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Age-related phenotypes are characterized by genetic heterogeneity attributed to an

uncertain role of evolution in establishing their molecular mechanisms. Here, we

performed univariate and pleiotropic meta-analyses of 24 age-related phenotypes

dealing with such evolutionary uncertainty and leveraging longitudinal information.

Our analysis identified 237 novel single nucleotide polymorphisms (SNPs) in 199

loci with phenotype-specific (61 SNPs) and pleiotropic (176 SNPs) associations and

replicated associations for 160 SNPs in 68 loci in a modest sample of 26,371

individuals from five longitudinal studies. Most pleiotropic associations (65.3%, 115 of

176 SNPs) were impacted by heterogeneity, with the natural-selection—free genetic

heterogeneity as its inevitable component. This pleiotropic heterogeneity was dominated

(93%, 107 of 115 SNPs) by antagonistic genetic heterogeneity, a phenomenon that

is characterized by antagonistic directions of genetic effects for directly correlated

phenotypes. Genetic association studies of age-related phenotypes addressing the

evolutionary uncertainty in establishing their molecular mechanisms have power to

substantially improve the efficiency of the analyses. A dominant form of heterogeneous

pleiotropy, antagonistic genetic heterogeneity, provides unprecedented insight into the

genetic origin of age-related phenotypes and side effects in medical care that is

counter-intuitive in medical genetics but naturally expected when molecular mechanisms

of age-related phenotypes are not due to direct evolutionary selection.

Keywords: genetic association studies, pleiotropy, age-related phenotypes, genetic heterogeneity, aging, health

span, life span

INTRODUCTION

Large-scale genetic association studies including those called genome-wide association studies
(GWAS) are a powerful tool for gaining insight into the genetics of human health span and life
span. Historically, such studies were built in the framework of medical genetics, which is best
adapted for Mendelian (hereditary) disorders. Major contributors to health span are common
diseases (such as cardiovascular disease, stroke, cancer, Alzheimer’s disease) occurring in late (i.e.,
post-reproductive) life and the risk factors that make individuals vulnerable to these diseases,
collectively called age-related phenotypes. These are complex phenotypes of non-Mendelian type
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(Plomin et al., 2009). However, large-scale genetic association
studies of such phenotypes utilize the same framework as for
Mendelian disorders.

Biologists argue that gaining insight into biological processes
requires evolutionary explanations (Dobzhansky, 1973). Because
medical genetics historically focused on Mendelian-type
hereditary disorders, such disorders are traditionally explained
in terms of basic evolutionary forces such as mutation, natural
selection, genetic drift, and gene flow. However, the sister
discipline of evolutionary biology emphasizes fundamental
difficulties in genetics of age-related phenotypes due to an
uncertain role of evolution in establishing their molecular
mechanisms (Kirkwood et al., 2011; Nesse et al., 2012). This
problem is complicated by recent changes in human life
expectancy (Oeppen and Vaupel, 2002) and the fitness landscape
(Vijg and Suh, 2005; Crespi et al., 2010). Paradoxically, both
medical genetics and evolutionary biology developed mostly
independently, despite their reliance on the same forms of
genomic data.

Evolutionary biology argues that mechanisms of age-related
phenotypes are the results of indirect factors (“side-effects”) such
as co-evolution with fast-evolving pathogens, mismatch with
environments, reproductive success at the expense of health,
trade-offs that leave every trait suboptimal, defenses and their
special costs (Nesse and Williams, 1994; Nesse et al., 2012).
The indirect role of evolution in mechanisms of age-related
phenotypes, called in this paper evolutionary uncertainty, is
the source of natural-selection–free genetic heterogeneity in
predisposition to age-related phenotypes. This is an inevitable
source of heterogeneity in the case of age-related phenotypes
complementing the traditionally considered sources associated
with complexity of phenotypes and their polygenicity. The
inherent heterogeneity of age-related phenotypes can explain
why the same allele can confer different, even antagonistic, risks
to the same phenotype in different populations with the same
ancestry (Day-Williams and Zeggini, 2011; Ukraintseva et al.,
2016) and may result in complex forms of pleiotropy with
seemingly related (Kulminski et al., 2016c, 2017) or unrelated
(Goh et al., 2007; Barabasi et al., 2011; Kulminski et al., 2016a)
phenotypes. This complexity implies that the role of the same
genetic variant in the same phenotype can be naturally modified
by the life course (Kulminski et al., 2013, 2017; Ukraintseva
et al., 2016) regardless of heritability of such phenotypes because
heritability concept for age-related phenotypes is notoriously
problematic (Lewontin, 1974; Rose, 2006).

Here, we report the results of univariate and pleiotropic
meta-analyses of genetic associations with multiple age-
related phenotypes dealing with the evolutionary uncertainty
in establishing their molecular mechanisms and leveraging
longitudinal information. This approach follows the framework
of evolutionary biology, which argues that genetic predisposition
to age-related phenotypes is inherently heterogeneous, with
the natural-selection–free genetic heterogeneity as its inevitable
component. Thus, the key element of this biologically-motivated
approach is addressing the inherent heterogeneity in genetic
predisposition to such phenotypes. We identified 411 non-
proxy single nucleotide polymorphisms (SNPs) (with linkage

disequilibrium r2< 70%) with genome-wide (GW) significance
(p < pGW = 5 × 10−8) in a modest sample of 26,371 Caucasians
from five longitudinal studies, including 237 novel SNPs (199
loci), 11 SNPs in the major histocompatibility complex (MHC),
and 3 (3 loci) and 160 (68 loci) SNPs with p-values smaller and
larger, respectively, in the current study than in previous studies.
We show that the evolutionary uncertainty plays a dominant
role in the associations with age-related phenotypes. We found
that vast majority of pleiotropic associations with age-related
phenotypes were affected by antagonistic genetic heterogeneity,
a phenomenon not previously routinely recognized, that is
characterized by antagonistic directions of genetic effects for
directly correlated phenotypes.

MATERIALS AND METHODS

Study Cohorts
Data were obtained from five longitudinal studies from the
Candidate gene Association Resource, Atherosclerosis Risk in
Communities (ARIC) study (Investigators, 1989), Cardiovascular
Health Study (CHS) (Fried et al., 1991), Coronary Artery Risk
Development in Young Adults (CARDIA) study (Hughes et al.,
1987), Multi-Ethnic Study of Atherosclerosis (MESA) (Bild et al.,
2002), and Framingham Heart Study (FHS) (Cupples et al.,
2009). The FHS included three cohorts comprising parental
(FHS_C1), offspring (FHS_C2), and grandchildren (FHS_C3)
generations. Given this complex design, the FHS cohorts were
examined separately.

Phenotypes
The analyses focused on 24 phenotypes (16 quantitative
markers, 7 diseases, and death) listed in Table 1. Given the
longitudinal design of the studied cohorts, the analyses leveraged
repeated measurements of quantitative markers during follow-
up and information about the timing of disease onset or
death (Supplementary Table 1). These not strongly correlated
phenotypes (Supplementary Figure 1) were available in the
majority of selected cohorts. All studies collected information on
diseases and death in population samples during follow-up.

