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Spinal cord injury (SCI) currently ranks second after mental retarda-
tion among neurological disorders in terms of cost to society. Pain is 
a debilitating consequence of SCI related to the nature of the lesion, 
neurological structures damaged, and secondary pathophysiological 
changes of surviving tissues (Yezierski, 2005; D’Angelo et al., 2013). Ap-
proximately two-thirds of persons who have sustained SCI experience 
clinically significant pain after injury, of whom one-third have severe 
pain (Finnerup et al., 2001; Siddall et al., 2003). Post-SCI pain can 
increase with time and is often refractory to conventional treatment 
approaches (Rintala et al., 1998). Over the past decade, clinical studies 
have shown that post-SCI pain interferes with rehabilitation, daily 
activities, and quality of life and may substantially influence mood, 
leading to depression and even suicide (Segatore, 1994; Rintala et al., 
1998; Westgren and Levi, 1998; Widerstrom-Noga et al., 2001).Chronic 
neuropathic pain following SCI is divided into three types: at-level pain 
(pain within the body segments innervated by spinal cord segments at 
the level of the injury), below-level pain (pain within body segments 
caudal to the level at which the spinal cord was injured), and above-lev-
el pain (pain within body segments rostral to the level at which the 
spinal cord was injured) (Waxman and Hains, 2006). The mechanisms 
underlying SCI-induced chronic neuropathic pain are not well un-
derstood. Aberrant central sprouting of nociceptive fibers has been 
commonly proposed as a mechanism of SCI pain and is associated with 
mechanical allodynia induced by SCI (Christensen and Hulsebosch, 
1997; Yezierski, 2000; Finnerup and Jensen, 2004). Demyelination 
(loss of myelin) and dysmyelination (abnormal myelination) induced 
by oligodendrocyte injury and death are important contributors to 
SCI-associated behavioral deficits, including pain (Bunge et al., 1961; 
Blight, 1983; Bunge et al., 1993; Liu et al., 1997; Becker et al., 2003). 
For instance, SCI-induced dysmyelination is involved in the aberrant 
sprouting of nociceptive fibers and causes SCI pain behaviors. Thus, re-
myelination of demyelinated/dysmyelinated axons in the injured spinal 
cord could be an important repair therapy for SCI and one of the key 
elements for functional recovery and aberrant sprouting prevention 
after SCI (McDonald and Belegu, 2006; Plemel et al., 2014).

SCI pain is extremely debilitating and remains largely unmanageable 
by current therapeutic strategies. In the past decade, experimental stud-
ies on stem cell therapy for SCI-induced chronic neuropathic pain have 
emerged and sparked tremendous interest in this once obscure field. In 
preclinical research, predifferentiated ES cells prevented chronic pain 
behaviors and restored sensory function following SCI in mice (Hen-
dricks et al., 2006), and subarachnoid transplant of a human γ-amino-
butyric acid-secreting neuronal cell line, hNT2.17, attenuated chronic 
allodynia and hyperalgesia after excitotoxic SCI in rats (Eaton et al., 
2007). However, grafting of neural stem cells (NSCs) caused aberrant 
axonal sprouting associated with allodynia-like forelimb hypersensi-
tivity in a rat contusion SCI model (Hofstetter et al., 2005; Macias et 
al., 2006). In contrast, transduction of NSCs with neurogenin-2 before 
transplantation differentiated cells into oligodendrocytes and prevent-
ed graft-induced sprouting and allodynia. Moreover, the transduction 
with neurogenin-2 also improved the positive effects of engrafted stem 
cells, including increased amounts of myelin in the injured area and 
recovery of hind limb locomotor function and sensory responses (Hof-
stetter et al., 2005; Klein and Svendsen, 2005). These results suggest that 
increasing the production of oligodendrocytes reduces allodynia and 
improves functional recovery.

