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Abstract: Pancreatic ductal adenocarcinoma (PDAC) has high metastatic potential. The “genometas-
tasis” theory proposes that the blood of some cancer patients contains elements able to transform
healthy cells by transferring oncogenes. Since findings on genometastasis in PDAC are still scarce,
we sought supporting evidence by treating non-tumour HEK293T and hTERT-HPNE human cell
lines with sera of PDAC patients. Here, we showed that HEK293T cells have undergone malignant
transformation, increased the migration and invasion abilities, and acquired a partial chemore-
sistance, whereas hTERT-HPNE cells were almost refractory to transformation by patients’ sera.
Next-generation sequencing showed that transformed HEK293T cells gained and lost several ge-
nomic regions, harbouring genes involved in many cancer-associated processes. Our results support
the genometastasis theory, but further studies are needed for the identification of the circulating
transforming elements. Such elements could also be useful biomarkers in liquid biopsy assays.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) represents the most common type of pan-
creatic neoplasm, with a median survival of six months and a five-year survival for all
stages of only 5%. Such a low survival rate is explained by its high rate of metastasis
formation. Moreover, PDAC is diagnosed in the vast majority of patients in this advanced
stage, who are therefore non-eligible for surgery [1,2].

Paget’s classical “seed-and-soil” theory of metastasis is not sufficient to fully describe
progression of many tumours, including PDAC. Indeed, some metastatic patterns can be
explained by the anatomical-mechanical hypothesis claiming that they are determined
by the anatomy of vascular and lymphatic drainage at primary tumour site, and the
fact that the circulating cancer cells’ arrest mainly occurs at the adjacent organ. Both
hypotheses are accepted, and their validity depends on the type of tumour [3,4]. However,
the dissemination of cancer cells through circulation may not be the unique principle
for metastasis formation, since some phases of the metastatic process are very inefficient.
Indeed, only 0.001% of circulating cancer cells can survive in the circulation and thus lead
to metastasis [5].

The hypothesis of “genometastasis” represents a further model explaining metastasis.
It is based on the horizontal transfer of genetical material (DNA, RNA, miRNAs, retro-
transposon elements, mutated and amplified oncogenes) carried in circulation to cells in
distant organs. These genetic elements in the target cells activate and promote mitogenic
signalling pathways, causing the malignant transformation [5]. Circulating DNA and RNA
molecules are found in several forms of molecular complexes, linked to serum proteins, or
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are loaded into extracellular vesicles. These molecules are passively released by apoptotic
and necrotic cells, and actively secreted by almost all living cells [3]. Recently, it was experi-
mentally demonstrated that cell-free cancer-derived DNA can transform non-tumour cells
in vitro upon treatment with colorectal cancer patient plasma or by co-culturing tumour
and non-tumour cells [6,7]. Abdouh et al. suggested that mutation/inactivation of tumour
suppressor genes in distant recipient cells could cause the aberrant expression of membrane
proteins, permitting the genome integration of circulating oncogenic factors [8].

Recently, there have been emerging studies focusing on assessing the validity of
genometastasis hypothesis in colon cancer [9] and breast cancer [10,11]. The studies regard-
ing the validation of genometastasis theory in PDAC are few. For example, Costa-Silva et al.
suggested that PDAC-derived exosomal factors prime the liver cells for the metastasis
development and therefore might be used as a prognostic marker [12]. Stefanius et al.
found that exosomes isolated from pancreatic cancer cells act as initiators of malignant
cell transformation, but in order to obtain a fully transformed state, the promoter activity
of mutagen compounds is necessary [13]. There are many findings of cancer patient sera
and/or cancer-derived extracellular vesicles-mediated transfer of malignant characteristics
to primed cells causing their transformation [14]. The term “primed cells” refers to cells
with mutated oncogenes and/or oncosuppressors, which has been shown to be a necessary
but not sufficient condition for the transformation induced by cancer patient sera. For
example, BRCA1 knockout fibroblasts [15,16] and PTEN deleted MCF10A cells [17] were
successfully transformed by cancer patient sera. On the other hand, non-tumour cells have
been shown to be refractory to the transformation potential of serum of cancer patients [5].

The confirmation of genometastasis theory would allow the identification of patients who
could benefit from the surgery and those who, having already developed the micrometastasis,
are not eligible for pancreatomy. The identification of molecules, present in the patients’ sera,
driving the malignant transformation would allow the development of novel liquid biopsy
assays. Additionally, it would be possible to identify the drugs inhibiting such molecules and
therefore to develop better and personalized therapeutic approaches.

In this work, we aimed to obtain more results supporting the genometastasis theory in
the setting of PDAC, exposing two primed cell lines, hTERT-HPNE and HEK293T, to PDAC
patients’ sera. In particular, we analysed the transformation potential of patients’ sera,
and the changes in protein expression, migration, invasion, and chemoresistance induced
by serum treatments. Next-generation sequencing analysis allowed the identification of
gained and lost genomic traits, which harbour cancer-associated genes that may explain
the observed phenotypic changes.