Genotypes
Genotyping in each study was performed using the same
customized Illumina CVDSNP55v1_A chip with approximately
50,000 SNPs from more than 2,000 selected candidate genes.
SNPs were included in the analyses after quality control in each
study (call rate > 95%, Hardy-Weinberg disequilibrium p >

10−4, minor allele frequency [MAF] > 2%). In case of marginally
smaller MAF for prioritized SNPs in a specific cohort compared
with the MAF cut-off, these SNPs were used regardless of the
MAF cut-off.

Genes and Loci
SNPs were mapped to genes using variant effect predictor from
Ensembl and the NCBI SNP database (assembly GRCh38.p7).
Because the customized Illumina CVDSNP55v1_A chip was
enriched by genes, most SNPs identified in our analyses were
within or near protein-coding genes. If an index SNP was not
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TABLE 1 | Basic characteristics of cohorts included in the analyses.

Cohort Sample size Number of visits Age (SD), years Birth dates (range) Quantitative markers* Risk outcomes**

ARIC 10,540 4 54.3 (5.7) 1920–1945 All except ADPN and AlbU All except ND

CHS 4,174 10 72.8 (5.6) 1885–1925 All except IL6 All

FHS_C1 639 28 35.7 (4.3) 1895–1920 All except ADPN, AlbU, CRP, and IL6 All

FHS_C2 3,062 8 34.8 (9.8) 1910–1965 All All

FHS_C3 3,960 2 40.2 (8.8) 1930–1980 All Cancer only

MESA 2,474 5 62.7 (10.3) 1917–1957 All except HGB and AlbS All except ND

CARDIA 1,522 6 25.6 (3.4) 1950–1965 All except ADPN and IL6 DM only

*Quantitative markers are grouped in three domains: physiological (PHY): body mass index (BMI), diastolic blood pressure (DBP), forced expiratory volume in 1 second (FEV1), heart rate

(HR), systolic blood pressure (SBP); blood (BLD): adiponectin (ADPN), albumin in serum (AlbS), blood glucose (BG), creatinine, hemoglobin (HGB), high-density lipoprotein cholesterol

(HDL-C), total cholesterol (TC), triglycerides (TG); and inflammation (INF): albumin in urine (AlbU), C-reactive protein (CRP), interleukin 6 (IL6).

**Risk outcomes: atrial fibrillation (AF), cancer, coronary heart disease (CHD), diabetes mellitus (DM), death, heart failure (HF), dementia of Alzheimer type (ND), stroke.

Cohort: ARIC, Atherosclerosis Risk in Communities Study; CHS, Cardiovascular Health Study; FHS, Framingham Heart Study original cohort (FHS_C1), FHS_C2, FHS 2nd generation

cohort; FHS_C3, FHS 3rd generation cohort; MESA, Multi-Ethnic Study of Atherosclerosis; CARDIA, Coronary Artery Risk Development in Young Adults.

Age is given at baseline; standard deviation (SD).

Additional details are provided in Supplementary Table 1.

within a protein-coding gene, the closest gene was assigned.
Multiple genes were assigned if they were at about the same
distance up- and down-stream from the index SNP or if the
index SNP was within the region of overlapping genes. Loci were
naturally associated with genes.

Analyses were performed in two stages (Figure 1).

Univariate Genetic Association Study in
Stage 1
Genetic association study was performed for each phenotype
in each cohort separately. This conventional approach was
enhanced by leveraging longitudinal information. For
quantitative markers, we used all measurements available
during follow-up for the same individuals. Information
on longitudinal measurements has multiple advantages
including a potential gain in statistical power. To correct
for repeated measurements correlations in the analyses of
quantitative markers in all studies except the FHS, we used the
generalized estimating equation (GEE) model with random
effects for repeated measurements (gee package in R used with
unstructured correlations). As the FHS included participants
from large families, we used the linear mixed effects multilevel
model (lme4 package in R) with random effects to correct for
familial structure and repeated measurements correlations
because the GEE model was not efficient due to memory
constraints, particularly for variables with a large number
of observations. Given gamma-like frequency distributions
of ADPN, AlbU, CRP, and IL6, a GEE model with a gamma
function and log-link was used in all studies. We evaluated
associations for SNPs using the available measurements
of quantitative markers for individuals of a given age at
each examination.

Longitudinal information on time to events was implemented
in the Cox proportional hazards mixed effects model (coxme
package in R) that addressed familial relatedness. In the FHS,
we used both prospective and retrospective onsets. The use of
retrospective onsets in a failure-typemodel is justified by Prentice

and Breslow (Prentice and Breslow, 1978). These analyses
provide estimates of effects in a given population. The time
variable in these analyses was the age at onset of an event or at
right censoring.

The models were adjusted for: (all studies) age, sex, and the
first five principal components; field center (ARIC, CARDIA,
CHS, MESA); genotyping stage (CHS); and whether DNA
samples had been subject to whole-genome amplification
(FHS). Because the GEE model for AlbU with log-link
gamma function adjusted for five principal components did
not converge for CHS, this adjustment was disregarded in
this analysis.

Principal component analysis (PCA) was performed on
genotyping data after quality control using the smartpca program
from the EIGENSOFT package.

Meta-Analyses in Stage 2
After stage 1, each SNP had a table with association statistics
for up to 24 phenotypes in seven cohorts. These statistics
were combined along two possible pathways (Figure 1): (i)
across studies and then across phenotypes and (ii) across
phenotypes and then across studies. These pathways can
provide different results because of the inherent heterogeneity
in genetic predisposition to age-related phenotypes (see the
Significance). To address the impact such heterogeneity, we
used four tests in pathway 1 and three tests in pathway
2 (Figure 1).

In pathway 1, univariate (phenotype-specific) meta-analysis
combining stage 1 statistics across cohorts (pathway 1a) was
performed using the Fisher test and conventional GWAS fixed-
effects meta-test. Pleiotropic meta-analysis (pathway 1b) was
performed by combining the univariate meta-statistics for the
same SNPs across phenotypes. In pathway 1b, we used the Fisher
test and two omnibus tests. The latter are traditionally used to
address correlations between the effect statistics and phenotypes
(details on all tests are below).

In pathway 2, we performed first pleiotropic meta-analysis by
combining the stage 1 univariate statistics across phenotypes in
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FIGURE 1 | Scheme of univariate and pleiotropic meta-analyses in stage 2.

