

Sci. USA. 102, 4949–4953 (2005).
64. Durham, A. L. et al. Regulation of Wnt4 in chronic obstructive pulmonary disease. FASEB J. 27, 2367–2381 (2013).
65. Tilley, A. E. et al. Biologic Phenotyping of the Human Small Airway Epithelial Response to Cigarette Smoking. PLoS ONE 6, e22798 

(2011).
66. Teitell, M. A. OCA-B regulation of B-cell development and function. Trends Immunol. 24, 546–553 (2003).
67. Goh, K.-I. et al. The human disease network. Proc. Natl. Acad. Sci. 104, 8685–8690 (2007).
68. Hao, K. et al. Lung eQTLs to Help Reveal the Molecular Underpinnings of Asthma. PLOS Genet 8, e1003029 (2012).
69. Nakano, Y. et al. The Prediction of Small Airway Dimensions Using Computed Tomography. Am. J. Respir. Crit. Care Med. 171, 

142–146 (2005).
70. Du, P., Kibbe, W. A. & Lin, S. M. lumi: a pipeline for processing Illumina microarray. Bioinformatics 24, 1547–1548 (2008).
71. Lao, T. et al. Hhip haploinsufficiency sensitizes mice to age-related emphysema. Proc. Natl. Acad. Sci. 113, E4681–E4687 (2016).
72. Heinz, S. et al. Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for 

Macrophage and B Cell Identities. Mol. Cell 38, 576–589 (2010).
73. Chuang, P.-T., Kawcak, T. & McMahon, A. P. Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding 

protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung. Genes Dev. 17, 342–347 (2003).
74. Leek, J. T. & Storey, J. D. Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis. PLoS Genet 3, e161 

(2007).
75. Smyth, G. K. In Bioinformatics and Computational Biology Solutions Using {R} and Bioconductor (eds Gentleman, R., Carey, V., 

Dudoit, S., Irizarry, R. & Huber, W.) 397–420 (Springer, 2005).
76. Feng, G. et al. A collection of bioconductor methods to visualize gene-list annotations. BMC Res. Notes 3, 10–10 (2010).
77. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).
78. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
79. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 

904–909 (2006).
80. Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353–1358 (2012).

Acknowledgements
We thank Drs. Amund Gulsvik, Per Bakke, Augusto Litonjua, Pantel Vokonas, Ruth Tal-Singer, and the GenKOLS, 
NETT/NAS, ECLIPSE, and COPDGene studies for use of their GWAS meta-analysis data.The COPDGene®  study 
(R01 HL089856 and R01 HL089897). (NCT00608764) was funded by the National Institutes of Health and is also 
supported by the COPD Foundation through contributions made to an Industry Advisory Board comprised of 
AstraZeneca, Boehringer Ingelheim, Novartis, Pfizer, Siemens, GSK and Sunovion. The National Emphysema 
Treatment Trial was supported by the NHLBI N01HR76101, N01HR76102, N01HR76103, N01HR76104, 
N01HR76105, N01HR76106, N01HR76107, N01HR76108, N01HR76109, N01HR76110, N01HR76111, 
N01HR76112, N01HR76113, N01HR76114, N01HR76115, N01HR76116, N01HR76118 and N01HR76119, the 
Centers for Medicare and Medicaid Services and the Agency for Healthcare Research and Quality. The Normative 
Aging Study is supported by the Cooperative Studies Program/ERIC of the US Department of Veterans Affairs 
and is a component of the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC). 
The Norway GenKOLS study (Genetics of Chronic Obstructive Lung Disease, GSK code RES11080), and the 
ECLIPSE study (NCT00292552; GSK code SCO104960) were funded by GlaxoSmithKline. This work was 
supported by National Institutes of Health [P01HL105339 to EKS, R01HL111759 to JQ, R01HL094635 to CPH, 
R01HL130512 to CPH, R01HL125583 to CPH, R01HL113264 to MHC, R01HL127200 to XZ].