2. Materials and Methods
2.1. Cell Lines and Culture Conditions

As target cells for assessment of malignant transformation, we used hTERT-HPNE
E6/E7/K-RasG12D (CRL-4038, ATCC, Manassas, VA, USA) and HEK293T XPack CMV-
XP-GFP-EF1Puro (XPAK530CL-1, System Biosciences, Palo Alto, CA, USA). The hTERT-
HPNE cell line represents the intermediary stage during acinar-to-ductal metaplasia in
pancreas. They have an undifferentiated phenotype and active Notch signalling pathway.
The HEK293T cell line is a highly transfectable derivative of human embryonic kidney
293 cells and contains the SV40 T-antigen. Both hTERT-HPNE and HEK293T cell lines
were maintained in Dulbecco’s Modified Eagle Medium (ECM0749L, EuroClone, Milan, IT)
supplemented with 10% of either PDAC patients’ serum or healthy donor serum (without
FBS), 1 mM L-glutamine (BE17, 605E, Lonza, Verviers, BE), 1 mM penicillin-streptomycin
(ECB3001D, EuroClone), and 1% of MEM non-essential amino acids for HEK293T cell line.

2.2. Serum Treatments

We obtained pooled PDAC patients’ serum from Tissue Biobank of the 1st Surgical
Clinic, University Hospital of Padova, Italy. The University-Hospital Ethics Committee of
Padua approved the study protocol (Prot. No. P 480/2002). The patients’ sera were drawn
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before the chemotherapy, and therefore they were free from any drugs. We have pooled
sera from 25 patients with a medium age of 69 years, both male and female. The pooled
control serum was obtained from 25 healthy volunteers with a medium age of 60 years.
Both healthy donor and PDAC patients’ sera were filtered with 0.22 um sterile filters. The
recipient cell cultures were supplemented with 10% of PDAC or healthy donor serum
instead of FBS, and the medium was changed every 2 days for 3 weeks, as previously
described [17].

2.3. Soft Agar Colony Formation Assay

At the end of the serum treatments, we assessed cell transformation in vitro using soft
agar colony formation assay. The test was done in triplicate for each condition. This assay
is based on the anchorage-independent growth of tumour cells whereas non-tumour cells
are unable to proliferate. Sterile solutions of agar at concentrations of 1% and 0.6% were
prepared in deionized water. Cell culture medium was prepared at 2X concentration and
sterilized. The 6-well dishes were used for the assay. The bottom layer of plate was made
of 1% agar and 2X cell culture medium in the ratio 1:1. Upon solidification, the upper layer
was prepared of 0.6% agar and cell suspension in medium in a ratio 1:1. The agar was
allowed to solidify at room temperature in cell culture hood for 30 min before placing it
into an incubator at 37 ◦C and 5% CO2. The 6-well plate was incubated for 21 days, with
the addition of 100 µL of fresh medium twice a week to prevent desiccation. Colonies were
visualized and photographed under the Eclipse Ti2E microscope (Nikon, Tokyo, Japan)
and we counted only those larger than 50 µm.

2.4. Wound Healing Migration Assay

Upon healthy or PDAC serum exposure, migration assay was performed, as by
Cecati et al. [18]. Briefly, cells were plated in 24-well plates and allowed to attach for
24 h. When cells reached the confluence, they were starved in DMEM without FBS for 24 h
before running the assay. The scratch was applied with a sterile 1000 µL pipette tip. Then,
the wells were washed three times with PBS buffer to remove the detached cells and cell
debris, and fresh DMEM without FBS was added. The assay for each condition was done
in triplicate. The images were taken at different time points until the gap was closed (at 0 h,
6 h, 24 h, and 48 h), by using the Eclipse Ti2E microscope (Nikon, Tokyo, Japan).

2.5. Invasion Assay

Invasion assays were carried out using 8 µm pore Costar transwells (#3428, Corning,
Cambridge, MA, USA), according to manufacturer protocol. Inserts were coated with
50 µL (0.50 mg/mL) Matrigel (#354234, Corning). Pre-treated cells were plated in the upper
chamber in FBS free DMEM, whereas DMEM with 10% FBS (as the chemo-attractant) was
added to the bottom chamber. Cells were allowed to invade for 48 h, and those that had
not crossed the membrane were removed by scrubbing with a cotton swab. Then, the
lower surface of the inserts was fixed in 100% methanol for 10 min at room temperature
and stained with 0.3% crystal violet. Cells on the stained membrane were counted under
Eclipse Ti2E microscope (Nikon). Each experiment was performed in triplicate and the
data were presented as mean ± SD.

2.6. Western Blot

Cells were lysed in RIPA buffer containing protease and phosphatase inhibitors.
Proteins were run on 8% or 12% polyacrylamide gel and transferred to a nitrocellulose
membrane (#10600006, GE Helathcare Life science, DE). Membranes were blocked in
TBS buffer (20 mM TRIS, 150 mM NaCl, pH 7.4) containing 5% Bovine Serum Albumin
and exposed to rabbit-anti-mTOR (#2983, Cell Signalling, Danvers, MA, USA), rabbit-
anti-phospho-mTOR (#5536, Cell Signalling), rabbit-anti-FN1 (#26836, Cell Signalling),
rabbit-anti-phospho-Stat3 (#9145, Cell Signalling), rabbit-anti-Stat3 (#4904, Cell Signalling),
rabbit-anti-Vimentin (#3932, Cell Signalling), rabbit-anti-GAPDH (#2118, Cell Signalling),
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rabbit-anti-PD-L1 (#13684, Cell Signalling), rabbit-anti-PCNA (#13110, Cell Signalling),
rabbit-anti-N-Cadherin (#4061, Cell Signalling), and rabbit-anti-E-Cadherin (#3195, Cell
Signalling) overnight at 4 ◦C. Membranes were washed in TBST (TBS-0.05% Tween-20)
and incubated with either anti-rabbit HRP-conjugated secondary antibody for 1 h at room
temperature. After several washes in TBST, the blots were developed using SuperSignal
West Pico PLUS Chemiluminescent Substrate (#34580, Thermo Fisher Scientific, Waltham,
MA, USA).