(A) Statistics from stage 1 univariate genetic association study of 24

phenotypes in seven cohorts denoted PiCj, i ∈
(

1, 24
)

and j ∈
(

1, 7
)

. (B)

Univariate statistics from the meta-analysis across cohorts using the

fixed-effects meta-test (PiM) and Fisher test (PiFc). (C) Statistics from the

pleiotropic meta-analysis across phenotypes in cohort j for: (i) omnibus tests

with correlation matrix for phenotypes 6P
j (OpCj) and effect statistics 6B

j
(ObCj) and (ii) Fisher test (FpCj). (D) Meta-statistics from Fisher test across

cohorts for the results in (C) (OpFc, ObFc, and FpFc). (E) Meta-statistics

across phenotypes for the results in (B) from (i) meta-test across cohorts and

omnibus test across phenotypes with correlation matrix for phenotypes 6P
m

(MOp), (ii) meta-test across cohorts and omnibus test across phenotypes with

correlation matrix for effect statistics 6B
m (MOb), (iii) meta-test across cohorts

and Fisher test across phenotypes (MFp), and (iv) Fisher test across cohorts

and Fisher test across phenotypes (FcFp). Pathway 1: meta-analysis

combining statistics across cohorts (pathway 1a) and pleiotropic meta-analysis

across phenotypes (pathway 1b). Pathway 2: meta-analysis combining

statistics across phenotypes (pathway 2a) and cohorts (pathway 2b).

each cohort separately (pathway 2a) using the Fisher test and the
two omnibus tests as in pathway 1b. Then, we combined these
pleiotropic meta-statistics across cohorts using the Fisher test
(pathway 2b).

Fixed-Effects Meta-Test
We adopted a conventional GWAS meta-test using a fixed
effects model with inverse-variance weighting [METAL software
(Willer et al., 2010)]. The combined effect size was estimated as
ˆβM = (

∑

i wiβ̂i)/(
∑

i wi), and the variance of this effect-size was

var( ˆβM) = 1/(
∑

i wi), where β̂i is the effect size in the study i and

wi is the reciprocal of the variance of β̂i.

Fisher Test
The Fisher test (Fisher, 1970) combines p-values assuming that
there is no correlation between the tests that generated these p-
values. In pathway 1a, this test has the power to reject the “null”
hypothesis of no pooled effect regardless of the effect sizes and
directions in the cohort-specific statistics. Accordingly, this test
can indicate heterogeneity in genetic associations by providing
smaller p-values than those from the fixed-effects meta-test. In
pathways 1b and 2a, the Fisher test combines p-values across
phenotypes assuming that these p-values are from independent
associations. This test is often used for pleiotropic meta-analysis
of modestly correlated phenotypes (Fortney et al., 2015). Because
the Fisher test combines p-values from multiple statistics, it
addresses the problem of multiple testing by increasing the
number of degrees of freedom.

Omnibus Tests
The Fisher test is based on the assumption of independence of the
combined statistics. The statistics for the associations of the same
SNPs with different phenotypes may or may not be independent.
It is therefore argued that tests penalizing for correlation of such
statistics should be used to deflate the Fisher test estimates. A
commonly adopted test in this case is an omnibus test (Xu et al.,
2003; Bolormaa et al., 2014; Zhu et al., 2015).

Suppose that for a certain SNP we have an estimated effect size
β̂ij and its standard error σ̂ij for the phenotype i ∈

(

1,K j

)

in the

cohort j ∈
(

1, 7
)

, whereKj is the number of phenotypes in a study

j. A general omnibus test statistic can be constructed as ẑ′
j6

−1
j ẑj,

where ẑj = β̂ j/σ̂ j is a z-score vector of associations of SNPs with
phenotypes and 6j is the correlation matrix of the z-scores to be
estimated (Xu et al., 2003; Bolormaa et al., 2014). Accordingly,
this test takes into account the correlation of the effect statistics
for different phenotypes. Under the null hypothesis (β j = 0),
the test statistic follows a chi-squared distribution withKj degrees
of freedom

ẑ′j6
−1
j ẑj ∼ χ2

Kj
,

from which we obtained a combined p-value pj in the study j.
Correlation matrices 6 can be evaluated from the estimates

of the effect statistics for each phenotype for independent
SNPs; they are denoted 6 ≡ 6B. It has been argued that
6 can be also constructed by evaluating correlations between
phenotypes (Zhu et al., 2015); these matrices are denoted 6 ≡

6P. Correlation matrices were constructed for pathways 1 and 2
(Figure 1) separately. Cohort-specific matrices 6B

j for pathway

2 were constructed by evaluating correlations of the effect
statistics in each cohort using the results from the univariate
genetic association study in stage 1 for each phenotype for
independent SNPs. For pathway 1, matrix 6B

m was constructed
by evaluating correlations of the effect statistics from the fixed
effect meta-test of all cohorts. The phenotype-based cohort-
specific matrices for pathway 2, 6P

j , were constructed using
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FIGURE 2 | Schematic illustration of 4 types of genetic heterogeneity.

Heterogeneity of: (A) type 1, (B) type 2, (C) type 3, and (D) type 4 in the

associations with two partly correlated age-related phenotypes P1 and P2.

Small dots represent a sample of carriers of an effect allele A (red color) and

those who do not carry this allele (no A; green color). Large ellipse shows

correlation of P1 and P2 in this sample (r = 0.6). Small ellipses show

correlation of P1 and P2 in subsamples of this sample. Red color denotes

vector of correlation of P1 and P2 (thick diagonal vector) and its projections on

P1 (horizontal) and P2 (vertical). Black vectors β1 and β2 denote the effects in

the associations of allele A with P1 and P2. Sum of β1 and β2 represents

bivariate vector (thick line) of the effects.

phenotype measurements in each cohort separately by evaluating
correlations between vectors defined by person-observations
of the selected phenotypes. In the case of no overlapping
measurements of quantitative traits, the closest measurements
to a given examination were used. Matrix 6P

m for pathway 1
was constructed using a fixed effect meta-test applied to the
correlation statistics of phenotypes in each cohort, which was
evaluated using averaged values for quantitative traits measured
longitudinally at different visits.

Genetic Heterogeneity
Evolutionary biology argues that genetic predisposition to age-
related phenotypes is inherently heterogeneous due to the
undefined role of evolution in establishing their molecular
mechanisms. This implies that mechanisms driving genetic
predisposition to age-related phenotypes and correlations
between these phenotypes may have different origins.

Figure 2 illustrates four types of genetic heterogeneity in
connections of SNPs with two partly correlated age-related
phenotypes P1 and P2. Figures 2A,B illustrate commonly
expected heterogeneities (of types 1 and 2) when vectors of the
effects β1 and β2 are aligned with projections P1 and P2 of a

vector of correlation, or, equivalently, a bivariate vector of the
effects is aligned with a vector of correlation. Heterogeneity of
type 1 (Figure 2A) refers to the situation when one observes
perfect alignment of these vectors in some sub-samples. Although
this situation resembles homogeneity, it actually may not be.
To prove homogeneity, such perfect alignment should be in
any sub-sample of a given sample. Type 2 (Figure 2B) is
a commonly expected heterogeneity with a modest deviation
from collinearity of the bivariate vector of the effects and the
vector of correlation in subsamples and the entire sample. This
heterogeneity, however, preserves alignment of these vectors in
the same direction. Both types of heterogeneity can indicate
shared mechanisms driving correlation between phenotypes and
the effect statistics. Thus, either the6B or6P-based omnibus test
can penalize for this correlation, deflating the estimates from the
Fisher test. This is evident from the test statistics ẑ′j6

−1
j ẑj in the

two-dimensional case,

ẑ′j6
−1
j ẑj =

[(

ẑ21622 − ẑ1ẑ2621

)

+
(

ẑ22611 − ẑ1ẑ2612

)]

/det(6) (1)

because ẑ1ẑ2621, ẑ1ẑ2612 > 0 in this situation. Penalization of
these statistics indicates overlap in the association signals, which
is essential for identifying mediated pleiotropy (Solovieff et al.,
2013) and, potentially, shared biological mechanisms in genetic
predisposition to different phenotypes.