Author Contributions
J.M.: concept and design, analysis and interpretation of data, manuscript preparation, approval of final 
manuscript. X.Z.: acquisition of data, analysis and interpretation of data, manuscript preparation, approval 



www.nature.com/scientificreports/

1 1Scientific RepoRts | 7:44232 | DOI: 10.1038/srep44232

of final manuscript. T.L.: acquisition of data, analysis and interpretation of data, approval of final manuscript. 
Z.J.: acquisition of data, analysis and interpretation of data, approval of final manuscript. D.D.: manuscript 
preparation, and approval of the final manuscript. M.C.: acquisition of data, analysis and interpretation of 
data, manuscript preparation, approval of final manuscript. W.Q.: analysis and interpretation of data, statistical 
support, approval of the final manuscript. S.C.: acquisition of data, analysis and interpretation of data, review 
and approval of final manuscript. V.P.P.: acquisition of data, approval of final manuscript. B.C.: acquisition of 
data, approval of final manuscript. N.M.: acquisition of data, analysis and interpretation of data, approval of 
final manuscript. G.C.: acquisition of data, approval of final manuscript. R.B.: acquisition of data, approval of 
final manuscript. G.W.: acquisition of data, analysis and interpretation of data, approval of final manuscript. 
K.G.: analysis and interpretation of data, statistical support, manuscript preparation, approval of final manuscript. 
J.Q.: statistical support, approval of final manuscript. A.C.: concept and design, acquisition of data, analysis and 
interpretation of data, review and approval of final manuscript. E.S.: concept and design, acquisition of data, 
manuscript preparation, approval of final manuscript. C.H.: concept and design, acquisition of data, analysis and 
interpretation of data, manuscript preparation, approval of final manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing Interests: Drs. Morrow, Zhou, Lao, Jiang, DeMeo, Cho, Qiu, Cloonan, Pinto-Plata, Celli, Marchetti, 
Criner, Bueno, Glass, Quackenbush, Choi report no competing interests related to this manuscript. Dr. Washko 
has been a consultant for GSK, Genentech, Emmes, PulmonX. Dr. Silverman has received honoraria and 
consulting fees from Merck, grant support and consulting fees from GlaxoSmithKline, and honoraria from 
Novartis. Dr. Hersh has been a consultant for Mylan, Concert Pharmaceuticals and AstraZeneca.
How to cite this article: Morrow, J. D. et al. Functional interactors of three genome-wide association study 
genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue. Sci. Rep. 7, 44232; 
doi: 10.1038/srep44232 (2017).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2017

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstruct ...
	Results
	Gene expression association with phenotype variables. 
	Interactor enrichment in differentially expressed genes. 
	Cis-eQTL analysis. 
	Network analysis. 

	Discussion
	Methods
	Study Population. 
	Lung tissue gene expression profiling. 
	RNA-interference. 
	External Datasets. 
	Differential gene expression and pathway analyses. 
	Weighted Gene Co-expression Analysis (WGCNA). 
	Genotyping. 
	Candidate gene expression quantitative trait locus (eQTL) analysis. 
	GWAS results for interactors. 
	Ethics Statement. 

	Acknowledgements
	Author Contributions
	Figure 1.  Heatmap of module association with phenotype variables (color scale for adjusted p-value).
	Figure 2.  Module that was significantly associated with COPD case-control status (cyan module sub-network).
	Table 1.  Top 20 genes differentially expressed in COPD vs.
	Table 2.  Differential expression results for putative genes at previously identified genome-wide significant COPD and emphysema GWAS loci (probe with highest ranking result shown).
	Table 3.  Enrichment of functional interactors of COPD GWAS genes in the gene expression results (differentially expressed genes with FDR < 0.



 
    
       
          application/pdf
          
             
                Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue
            
         
          
             
                srep ,  (2017). doi:10.1038/srep44232
            
         
          
             
                Jarrett D. Morrow
                Xiaobo Zhou
                Taotao Lao
                Zhiqiang Jiang
                Dawn L. DeMeo
                Michael H. Cho
                Weiliang Qiu
                Suzanne Cloonan
                Victor Pinto-Plata
                Bartholome Celli
                Nathaniel Marchetti
                Gerard J. Criner
                Raphael Bueno
                George R. Washko
                Kimberly Glass
                John Quackenbush
                Augustine M. K. Choi
                Edwin K. Silverman
                Craig P. Hersh
            
         
          doi:10.1038/srep44232
          
             
                Nature Publishing Group
            
         
          
             
                © 2017 Nature Publishing Group
            
         
      
       
          
      
       
          © 2017 The Author(s)
          10.1038/srep44232
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep44232
            
         
      
       
          
          
          
             
                doi:10.1038/srep44232
            
         
          
             
                srep ,  (2017). doi:10.1038/srep44232
            
         
          
          
      
       
       
          True
      
   