2.7. Chemoresistance

To assess whether the cell lines treated with PDAC serum have acquired chemoresistance,
we selected anticancer drugs. In particular, we assessed cellular viability upon treatments with
Gemcitabine (#G6423, Sigma, St. Louis, MO, USA), Doxorubicin (CAS number 23214-92-8),
5-fluorouracil (#F6627, Sigma), and Paclitaxel (CAS number 33069-62-4). Treated and control
cells were seeded 20,000 per well and incubated with drugs at their IC50 concentration for
72 h. Subsequently their vitality was assessed by MTT assay. The MTT assay is based on the
reduction of a yellow tetrazolium salt (#A2231,0001, Applichem GmbH, Darmstadt, Germany)
to purple formazan crystals by metabolically active cells. The insoluble formazan crystals
were dissolved using DMSO (#EMR385100, EuroClone), and the resulting coloured solution
was quantified by measuring absorbance at 570 nm using a multi-well spectrophotometer.
All tests were done in triplicate for each condition. Finally, we compared the cell viability
between treated and control cell lines.

2.8. Whole Genome Sequencing (WGS) and Data Analysis

To minimize the influence of possible genomic instability, we split HEK293T cells
into two plates (control and treated) starting from the same flask, and we cultured the in
parallel and analysed at the same number of passages. The genomic DNA was isolated
from HEK293T cells after exposure to PDAC patients’ sera and healthy donor sera using
ExgeneTM Clinic SV mini extraction kit (Cat. No. 108–101, GeneAll biotechnology Ltd.,
Seoul, Korea). DNA was treated with RNase, eluted in 40 µL of deionized water, and run
on 1% agarose gel for integrity evaluation. The total sample quantity was determined
on Qubit fluorometer (Cat. No. Q33226, Invitrogen, Waltham, MA, USA). The WGS was
carried out on the NovaSeqTM 6000 platform (Cat. No. 20012850, Illumina, San Diego, CA,
USA) in a Pair-End 2 × 150 bp setup.

After quality control by FASTQC tool, the files containing the WGS paired-end reads
were aligned against the human genome hg38 by using BWA-MEM tool (ver. 0.7.17) [19],
with default parameters. The produced BAM files (treated and the matched normal
control samples) were submitted to the well-known copy number caller Control-FREEC
(ver. 11.0) [20], using default parameters. This tool is based on read-depth alignment and
automatically computes, normalizes, and segments copy number profiles for the detection
of CNVs (copy number variations), and calculates their significance (by Wilcoxon and
Kolmogorov–Smirnov tests).

2.9. Statistical Analyses

For colony formation, migration, invasion, and MTT assays, significant differences
between the treated and untreated cells were determined using the t-test. P values of
less than 0.05 were considered statistically significant. All statistical analyses for the
abovementioned assays were performed by using the Stat6 Software for Windows (Stat6
Software, San Diego, CA, USA). The Wilcoxon test and Kolmogorov–Smirnov test were
used for analysis of WGS-CNV data.

3. Results
3.1. Serum Treatments and In Vitro Transformation Validation

In order to evaluate the transforming potential of PDAC patient serum, we treated
two non-tumour cell lines, hTERT-HPNE and HEK293T, with pooled sera from PDAC



Biomedicines 2022, 10, 2588 5 of 17

patients and from healthy subjects. The soft agar colony formation assay was done in
triplicate for each condition, and Figure 1 shows some representative images of the colonies
of hTERT-HPNE and HEK293T cells formed in soft agar upon PDAC serum exposure and
their respective controls. The average colony number formed by HEK293T cell line treated
with PDAC patients’ sera was 54 ± 0.81 with a medium colony size of 136 ± 69.9 µm,
whereas the same cell line treated with healthy sera did not form colonies larger than 50 µm.
Similarly, for the healthy sera treatment of hTERT-HPNE line, colonies larger than 50 µm
were not observed. Moreover, hTERT-HPNE cells treated with PDAC patients’ sera formed
an average of 6 ± 0.47 colonies with a medium size of 64 ± 18.5 µm.
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Figure 1. The representative colonies in soft agar colony formation assay: (A) HEK293T + PDAC serum;
(B) hTERT-HPNE + PDAC serum; (C) HEK293T + healthy donor serum; (D) hTERT-HPNE + healthy
donor serum. Note that the horizontal lines in (B, D) figures were caused by rolling shutter modality of
the microscope camera (Hamamatsu ORCA-Flash4.0 LT).