Figure 2C illustrates less commonly expected heterogeneity
of type 3 by showing that despite virtually the same alignment
as in Figure 2B of the bivariate vector of the effects with the
vector of correlation in the entire sample, the mechanisms are
different. The difference is that the bivariate vector in Figure 2C

is a superposition of virtually independent (orthogonal) bivariate
vectors of the effects in subsamples. The subsample-specific
bivariate vectors can be strongly misaligned with the vector of the
phenotype correlation. Then, the omnibus 6P-based test will be
overly deflated compared to the Fisher and 6B-based omnibus
tests. Type 3 heterogeneity indicates biological pleiotropy due
to mechanisms other than those driving correlation between the
studied phenotypes.

Figure 2D illustrates heterogeneity of type 4, which is counter-
intuitive in medical genetics but naturally expected when
molecular mechanisms of age-related phenotypes are not due
to direct evolutionary selection. This heterogeneity implies
(virtual) orthogonality of the bivariate vector of effects to
the vector of the phenotype correlation, which is driven by
opposite directions of the effect vector (β2 in this case) for
one phenotype and projection of the vector of correlation on
this phenotype (P2). Accordingly, this heterogeneity is called
antagonistic heterogeneity, implying antagonistic directions of
genetic effects for directly correlated phenotypes. In this case, the
omnibus test provides smaller p-values than the Fisher test, as can
be seen from (1) because ẑ1ẑ2621, ẑ1ẑ2612 < 0 in this case.

Genetic heterogeneity can be further complicated by
subsamples with no effects (ellipse with no arrows in Figure 2C)
and/or antagonistic effects for the same phenotypes at, e.g.,
different ages. This complication can make effects in the entire
sample seemingly weak despite strong effects in subsamples.
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Significance and Novelty
The fixed-effect, Fisher, and two omnibus meta-tests used in our
analyses have power to identify associations that are adjusted
or unadjusted for correlation and heterogeneity in genetic
predisposition to age-related phenotypes. Accordingly, GW level
(p = 5 × 10−8) attained in either of these tests was used as a
cut-off for significance for a given SNP. The difference between
p-values from these tests for a SNP was used to characterize the
impact of correlation and heterogeneity on the association.

SNPs were considered novel if they attained GW significance
in: (i) the univariate meta-analysis but were not reported in the
GRASP catalog (Leslie et al., 2014) at p ≤ 5 × 10−8 or (ii)
the pleiotropic meta-analysis but not in the pleiotropic analysis
of results from GRASP. For univariate meta-analysis, we used
evidence for the same (index) SNP in our study and GRASP. If
no associations were reported in GRASP for the index SNP, we
included SNPs with the smallest p-values within± 1Mb flanking
region. For pleiotropic meta-analysis, we selected associations
from GRASP for the index SNPs with 24 phenotypes used in our
analysis (Table 1). Then we performed pleiotropic meta-analysis
by applying the Fisher test to these GRASP results to present
evidence for pleiotropy in prior studies. We used the Fisher test
because the effect sizes were not reported in GRASP.We adopted
a conservative approach by not penalizing the Fisher statistics for
phenotypes with p-values not reported in GRASP.

Heterogeneity Coefficient
We used METAL software (Willer et al., 2010) to evaluate the
heterogeneity coefficient I2. The I2 can be interpreted as the
percentage of the total variability in a set of effect sizes due to
between-sample variability.

RESULTS

Study Overview
We used 24 weakly to moderately correlated
(Supplementary Figure 1) age-related phenotypes (16 markers,
seven diseases, and death) available from five longitudinal studies
comprising seven cohorts (Table 1). Analyses were performed
for 26,371 individuals of Caucasian ancestry, men, and women
combined, in two stages using an additive genetic model with
minor allele as an effect allele. In stage 1, we performed a
genetic association study of each phenotype (one SNP—one
phenotype) in each cohort separately (Figure 1A), following
the traditional univariate GWAS design. This analysis leveraged
longitudinal information from repeated measurements of
quantitative markers and the timing of risk outcomes (Table 1
and Supplementary Table 1). The univariate statistics in each
cohort for each phenotype (Figure 1A) can be combined via two
pathways (Figures 1B–E). The first is the traditional pathway
(pathway 1) meta-analyzing the results first across cohorts [as
in most GWAS meta-analyses, e.g., (Willer et al., 2013)] and
then across phenotypes (Visscher and Yang, 2016). The second
pathway leverages the availability of the results from individual
studies and, thus, it extends the methods based on the summary
statistics (Visscher and Yang, 2016). Accordingly, for pathway
2, we first performed pleiotropic meta-analysis of the results

across phenotypes in each cohort and then across cohorts. These
analyses addressed the evolutionary uncertainty in establishing
molecular mechanisms of age-related phenotypes by performing
five meta-tests (Figure 1) (see “Materials and Methods”).

Univariate Meta-Analysis
and Heterogeneity
Using a Fisher test and conventional GWAS fixed-effect meta-
test (Figure 1, pathway 1a), we identified 61 novel SNPs (see
“Materials and Methods”) and 3 SNPs with smaller p-values than
previously reported (55 loci; counts of loci exclude the MHC)
(Table 2 and Supplementary Table 2). One SNP (rs10160664)
was associated with two phenotypes, albumin in urine (AlbU)
and C-reactive protein (CRP), at the GW level. Of these 65
GW significant associations (for 64 SNPs), 23 were identified
in the fixed-effects meta-test, 11 in the Fisher test, and 31 in
both tests. The Fisher test outperformed the meta-test (pFisher
< pmeta) for 18 of the 61 novel SNPs (29.5%). All associations
were observed for quantitative markers: 52 for AlbU, 6 for
total cholesterol (TC), 2 for heart rate (HR), 1 for high-density
lipoprotein cholesterol (HDL-C), 1 for interleukin-6 (IL-6), 1
for albumin in serum (AlbS), 1 for adiponectin (ADPN), and 1
for CRP and AlbU. For 3 SNPs, GW significance in the current
study was approximately the same as that in previous studies
for the index SNPs (rs17645031, rs1784042) or a nearby SNP
(rs1879266). The remaining 61 SNPs, or SNPs nearby to them,
did not attain pGW in previous studies (Table 2).

Out-performance of the meta-test by the Fisher test indicates
a substantial role of heterogeneity in associations across cohorts
(see “Materials and Methods”). This is evidenced by a strong
and highly significant inverse correlation of the ratio of log-
transformed p-values from these two tests, log10 (pmeta)/log10
(pFisher), with the heterogeneity coefficient I2 (Table 2; rPearson
= −0.874, p = 2.0 × 10−21). This correlation implies
that the larger the pmeta relative to the pFisher , the more
heterogeneous the association signals across cohorts. Forest
plots in Supplementary Figure 2 illustrate homogeneous and
heterogeneous associations for uncommon SNPs associated with
AlbU across cohorts.