Given that a substantial cause of neurological deficits after SCI is 
oligodendrocyte death leading to demyelination and dysmyelination, 
the goal of stem cell transplantation should be guided to promote 
remyelination of spared axons in the injured spinal cord. It is now rec-
ognized that oligodendrocytes are important near-term clinical targets 

for restoring function after CNS injury, particularly SCI. Thus, directed 
differentiation of stem cells to oligodendrocyte precursors prior to 
transplantation may be an effective strategy to increase the extent of 
remyelination for the treatment of SCI. For remyelination, oligoden-
drocyte precursors must further differentiate into mature oligodendro-
cytes. However, the transplanted OPCs cannot survive for a long time 
and many of them cannot mature into myelinating oligodendrocytes. 
Previous studies have demonstrated that appropriate trophic modula-
tion of the microenvironment in the injured spinal cord can promote 
oligodendroglial differentiation and maturation (Barres and Raff, 1994; 
Barres et al., 1994; Kumar et al., 1998; McTigue et al., 1998; Yan and 
Wood, 2000; Franklin et al., 2001; Cosgaya et al., 2002; Jean et al., 2003; 
Karimi-Abdolrezaee et al., 2012).

Neurotrophins [such as neurotrophin 3 (NT3) and brain-derived 
neurotrophic factor (BDNF)] play key roles in OPC proliferation and 
myelin formation. D15A is a multineurotrophin that binds to neuro-
trophin receptors trkB and trkC and has both BDNF and NT3 activities 
(Urfer et al., 1994; Strohmaier et al., 1996). NT3 and BDNF regulate 
neuronal development and axonal regeneration (Xu et al., 1995; Zhou 
and Shine, 2003). They are also important mediators of myelination. 
Mice that lack functional trkC or NT3 are deficient in both mature 
oligodendrocytes and OPCs (Kumar et al., 1998). NT3 enhances the 
survival and proliferation of OPCs in vitro (Barres and Raff, 1994; Ku-
mar et al., 1998; Yan and Wood, 2000; Franklin et al., 2001) and in vivo 
(Barres et al., 1994). Myelination produced byoligodendrocytes is also 
enhanced by NT3 in cultured neurons and the injured CNS (McTigue 
et al., 1998; Yan and Wood, 2000; Jean et al., 2003). BDNF is known to 
be important for myelin formation during development because inac-
tivation of BDNF signaling by deletion of trkB receptors causes myelin 
deficits both in vivo and in vitro (Cosgaya et al., 2002). Treatment 
with neurotrophins and glial-restricted precursor cell grafts promotes 
differentiation of oligodendrocyte lineage and facilitates functional 
recovery after traumatic SCI (Cao et al., 2005). Taken together, these 
results suggest that appropriate trophic modulation of the molecular 
microenvironment in the injured spinal cord can affect differentiation 
and maturation of transplanted stem cells and that the combination 
strategy with stem cell graft and microenvironment modulation can be 
used to enhance therapeutic efficacy of cell transplantation.

SCI is a serious clinical condition that results in persistent motor and 
sensory deficits. Patients with SCI, who often are injured at an early 
age, experience life-long alterations in quality of life. Functional deficits 
following SCI result from damage to axons, loss of neurons and glia, 
and demyelination/dysmyelination in the injured spinal cord (Totoiu 
and Keirstead, 2005). Thus, remyelination appears to be one of the 
most feasible restoration strategies for SCI treatment. Animal studies 
from our laboratory and others have shown that stem cell transplanta-
tion with OPCs could produce remyelination in the injured spinal cord 
and partially improve functional recovery after SCI (Liu et al., 2000; 
Keirstead et al., 2005; Nistor et al., 2005; Tao et al., 2013). However, the 
efficacy of the cell transplantation approach is not significantly suffi-
cient due to the transplanted OPCs’ short-term survival and their low 
maturation rate in the injured spinal cord. Therefore, future studies 
should be conducted to explore a novel approach by combining stem 
cell grafting with microenvironment modulation to enhance stem cell 
therapy for SCI and SCI-induced pain.
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