Overall, these results suggest that PDAC patients’ sera has the potential to trans-
form non-tumour cell lines, and that HEK293T cells seem to be more prone to malignant
transformation than hTERT-HPNE cells.

3.2. Cell Migration and Invasion Assay

The wound healing assay was used to reveal changes in migration velocity and cell–
cell interaction. Figures 2 and 3 show some representative images (all plates were done in
triplicate) of the wound healing migration assay for hTERT-HPNE and HEK293T cell lines
until the gap closure.

The graphs in Figure 4 summarize the results of migration and invasion assay for both
cell lines and conditions. The HEK293T cell line treated with PDAC serum completely
closed the gap after 48 h, whereas the control group at the same time point closed the gap
only at about 55% (p < 0.05). The migration of hTERT-HPNE cells treated with PDAC
serum was not much different from the control group, in particular, after 48 h treated
cells have closed the 95% of the gap and the control cells at 87% (Figure 4a). Similarly,
the invasion’s abilities resulted in being slightly enhanced in the hTERT-HPNE cell line
(+11%, not significant) and strongly increased in the HEK293T cells (+25%, p < 0.05) after
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treatment with serum of PDAC patients (Figure 4b). Taken together, these results indicate
that the treatment with PDAC serum stimulated the aggressive behaviour of HEK293T
cells, whereas hTERT-HPNE cells did not show this effect.
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Figure 4. Migration (a) and invasion (b) assays. Graphical representation of mean values with
standard deviation for HEK293T and hTERT-HPNE cell lines treated with PDAC serum compared to
the healthy serum. Significant differences (p < 0.05) are marked with an asterisk.

3.3. Protein Expression in Western Blot

Total proteins were extracted from both PDAC serum-treated cell lines and respective
controls in order to analyse the expression of typically up- and down-regulated proteins in
PDAC tumour cells. These chosen proteins play key roles in some signalling pathways, in
epithelial-to-mesenchymal transition (EMT) and enable immuno-escape of tumour cells.
The representative images of membranes for antibodies against expressed proteins along
with expression ratio between PDAC serum-treated cells and controls are presented in the
Figure 5. Membranes for the proteins which resulted in not being expressed are presented
in the Supplementary Figure S1.

The HEK293T cell line showed an up-regulation of proteins responsible for increased
growth, proliferation (PCNA, STAT3, mTOR) after PDAC serum treatment. In particular,
expression of STAT3 is 2-fold higher, and the expression of mTOR and its active phospho-
rylated form, p-mTOR, were 3-fold and 2-fold higher, respectively. In addition, p-STAT3
is absent in both conditions. The expression of PD-L1, responsible for immuno-escape of
tumour cells, is 3.7-fold higher. The only down-regulated protein in HEK293T cell line is
vimentin (−4.76-fold).

Interestingly, in the hTERT-HPNE cell line, we observed the opposite situation. In par-
ticular, the vimentin expression was slightly up-regulated (1.58-fold), the mTOR expression
was slightly down-regulated, and PCNA, PD-L1, and STAT3 did not show notable (>1.5 or
<0.66) expression changes in this cell line.

The common feature for both cell lines was a complete absence of fibronectin, E-
cadherin, and N-cadherin. In order to validate antibodies’ functionality, we assessed
fibronectin, E-cadherin, and N-cadherin in HEK293T, hTERT-HPNE, and other PDAC cell
lines not treated with human serum (Supplementary Figure S2).
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Figure 5. The representative western blot for vimentin, mTOR, p-mTOR, PCNA, PD-L1, and STAT3
each with the corresponding GAPDH protein used for data normalization. The lanes correspond to
the following samples: (control) hTERT-HPNE or HEK293 + healthy serum; (treated) hTERT-HPNE
or HEK293 + PDAC serum; (ratio) Expression ratio between PDAC and healthy serum treatments in
hTERT-HPNE and HEK293T cell lines.

3.4. Chemoresistance

Since all previous results indicated that the HEK293T cell line has gained more changes
in terms of protein expression, migration, invasion, and malignant transformation, we
exposed it to common chemotherapeutics in order to validate its response. At the end of
the incubation time, we assessed the IC50 based on cell viability using the MTT assay in
triplicate for each drug condition. The results are summarized in Table 1.

Table 1. The MTT assay results for cell lines treated with chemotherapeutics expressed as average
percentage of cell viability. HEK293T (control): previously treated with serum of healthy volunteers.
HEK293T (treated): previously treated with serum of PDAC patients.

Drugs HEK293T (Control) HEK293T (Treated) p-Value

Gemcitabine 13 uM 42% 16% 0.009

Doxorubicin 100 nM 53% 30% 0.001

Paclitaxel 100 nM 51% 91% 0.001

5-FU 5 uM 46% 17% 0.001

The transformed HEK293T cell line has developed resistance to paclitaxel. Indeed,
upon exposure to 100 nM paclitaxel, the control HEK293T cells had an average viability
of about 50%, whereas the PDAC serum-treated cells had a 91% of viability. Gemcitabine,
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doxorubicin, and 5-FU caused an opposite effect, reducing the viability of PDAC serum-
treated cells.