The univariate meta-analysis replicated 198 associations for
160 SNPs (68 loci) with p < pGW (Supplementary Table 3,
Supplementary Material). For most of these SNPs, p-values
were smaller for the meta-test than for the Fisher test (pmeta

< pFisher) except for rs1260326, rs13333226, and rs2075650. As
for the novel SNPs in Table 2, we observed a strong and highly
significant inverse correlation of log10 (pmeta)/log10 (pFisher) with
I2 (rPearson = −0.603, p = 5.5 × 10−21). Most of these 198
associations (166 or 83.8%) were observed for lipids.

Univariate Meta-Analysis and
Longitudinal Information
Longitudinal information from repeated measurements
benefits univariate analyses for SNPs with relatively
homogeneous associations across visits by decreasing
standard errors (Supplementary Figure 3). For example,
rs17645031 attained p = 6.01 × 10−23 in our modest sample
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TABLE 2 | Novel SNPs, and SNPs with smaller p-values than previously reported, attained genome-wide significance (p < 5 × 10−8) in univariate meta-analysis of

individual phenotypes.

ID Locusa SNPb Chr Location EA EAF Trait βmeta Pmeta PFisher Ratio I2 % SNPc
known

Pknown LD %

1 TNFRSF1B rs5745938 1 12,165,317 a 0.043 AlbU −0.44 4.78E-09 2.05E-09 0.96 78 rs5746040 9.40E-03 0.2

2 PLA2G5 rs11573294 1 20,091,603 g 0.023 AlbU −0.66 8.75E-17 5.01E-16 1.05 67 rs2236772 4.00E-02 0.2

3 TGFBR3 rs17131556 1 91,768,996 g 0.042 AlbU −0.40 2.14E-08 4.11E-08 1.04 65 rs2296621 7.30E-03 1.1

4 MYBPHL rs17645031 1 109,292,316 a 0.083 TC −4.87 6.01E-23 4.51E-19 1.21 0 rs17645031 1.12E-22 S

5 F5 rs9332664 1 169,517,708 t 0.026 AlbU −0.51 3.40E-09 5.75E-11 0.83 82 rs6011 1.90E-03 0.1

6 F5 rs9332684 1 169,582,297 g 0.026 AlbU −0.45 1.85E-08 1.14E-06 1.30 0 rs6011 1.90E-03 0.0

7 RYR2 rs10157718 1 237,093,677 t 0.023 AlbU −0.48 3.55E-08 2.20E-11 0.70 86 rs12041754 1.10E-06

8 ABCG5/DYNC2LI1 rs17031666 2 43,815,975 c 0.031 AlbU −0.46 3.69E-09 3.64E-08 1.13 61 rs17031742 2.00E-02 0.5

9 EPAS1 rs17035091 2 46,383,270 g 0.037 AlbU −0.49 1.24E-10 3.47E-09 1.17 47 rs7569138 6.30E-03 59

10 MEIS1 rs7563565 2 66,489,460 a 0.031 AlbU −0.49 8.85E-10 2.52E-08 1.19 29 rs1055386 1.20E-04 1.5

11 FABP1 rs2970900 2 88,124,102 g 0.023 AlbU −0.46 1.15E-08 1.15E-08 1.00 69 rs1545223 1.80E-02 0.1

12 DPP4 rs10490422 2 162,059,903 a 0.022 AlbU −0.49 5.80E-08 8.13E-09 0.89 78 rs2892827 7.70E-03 0.8

13 CPS1 rs7558276 2 210,634,680 a 0.027 AlbU −0.51 8.27E-10 6.22E-09 1.11 65 rs2371010 5.30E-04 0.0

14 VHL rs17610448 3 10,153,488 c 0.024 AlbU −0.49 2.66E-09 2.22E-07 1.29 4 rs9866514 3.30E-03

15 TGFBR2 rs3087463 3 30,605,604 a 0.023 AlbU −0.52 3.21E-10 9.51E-09 1.18 39 rs17026647 2.20E-06

16 FOXP1 rs17747268 3 71,006,431 c 0.029 AlbU −0.52 8.86E-12 3.87E-10 1.17 25 rs6549390 2.10E-03 0.8

17 SLC34A2 rs11731126 4 25,671,935 a 0.030 AlbU −0.41 1.69E-07 3.67E-08 0.91 77 rs16876970 2.70E-04

18 TBC1D1 rs4832741 4 37,895,064 g 0.022 AlbU −0.53 1.75E-11 2.42E-10 1.12 55 rs1435385 4.60E-04 1.1

19 FABP2 rs1511024 4 119,319,026 a 0.033 AlbU −0.44 9.81E-08 1.32E-08 0.89 74 rs17050049 1.00E-03

20 SLC1A3* rs2562544 5 36,524,655 g 0.021 AlbU −0.56 1.42E-12 1.96E-11 1.11 56 rs298973 3.20E-03 0.8

21 ADGRV1 rs12522091 5 90,956,871 a 0.028 AlbU −0.71 5.33E-13 1.18E-17 0.73 91 rs2935535 3.60E-04 2.8

22 GLRX* rs17085170 5 95,836,627 a 0.051 AlbU −0.40 2.78E-08 8.31E-07 1.24 32 rs10515242 3.60E-04 2.6

23 F13A1 rs3024471 6 6,319,302 g 0.028 AlbU −0.48 2.17E-09 1.07E-08 1.09 56 rs4582427 9.90E-05

24 NFKBIL1 rs3130062 6 31,558,135 g 0.069 TC −3.32 1.53E-09 6.17E-08 1.22 46 rs3130062 1.60E-02 S

25 MSH5 rs3131382 6 31,739,953 a 0.069 TC −3.44 2.47E-10 6.61E-09 1.17 53 rs3131382 9.24E-04 S

26 RNF5/AGPAT1 rs3134943 6 32,179,984 a 0.137 TC −2.21 2.12E-08 1.53E-07 1.13 58 rs3134943 1.16E-04 S

27 HLA-DRA* rs3129868 6 32,436,600 a 0.141 TC −2.30 5.08E-09 9.58E-09 1.03 67 rs3129868 7.27E-04 S

28 ESR1 rs17761320 6 151,830,830 a 0.043 AlbU −0.46 3.75E-08 7.08E-08 1.04 62 rs17761320 3.00E-02 S

29 ESR1 rs6913408 6 152,056,977 a 0.029 AlbU −0.33 1.37E-04 4.14E-10 0.41 90 rs17081526 7.10E-04 0.0

30 EGFR rs6968014 7 55,179,749 t 0.026 AlbU −0.35 5.19E-05 2.86E-08 0.57 86 rs4495378 5.30E-04 1.2

31 MLXIPL rs17145750 7 73,612,048 a 0.153 HDLC 0.947 2.49E-08 2.21E-05 1.63 0 rs17145750 6.05E-08 S

32 HGF rs5745660 7 81,745,771 a 0.032 AlbU −0.44 4.41E-09 7.29E-08 1.17 50 rs5745660 2.20E-02 S

33 CDK5 rs2069454 7 151,055,895 g 0.048 AlbU −0.36 1.22E-08 5.71E-07 1.27 46 rs1860742 8.40E-06