3.5. Genomic Imbalance in PDAC Serum-Treated Cells and Literature Analysis

After we established that HEK293T cells were transformed upon PDAC serum treat-
ments, for the first time, we assessed the gene copy number variations (CNVs) using NGS
approach and compared them to untreated cells. The obtained paired-end sequences from
genomic DNA were aligned to human genome hg38 and submitted to the copy number call-
ing tool Control-FREEC. We have identified both gains and losses in various chromosomes
(Figure 6 and Table 2).
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Figure 6. These graphs summarize the results of the chromosomal gain or loss events of HEK293T
cells, treated with plasma from patients, compared to cells treated with plasma from healthy subjects.
An image is shown for each chromosome where we found statistically significant results (other
chromosomes in Supplementary Figure S3). The chromosomal position is shown on the abscissa
axis. The number of copies of each specific chromosomal segment is shown in the ordinate axis.
In the absence of CNV events, values equal to 2 (diploidy) are expected. Unfortunately, the size
of this image does not allow for a good appreciation of the CNV events, so we have included the
high-magnification image (Supplementary Figure S4), and more details are shown in Table 2.
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Table 2. WGS-CNV analysis. List of the genes present in copy number variation in the genome of
HEK293T cell line treated with PDAC patients’ sera.

Coordinates
(Chromosome:

Start–End)

Status
(Copy Number)

p-Value
(Wilcoxon Rank Sum;

Kolmogorov–Smirnov)
Genes

1: 246,640,000–246,749,999 gain (3) 4.34 × 10−2; 2.55 × 10−1 CNST, SCCPDH

3: 33,290,000–33,379,999 loss (1) 1.11 × 10−4; 9.40 × 10−5 FBXL2

3: 76,610,000–76,719,999 loss (1) 6.26 × 10−6; 2.23 × 10−6 ROBO2

3: 93,430,000–93,519,999 loss (1) 1.40 × 10−4; 1.09 × 10−4 none

4: 49,660,000–49,759,999 loss (1) 2.91 × 10−5; 1.55 × 10−5 none

4: 70,690,000–70,779,999 gain (3) 1.37 × 10−3; 5.15 × 10−4 RUFY3, UTP3

5: 22,290,000–22,379,999 gain (6) 2.76 × 10−2; 4.79 × 10−3 CDH12

7: 111,400,000–111,579,999 loss (1) 1.46 × 10−10; 2.54 × 10−12 IMMP2L

7: 119,650,000–119,739,999 loss (1) 1.15 × 10−4; 9.62 × 10−5 LINC02476

9: 61,000,000–61,509,999 gain (3) 2.23 × 10−6; 4.67 × 10−6 SPATA31A7, FAM74A4, CNTNAP3C

15: 23,180,000–23,239,999 gain (3) 3.63 × 10−2; 6.56 × 10−2 none

19: 54,730,000–54,779,999 gain (4) 4.25 × 10−4; 3.21 × 10−4 KIR3DL3, KIR2DL1

19: 54,740,000–54,789,999 gain (38) 3.71 × 10−4; 3.21 × 10−4 KIR3DL3, KIR2DL1

19: 54,750,000–54,839,999 gain (4) 2.93 × 10−6; 4.53 × 10−6 KIR3DL4, KIR3DL3, KIR2DL1

19: 54,800,000–54,869,999 gain (8) 1.77 × 10−3; 6.15 × 10−3 KIR2DL4, KIR3DL1, KIR2DS4, KIR3DL2

20: 29,120,000–30,079,999 gain (3) 8.02 × 10−22; 0.00 FAM242B, FRG1EP, FRG2EP

20: 30,040,000–30,089,999 gain (114) 2.14 × 10−3; 3.09 × 10−3 none

20: 30,050,000–30,359,999 gain (3) 1.01 × 10−2; 2.62 × 10−2 FAM242A, LINC01597

20: 51,700,000–52,099,999 gain (3) 6.01 × 10−20; 0.00 ATP9A, SALL4, LINC01429, ZFP64

20: 52,100,000–52,989,999 gain (3) 1.01 × 10−5; 2.39 × 10−8 ZFP64, LINC01524, TSHZ2

20: 52,990,000–53,889,999 gain (3) 4.21 × 10−24; 0.00 TSHZ2, ZNF217, SUMO1P1

20: 53,890,000–61,649,999 gain (3) 7.00 × 10−3; 1.17 × 10−3

ANKRD60, APCDD1L, APCDD1L-DT, ATP5F1E,
AURKA, BCAS1, BMP7, BMP7-AS1, C20orf85,

CASS4, CBLN4, CDH26, CDH4, CSTF1, CTCFL,
CTSZ, CYP24A1, DOK5, EDN3, FAM209A,

FAM209B, FAM210B, FAM217B, GCNT7, GNAS,
GNAS-AS1, LINC01440, LINC01441, LINC01711,
LINC01716, LINC01718, LINC01742, LINC02910,

MC3R, MIR296, MIR298, MIR4325, MIR4533,
MIR4756, MIR548AG2, MIR646, MIR646HG,

MTRNR2L3, NELFCD, NKILA, NPEPL1, PCK1,
PFDN4, PHACTR3, PHACTR3-AS1, PMEPA1,

PPP1R3D, PPP4R1L, PRELID3B, RAB22A, RAE1,
RBM38, RBM38-AS1, RTF2, SLMO2-ATP5E,

SPO11, STX16, SYCP2, TFAP2C, TUBB1, VAPB,
ZBP1, ZNF831

20: 61,650,000–63,469,999 gain (3) 6.32 × 10−37; 0.00

ADRM1, ARFGAP1, BHLHE23, BIRC7, CABLES2,
CDH4, CHRNA4, COL20A1, COL9A3, DIDO1,

GATA5, GID8, HAR1A, HAR1B, HRH3, KCNQ2,
KCNQ2-AS1, LAMA5, LAMA5-AS1, LINC00029,

LINC00659, LINC01056, LINC01749, LSM14B,
MIR1-1, MIR1-1HG, MIR1-1HG-AS1, MIR124-3,

MIR1257, MIR133A2, MIR3195, MIR3196,
MIR4326, MIR4758, MRGBP, MTG2, NKAIN4,
NTSR1, OGFR, OGFR-AS1, OSBPL2, PSMA7,

RBBP8NL, RPS21, SLC17A9, SLCO4A1,
SLCO4A1-AS1, SNORA117, SS18L1, TAF4, TCFL5,

WI2-87327B8.2, YTHDF1
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Table 2. Cont.

Coordinates
(Chromosome:

Start–End)

Status
(Copy Number)

p-Value
(Wilcoxon Rank Sum;

Kolmogorov–Smirnov)
Genes

20: 63,470,000–64,444,167 gain (3) 2.66 × 10−4; 3.03 × 10−4

ABHD16B, ARFRP1, C20orf181, C20orf204,
DNAJC5, EEF1A2, FNDC11, GMEB2, HELZ2,
KCNQ2, LIME1, LINC00266-1, LKAAEAR1,

MHENCR, MIR1914, MIR647, MIR6813, MIR941-1,
MIR941-2, MIR941-3, MIR941-4, MIR941-5, MYT1,
NPBWR2, OPRL1, PCMTD2, PPDPF, PRPF6, PTK6,

RGS19, RTEL1, SAMD10, SLC2A4RG, SOX18,
SRMS, STMN3, TCEA2, TNFRSF6B, TPD52L2,
UCKL1, UCKL1-AS1, ZBTB46, ZBTB46-AS1,

ZGPAT, ZNF512B

21: 10,170,000–10,319,999 gain (3) 2.41 × 10−3; 7.19 × 10−4 none

X: 1–229,999 gain (7) 6.45 × 10−6; 2.95 × 10−6 none

X: 1,800,000–1,979,999 gain (3) 3.95 × 10−4; 8.63 × 10−5 none

In particular, losses have been detected located on chromosomes 3p, 4, and 7q, and,
interestingly, the unique genes with roles in tumour-related process in these regions (FBXL2,
ROBO2) are tumour suppressors (Supplementary Table S1).

We have observed major gains in regions of chromosomes 19q and 20q, and some
modest changes in chromosomes 1, 4p, 5p, and 9. Notably, these amplified regions harbour
70 genes involved in tumour-related processes in PDAC and/or other solid tumours. The
majority (49 genes) have pro-tumour effects (i.e., higher expression in tumours, associated
with lower survival, able to induce cell proliferation, migration, invasion, EMT, metastasis,
stemness, chemoresistance or inhibition of apoptosis), 15 genes act as tumour suppres-
sors, and six genes have still undefined or both pro-tumour and anti-tumour activities
(Supplementary Table S1). In particular, most of the amplified genes are involved in pro-
liferation and tumour progression in PDAC, such as AURKA, HRH3, MIR646, MRGBP,
PCK1, PMEPA1, SLCO4A1-AS1, SOX18, and TNFRSF6B. Some of the amplified genes are
frequently overexpressed in PDAC and are related to a poor prognosis (BIRC7, EEF1A2,
NTSR1, RAB22A, TNFRSF6B). Other amplified genes are involved in migration, inva-
siveness, and EMT in PDAC, such as BIRC7, EEF1A2, LAMA5, MIR646, MRGBP, PCK1,
PMEPA1, PTK6, SLCO4A1-AS1, TNFRSF6B, and ZNF217. Furthermore, the amplified
genes BIRC7, EEF1A2, MIR646, NTSR1, and TNFRSF6B play a role in PDAC metastasis,
while AURKA and SLCO4A1-AS1 are involved in apoptosis. Another important feature
of analysed genome was amplification of genes responsible for drug metabolism and
chemoresistance in PDAC, such as AURKA, CDH4, TFAP2C, PMEPA1, and PTK6. Among
amplified genes with anti-tumour roles in PDAC, we identified four microRNA genes
(MIR1-1, MIR124-3, MIR133A2, and MIR296). They act as tumour suppressor genes, are
downregulated in PDAC and associated with prognosis, and they can suppress cell pro-
liferation, invasion, migration, and EMT, or enhance drug sensitivity of pancreatic cancer
cells (see Supplementary Table S1 for details).

Some of the CNV chromosomal regions that we identified do not contain known genes,
but it cannot be excluded that these regions are, in any case, able to contribute to general
genomic instability in the transformed cells.