34 DEFA1* rs12675298 8 6,971,291 a 0.023 AlbU −0.42 1.12E-08 1.99E-08 1.03 70 rs7388463 2.70E-04 0.1

35 MMP16 rs11996222 8 88,204,251 a 0.061 AlbU −0.38 1.22E-08 5.28E-07 1.26 0 rs7822721 4.40E-03

36 SQLE rs16900175 8 125,011,901 c 0.022 AlbU −0.56 3.02E-11 4.35E-10 1.12 40 rs16900770 2.70E-05

37 GPR20 rs36092215 8 141,357,146 a 0.040 AlbU −0.46 2.94E-08 2.80E-06 1.36 0 rs10088001 2.30E-05

38 VLDLR rs35845312 9 2,620,592 a 0.022 AlbU −0.48 4.54E-08 3.01E-08 0.98 72 rs7856406 1.20E-03 0.8

39 CDKN2A rs3731249 9 21,970,917 a 0.030 AlbU −0.48 1.83E-10 8.67E-10 1.07 69 rs7024096 2.70E-03 2.2

40 ZFAND5 rs13292980 9 72,358,555 a 0.066 AlbU −0.43 1.96E-10 1.16E-08 1.22 22 rs11788021 1.40E-04 1.0

41 SORCS1 rs822008 10 106,784,843 g 0.024 IL6 7.73 1.70E-04 3.49E-09 0.45 91

42 LRRC4C** rs10160664 11 41,894,276 a 0.022 CRP −0.18 1.40E-05 4.30E-09 0.58 86

AlbU −0.50 4.25E-09 3.07E-07 1.29 0 rs10837551 4.20E-03 1.4

43 GIF/TCN1* rs17597065 11 59,848,727 g 0.041 AlbU −0.46 1.22E-07 2.80E-08 0.92 74 rs11230503 9.1E-05 0.0

44 SIDT2 rs1784042 11 117,194,760 a 0.402 TC −1.54 2.49E-08 5.35E-06 1.44 0 rs1784042 3.83E-08 S

45 CACNA1C rs2238017 12 2,069,379 g 0.329 HR −0.47 1.92E-08 5.73E-06 1.47 0 rs2238017 3.37E-05 S

46 CACNA1C rs2238018 12 2,069,495 a 0.187 HR −0.62 5.94E-10 8.03E-08 1.30 19 rs2238017 3.37E-05 47

47 BCAT1 rs4963823 12 24,929,329 a 0.022 AlbU −0.50 1.10E-06 2.31E-08 0.78 82 rs6487431 6.90E-04

(Continued)
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TABLE 2 | Continued

ID Locusa SNPb Chr Location EA EAF Trait βmeta Pmeta PFisher Ratio I2 % SNPc
known

Pknown LD %

48 PRKAG1 rs1126930 12 49,005,349 c 0.032 AlbU −0.44 1.73E-09 4.14E-08 1.19 29 rs11168354 3.50E-04 0.2

49 LRP1 rs1800137 12 57,154,683 a 0.022 AlbU −0.59 2.69E-09 1.67E-08 1.10 51 rs11172106 1.8E-03

50 LRP1 rs34577247 12 57,184,890 a 0.021 AlbU −0.55 1.36E-10 1.78E-08 1.27 0 rs11172106 1.8E-03 0.5

51 NTS rs11117072 12 85,882,569 a 0.034 AlbU −0.46 9.23E-10 1.34E-07 1.31 3 rs10863085 2.00E-04 7.0

52 DIABLO rs7957117 12 122,209,055 c 0.021 ADPN −0.16 7.72E-09 8.72E-08 1.15 39 rs7957117 5.05E-05 S

53 BNIP2 rs1057058 15 59,672,705 a 0.035 AlbU −0.41 1.08E-08 1.19E-06 1.34 0 rs8032049 6.30E-05

54 AGRP* rs13334182 16 67,490,121 a 0.022 AlbU −0.44 1.69E-08 3.04E-08 1.03 66 rs8045523 2.70E-04 0.3

55 POLR2A rs4265880 17 7,492,948 a 0.036 AlbU −0.43 3.78E-08 5.22E-08 1.02 61 rs34780532 1.10E-03

56 GAS7 rs9894339 17 10,049,295 g 0.024 AlbU −0.56 5.14E-09 4.24E-09 0.99 74 rs16959324 2.40E-04 0.1

57 EIF1/GAST* rs12949732 17 41,701,367 g 0.024 AlbU −0.41 8.96E-06 4.85E-11 0.49 90 rs730086 6.30E-04 3.7

58 YES1* rs9945303 18 813,556 g 0.033 AlbU −0.52 2.25E-09 1.98E-12 0.74 87 rs2846758 2.00E-03 0.8

59 BCL2 rs4941192 18 63,276,726 g 0.040 AlbU −0.43 4.00E-08 7.93E-07 1.21 35 rs7238248 1.70E-03 0.4

60 BCL2 rs17070959 18 63,283,686 a 0.034 AlbU −0.52 1.32E-09 5.84E-08 1.23 25 rs7238248 1.70E-03 0.2

61 NOTCH3 rs12082 19 15,159,825 a 0.029 AlbU −0.41 3.45E-08 3.01E-06 1.35 0 rs7250903 1.10E-04 0.1

62 BAX rs4645886 19 48,956,428 a 0.023 AlbU −0.53 5.96E-11 1.91E-09 1.17 32 rs10401192 5.50E-05

63 FLT3LG/RPL13A rs1879266 19 49,486,803 g 0.166 AlbS −0.02 1.78E-08 4.11E-06 1.44 0 rs739347 3.20E-08 66

64 ERVV-1* rs1650940 19 53,004,046 g 0.083 AlbU −0.42 2.08E-07 1.39E-08 0.85 78 rs6509825 2.80E-04 0.5

aBecause the customized Illumina CVDSNP55v1_A array was gene enriched, loci were naturally associated with genes. If an index SNP was not within protein coding gene, the closest

gene(s) were assigned. Multiple genes were selected if they were at about the same distance up- and downstream from the index SNP or the index SNP was within the region of

overlapping genes.
*genes within ± 100Kb flanking region for the index SNP.
**LRRC4C gene laid 435Kb apart of rs10160664.
bProxy SNPs with linkage disequilibrium (LD) r2 > 70% were excluded. Four SNPs on chromosome 6 (24–27) and two SNP pairs on chromosomes 12 (45, 46) and 18 (59, 60) are in

LD with r2 = 15–67%. For other SNPs within ± 1Mb flanking region, LD was smaller than 1% (Supplementary Table 2A).

Chr, chromosome; Location, location in base pairs; EA, effect allele; EAF, EA frequency.

Column “Trait” shows phenotype with GW significance in the fixed-effect meta-analysis (βmeta and pmeta) and/or Fisher’s test (pFisher ). ADPN, Adiponectin; AlbU, albumin in urine; AlbS,

albumin in serum; CRP, C-reactive protein; HR, heart rate; HDL-C, high-density lipoprotein cholesterol; IL6, interleukin 6; TC, total cholesterol; TG, triglycerides.