4. Discussion

PDAC is one of the most lethal cancer types and the majority of patients are diagnosed
at the advanced stages, which narrows down the choice of therapeutic approaches. Further-
more, PDAC has a very high metastatic potential, and metastases have been observed even
in patients who have undergone a complete pancreatic resection [21]. All of this highlights
the urgency to understand better the metastatic development of PDAC and to identify the
targets of malignant transformation in distant cells.
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In order to contribute to the understanding of the genometastasis theory in PDAC, we
have tested the transformation ability of non-metastatic PDAC patients’ sera on primed cell
lines hTERT-HPNE and HEK293T. Here, we have demonstrated, in vitro, that HEK293T
cell line treated with PDAC patients’ serum has most likely been transformed, whereas
the treated hTERT-HPNE cell line formed only a few colonies in soft agar colony forma-
tion assay. Both human cell lines are primed, with the hTERT-HPNE representing an
intermediary-stage in PDAC pathogenesis with K-Ras (G12D) mutation, inactivated p53
and Rb tumour suppressor genes [18], and HEK293T cell line derived from HEK293 line
upon insertion of SV40 T antigen, which inhibits p53 and Rb activity [22]. The more efficient
transformation observed in HEK293T could be explained by its high susceptibility to trans-
fection. Indeed, this cell line is widely used in many studies for its well-known efficiency
and high reproducibility in exogenous protein production. In a similar study published
by Abdouh et al., HEK293 cell line was exposed to cancer patients’ sera (including one
case of PDAC) and the malignant transformation was confirmed, whereas other normal hu-
man cell lines did not undergo malignant transformation [8,16]. Literature data regarding
hTERT-HPNE cell line are not available, since our study is the first so far reported where
this cell line has been exposed to the PDAC patients’ sera to assess the transformation.

Here, by NGS analysis, we identified genomic changes (CNVs) in the HEK293T cell
line after PDAC serum treatments. In particular, major gains have been detected in chromo-
somes 19q and 20q, and some modest changes in chromosomes 1, 3, 4, 5, 7, and 9. In PDAC,
the genetic gains on chromosomes 19q and 20q and the loss on chromosomes 3p and 4 have
already been described [23]. Moreover, the main amplified region (20q) is known to be
duplicated in many cancer types, including PDAC, which occurs at the early transformation
stages [24]. More recently, it was shown that 20q gain was harboured in more than 80%
of tested PDAC patients and in about 60% of intraductal papillary mucinous neoplasm
(IPMN), a precursor lesion of pancreatic cancer [25]. These results suggest that 20q amplifi-
cation may occur early in the tumour development. In addition, within the 20q arm, the
gene CTSZ was the most frequently amplified gene in pancreatic cancer [26]. Additionally,
in our study, we identified this amplified gene, which is a tumorigenic protease able to pro-
mote tumour cell proliferation by interacting with integrins [27] (Supplementary Table S1).
Further possible events that favoured transformation are the gain of the oncogenes GNAS
(a PDAC driver gene), LINC00659 (an oncogene in colorectal cancer), and ZNF217 (an
oncogene in many solid tumours, including PDAC). The overexpression of many other
amplified genes (e.g., AURKA, HRH3, MIR646, MRGBP, PCK1, PMEPA1, SLCO4A1-AS1,
SOX18, TNFRSF6B) is associated with PDAC cell proliferation and tumour growth. In ad-
dition, two tumour suppressor genes have been lost in the transformed HEK293T, namely
FBXL2, able to induce cell cycle arrest, and ROBO2, which inhibits PDAC cell proliferation,
migration, and invasion (see Supplementary Table S1 for details).

Although HEK293T’s high genomic instability could be expected due to the inhibition
of p53 and Rb, there is reassuring evidence regarding the validity of the NGS analysis.
Yao-Cheng Lin et al. compared three HEK293T cell lines which differed in the number of
passages or laboratory origin. These lines clustered very tightly together for SNP content,
whole-genome CNV, and gene copy number. Therefore, the authors concluded that these
different HEK293T strains were highly similar at a genomic level [22]. Moreover, analogous
conclusions have been pointed out for other cell lines, of which as many as 27 different
strains have been analysed [28].

We have also assessed if our cell lines treated with PDAC patients’ sera have acquired
higher migratory potential than cells treated with sera from healthy donors. While hTERT-
HPNE cell line did not show a gain of migratory potential, HEK293T showed higher cell
migration. This ability is important for tumour invasiveness, angiogenesis, and metastasis
development [29,30]. Therefore, our results indicate that HEK293T cells treated with PDAC
serum have acquired a more aggressive phenotype. Interestingly, STAT3 has been shown
to play a role in promoting cell migration [31]. Our data show that the expression of STAT3
in HEK293T is strongly increased, whereas it is unaltered in hTERT-HPNE, consistent with
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the observed results of wound healing migration assay. We have observed an increase of
STAT3 expression in the HEK293T cell line, but its active phosphorylated form was absent
both in PDAC and healthy sera-treated cells. Although STAT3 is known to be constitutively
activated in PDAC by phosphorylation of Tyr705 [32], the lack of p-STAT3 expression in
untreated HEK293 cells has been already reported [33,34]. However, the unphosphorylated
STAT3 can play a role in the transcriptional regulation of many cell-cycle genes through a
different mechanism [35].