Column “Ratio”: log (pmeta)/log(pFisher ); I
2 is the heterogeneity coefficient.

cKnown SNPs were defined as either the index SNP (denoted by letter “S” in column LD) or a SNP with the smallest p-value (pknown ) from GRASP catalog within ± 1Mb from the index

SNP. Numbers in column LD show r2 (%) for SNPs in columns “SNP” and “SNPknown.” Empty cells are for SNPs for which LD could not be evaluated in either our data or in the CEU

population from the 1000 Genomes Project.

The results for each cohort are provided in Supplementary Table 2B.

(Table 2, SNP #4) and p = 1.12 × 10−22 in a previously
described sample of 97,063 individuals (Teslovich et al., 2010)
(Supplementary Figure 3C). This improvement substantially
increases the efficiency of genetic association studies, which
can be quantified by the ratio of the log-transformed p-value to
the sample size (Kulminski et al., 2016b). For rs17645031,
the efficiency can be approximated by the ratio of the
sample sizes because the p-values in the different studies
are virtually the same, yielding a 3.7-fold (=97,063/26,371)
larger efficiency in our study than in the previous study
(Teslovich et al., 2010).

Pleiotropic Meta-Analysis
We used four tests in pathway 1 and three tests in
pathway 2 (Figure 1) to examine pleiotropy in six
domains: three domains of physiological, blood, and
inflammation markers and three domains of all 16
quantitative markers, seven diseases and death, and all
24 phenotypes (Table 1; see “Materials and Methods”).
Pleiotropic associations were defined as at least one test
showing GW significance.

Our analysis identified 176 novel pleiotropic SNPs (152 loci)
with ppleio < pGW (Tables 3, 4 and Supplementary Tables 4,
5) by combining associations with multiple phenotypes that
individually did not attain GW significance in univariate meta-
analysis (puni > pGW). Accordingly, this analysis identified
SNPs for which associations may be considered “noise” in
univariate analyses (Supplementary Figure 4). Of these, 79 (75
loci) and 97 (86 loci) SNPs attained GW significance in
pathway 1 (Table 3 and Supplementary Table 4) and pathway
2 (Table 4 and Supplementary Table 5), respectively. Table 5
illustrates these associations for selected SNPs. Most SNPs
in each pathway showed associations in the domain of 16
quantitative markers: 29 of 79 SNPs (pathway 1) and 77 of 97
SNPs (pathway 2). The remaining SNPs showed associations
in the domains of: (i) 24 phenotypes (19 and 12 in pathways
1 and 2, respectively), (ii) inflammation markers (20 and
4), (iii) blood markers (4 and 4), and (iv) physiological
markers (7 in pathway 1 only). No associations with p <

pGW were identified in the disease/death domain. The 79
SNPs identified in pathway 1 were associated with up to 11
phenotypes at p < 0.05 (Table 3 and Supplementary Table 4),
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TABLE 3 | Novel pleiotropic SNPs attained genome-wide significance (p < 5 × 10−8) in pathway 1.