We also observed an up-regulation of mTOR and its phosphorylated form in PDAC
serum-treated HEK293T cells. Notably, the hTERT-HPNE line showed an opposite be-
haviour, i.e., although p-mTOR also increased in hTERT-HPNE, the overall mTOR ex-
pression decreased after PDAC serum treatments, in contrast to HEK293. The normal
mTOR signalling pathway is altered in many cancers and its activity is increased in PDAC.
Moreover, since mTOR not only improves cell proliferation, growth, and survival but also
drives the tumour cell motility and invasiveness [36,37], the observed expression alterations
may explain the higher migration levels of treated HEK293T than hTERT-HPNE cells. The
enhanced migratory abilities of treated HEK293T can also be due to the amplification
of genes already known to promote migration and invasion in PDAC, such as EEF1A2,
LAMA5, MRGBP, PCK1, PMEPA1, PTK6, and RUFY3 [38–40].

Regarding markers of epithelial-to-mesenchymal transition (EMT), we identified only
a differential expression of vimentin, a mesenchymal marker. In particular, we have
observed its strong reduction in HEK293T cell line and a slight increase in hTERT-HPNE
cell line upon PDAC serum treatment. Since vimentin up-regulation is correlated with
PDAC development and metastatic behaviour [41–43], PDAC serum treatments could make
hTERT-HPNE cell more aggressive than HEK293T. However, other mesenchymal markers
(N-cadherin and fibronectin) and the epithelial marker E-cadherin were not expressed in
any conditions in both cell lines. Previously, it was reported that E-cadherin and fibronectin
were not expressed in HEK293 cells [44,45] and both E- and N-cadherin were not expressed
in a pancreatic cancer cell line [46]. Taken together, these results may indicate an incomplete
EMT switch. However, some amplified genes in treated HEK293T (e.g., BMP7, MRGBP,
CDH12) are associated with EMT in PDAC and other cancer types [47–50].

According to literature [51], we also observed a co-expression between STAT3 and
PD-L1 expression in both cell lines. In particular, we showed an overexpression of both
proteins in HEK293T, and their decrease in the hTERT-HPNE cell line after PDAC serum
treatments. PD-L1 is up-regulated in numerous human cancers, including PDAC, causing
immuno-escape of cancer [52]. The PD-L1 overexpression in HEK293T line may indicate
that the treatment with PDAC serum made these cells able to avoid the immune response
mediated by T-cells.

Interestingly, we observed the development of paclitaxel chemoresistance in HEK293T
cells after PDAC serum treatments. The paclitaxel resistance could be due to the observed
mTOR and p-mTOR increase. Indeed, it has been reported that inactivation of mTOR
increased the sensitivity of cells to paclitaxel in cervical cancer cells [53]. Furthermore,
three genes that we found to be amplified in serum-treated HEK293T cells (i.e., AURKA,
RAE1, and ZFP64) are known to increase the resistance of pancreatic, colorectal, and gastric
cancer cells to paclitaxel [54–56].

On the contrary, treated HEK293T resulted in being more sensitive to the other
tested drugs commonly used in treatments for PDAC and other cancers (gemcitabine,
5-fluorouracil, and doxorubicin). The observed higher sensitivity of treated HEK293T may
be due to the mechanism of action of these drugs, which is very efficient on fast proliferat-
ing cells. Indeed, HEK293T cells have a higher proliferation upon treatments with cancer
patient serum, as previously described by Abdouh et al. [8]. This high proliferation of
serum-treated HEK293T is also supported by the observed up-regulation of PCNA, mTOR,
and STAT3 expression, known to be involved in cell growth and proliferation. Additionally,
some amplified genes detected by NGS-CNV analysis in PDAC sera-treated HEK293T cells
have been previously associated with increased sensitivity to 5-FU and gemcitabine. In
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particular, when delivered by exosomes, the miR-124 enhanced 5-FU sensitivity of pancre-
atic cancer cells [57]. Moreover, overexpression of CDH4, PTK6, and TFAP2C re-sensitizes
pancreatic cancer cells to gemcitabine [58–60].

5. Conclusions

In this study we added results in the support of genometastasis theory in the setting
of PDAC. We have demonstrated in vitro that the HEK293T non-tumour cell line exposed
to PDAC patients’ sera has acquired a transformed phenotype, gained aggressiveness, and
gained resistance to paclitaxel. NGS analysis showed the gain of genes already known to
be involved in proliferation, migration, invasion, EMT, metastasis, and chemoresistance.
However, the transforming molecules released by PDAC and carried by plasma are still
unknown, although there are early indications that they are transferred through extra-
cellular vesicles. For these reasons, it will be interesting to characterize the nucleic acid
and protein content of these vesicles. Once these molecules are identified, they could be
therapeutic targets and prognostic biomarkers indicating the presence of micro-metastases
and therefore an exclusion criterion for surgery.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10102588/s1, Figure S1: Western blots for proteins
which resulted to be not expressed; Figure S2: Verification of the functionality of some antibodies.
Figure S3: full data about Figure 6. Figure S4: magnification of Figure 6. Table S1: Literature analysis
of genes identified by WGS-CNV analysis.
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