ID Locusa SNPb Chr Location,

base pairs

EA EAF Domain NP Meta p-values Group PGRASP NG

PMOp PMOb PMFp PFcFp

1 NPPB* rs11801879 1 11,868,762 g 0.090 16P 5 6.33E-09 2.04E-07 6.49E-10 1.09E-06 M 5.00E-08 2

2 FAF1 rs17106235 1 50,477,698 c 0.098 16P 5 7.42E-09 2.50E-09 3.43E-08 2.13E-04 M 8.70E-03 2

3 GADD45A* rs12097345 1 67,677,857 g 0.063 16P 5 1.23E-08 1.50E-06 2.26E-06 8.30E-05 HP

4 LMNA rs6686943 1 156,123,200 g 0.024 INF 3 4.95E-07 7.70E-08 1.20E-09 8.47E-10 C

5 F5 rs6025 1 169,549,811 a 0.028 INF 3 2.01E-07 4.74E-08 2.17E-09 4.80E-07 M

6 PLA2G4A rs10911944 1 186,881,788 g 0.054 24P 6 3.41E-08 3.82E-05 1.21E-05 1.90E-01 HP

7 ADAM17/IAH1 rs10495562 2 9,491,211 a 0.481 24P 7 2.69E-03 1.91E-04 2.35E-09 2.48E-06 D 4.04E-04 2

8 FOSL2 rs12624279 2 28,411,923 a 0.406 16P 6 3.59E-08 2.49E-06 8.22E-08 5.33E-04 M 3.41E-06 1

9 COL5A2 rs10191420 2 189,159,234 g 0.037 24P 7 8.70E-05 9.02E-03 3.75E-04 4.12E-09 H1a 1.62E-03 3

10 SDPR/TMEFF2* rs11901744 2 191,888,309 g 0.045 24P 3 2.03E-08 1.37E-04 4.41E-04 7.21E-02 HP 2.16E-04 2

11 TRAK2 rs13022344 2 201,399,433 g 0.330 16P 4 4.01E-06 1.77E-05 4.69E-08 1.30E-06 D 4.25E-02 1

12 SSUH2 rs7647790 3 8,730,403 a 0.022 16P 5 1.83E-08 9.56E-06 8.19E-06 8.15E-04 HP 3.90E-02 1

13 IRAK2 rs1681663 3 10,178,045 a 0.233 INF 2 1.94E-07 1.94E-07 1.81E-08 7.68E-08 M

14 TFRC rs3827556 3 196,069,703 t 0.074 24P 6 8.44E-05 6.83E-04 1.21E-08 1.15E-03 D

15 MTTP rs2306986 4 99,583,418 g 0.036 16P 6 2.86E-03 3.41E-03 2.58E-02 3.68E-08 H1a 5.84E-06 3

16 CSF2 rs743564 5 132,075,186 g 0.393 24P 8 3.64E-08 2.36E-06 2.84E-05 3.71E-03 HP 3.06E-03 2

17 IL13* rs2243297 5 132,663,479 a 0.040 INF 3 3.84E-06 4.74E-07 4.04E-09 2.04E-05 D

18 ADRB2* rs33942282 5 148,829,255 a 0.028 24P 6 4.85E-04 3.64E-03 1.09E-04 9.05E-09 H1a

19 CDKAL1 rs4130302 6 21,103,928 a 0.022 16P 5 9.27E-04 5.37E-05 2.87E-08 3.12E-04 D 2.60E-02 1

20 UBD* rs389419 6 29,553,668 a 0.088 16P 5 1.82E-09 4.53E-07 1.91E-05 3.43E-04 HP 2.35E-07 5

21 NRM rs1075496 6 30,690,462 a 0.431 PHY 4 9.09E-08 4.88E-09 1.58E-05 2.29E-02 HB

22 HMGA1* rs1776897 6 34,227,234 c 0.088 24P 4 8.67E-09 3.35E-05 5.56E-06 1.31E-04 HP 7.07E-03 2

23 MRPS18A rs1334601 6 43,685,668 a 0.098 16P 6 6.48E-06 8.65E-05 4.11E-08 1.33E-02 D

24 CYP39A1 rs2277119 6 46,642,168 a 0.233 24P 10 5.57E-05 4.18E-04 7.01E-09 5.29E-03 D 6.68E-04 3

25 TNFAIP3** rs6920220 6 137,685,367 a 0.207 16P 3 3.16E-09 5.38E-07 2.14E-05 3.81E-05 HP 3.80E-03 2

26 ESR1 rs2747648 6 152,101,200 g 0.037 INF 3 8.85E-06 1.64E-06 3.49E-08 6.95E-05 D

27 IL6 rs1548216 7 22,730,154 c 0.025 16P 6 1.38E-05 2.46E-05 2.32E-08 2.59E-04 D

28 IGFBP3* rs1496499 7 45,939,424 c 0.465 PHY 1 1.24E-08 1.18E-07 5.28E-03 2.46E-03 HP 3.06E-02 1

29 MYH16 rs17161652 7 99,293,904 g 0.022 24P 9 1.01E-08 8.13E-07 5.72E-06 6.60E-04 HP

30 FOXP2 rs13227011 7 114,614,673 a 0.065 INF 2 5.78E-08 9.39E-08 1.23E-08 3.51E-08 M

31 GATA4 rs13250578 8 11,756,796 a 0.145 16P 4 3.73E-09 4.69E-07 7.99E-04 8.71E-02 HP 1.59E-05 3

32 FDFT1 rs1293328 8 11,837,551 a 0.267 16P 6 9.52E-09 2.46E-06 7.97E-07 2.07E-02 HP 4.13E-04 1

33 TNFRSF10A rs13278062 8 23,225,458 c 0.479 24P 10 1.34E-04 2.19E-03 4.55E-10 3.07E-09 C

34 IKBKB rs9785118 8 42,328,973 g 0.038 16P 6 2.05E-10 1.51E-07 4.78E-06 1.06E-02 HP 3.80E-03 1

35 PCSK5 rs7022503 9 76,127,438 g 0.491 BLD 4 1.17E-03 1.19E-04 3.73E-08 2.99E-04 D 2.75E-04 2

36 IKBKAP rs4978374 9 108,884,703 a 0.239 PHY 3 1.38E-01 1.02E-01 2.51E-01 3.95E-08 H1a 2.53E-07 2

37 GATA3** rs10508372 10 8,930,055 a 0.075 BLD 5 6.37E-05 3.75E-06 1.09E-09 3.80E-08 C 2.18E-05 3

38 CXCL12 rs266092 10 44,370,827 a 0.047 INF 3 1.07E-06 3.23E-07 1.03E-08 1.40E-06 D

39 NRG3 rs11195459 10 82,660,517 g 0.054 16P 3 1.48E-09 9.70E-06 5.99E-05 2.87E-04 HP 1.47E-02 1

40 LIPA rs10509569 10 89,221,893 a 0.064 24P 11 3.29E-04 3.21E-04 6.44E-06 4.36E-08 H1a 1.83E-03 2

41 PKD2L1 rs735877 10 100,344,764 a 0.383 PHY 3 1.35E-05 2.05E-05 4.16E-08 1.04E-04 D 7.08E-04 3

42 CYP2E1 rs7081484 10 133,538,986 a 0.025 INF 3 1.84E-07 4.28E-08 2.00E-09 2.58E-08 M

43 LRRC4C** rs7126989 11 42,152,027 a 0.027 16P 4 3.73E-06 7.74E-06 3.29E-08 3.77E-05 D

44 RAD9A rs2255990 11 67,397,024 a 0.034 INF 2 4.55E-07 1.23E-07 5.48E-09 9.45E-08 M

45 CPT1A rs11228373 11 68,829,752 g 0.128 BLD 3 1.50E-09 2.61E-05 5.47E-05 1.12E-02 HP 5.05E-03 2

46 SOX5 rs17402927 12 24,020,644 g 0.027 24P 4 1.01E-08 2.24E-05 2.30E-05 3.63E-02 HP

47 HDAC7 rs17122311 12 47,795,115 a 0.027 INF 2 5.30E-08 5.04E-08 8.54E-08 8.60E-07 M

48 APAF1 rs4319556 12 98,682,808 a 0.026 INF 3 9.52E-08 1.54E-08 2.41E-10 1.28E-07 M

49 HCAR1/DENR* rs548349 12 122,740,362 a 0.065 24P 7 2.36E-09 2.24E-06 2.51E-06 2.01E-02 HP

(Continued)
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TABLE 3 | Continued

ID Locusa SNPb Chr Location,

base pairs

EA EAF Domain NP Meta p-values Group PGRASP NG

PMOp PMOb PMFp PFcFp

50 BRCA2 rs11571590 13 32,320,347 a 0.029 INF 3 1.50E-06 4.89E-07 5.39E-08 8.84E-09 H1a

51 FOXO1 rs9603776 13 40,649,749 a 0.022 INF 2 6.61E-05 1.66E-04 3.15E-04 3.12E-08 H1a

52 ABCC4 rs1729741 13 95,131,902 g 0.116 16P 6 2.72E-06 1.85E-05 1.97E-08 1.74E-05 D 2.60E-02 1

53 IRS2 rs1044364 13 109,755,299 g 0.049 PHY 3 4.85E-05 1.07E-04 1.87E-08 2.05E-05 D 1.82E-02 1

54 TEP1 rs10083536 14 20,408,030 a 0.030 INF 2 2.89E-07 7.37E-08 4.66E-09 2.05E-10 C

55 MDGA2** rs17117423 14 46,539,309 g 0.039 INF 3 5.84E-07 3.00E-07 6.78E-09 3.22E-07 D

56 FBN1 rs1848050 15 48,569,846 a 0.102 INF 3 2.80E-05 4.06E-06 4.59E-08 1.24E-05 D

57 CYP19A1 rs28757184 15 51,222,375 a 0.034 INF 2 4.05E-08 3.09E-07 4.42E-07 2.65E-06 HP

58 HCN4 rs11857639 15 73,345,431 a 0.092 16P 5 4.20E-06 5.52E-05 4.58E-08 3.17E-05 D 6.39E-03 1

59 HCN4* rs7172808 15 73,371,291 g 0.161 PHY 2 1.68E-07 4.24E-08 2.40E-05 1.41E-04 HB 3.16E-02 1

60 BLM rs2238335 15 90,747,136 c 0.024 24P 7 8.67E-09 7.30E-07 2.76E-06 2.98E-03 HP 4.40E-03 2

61 LMF1 rs577543 16 888,967 a 0.073 24P 7 3.03E-08 5.64E-06 5.95E-06 2.17E-01 HP 1.25E-04 3

62 NOD2 rs2076753 16 50,699,463 a 0.290 24P 5 3.99E-08 3.31E-04 6.42E-05 6.26E-05 HP 4.40E-02 1

63 MMP2/IRX6* rs17232065 16 55,391,471 a 0.067 24P 9 9.60E-05 3.47E-03 9.92E-04 6.74E-09 H1a 2.14E-02 1

64 PYY rs9895585 17 43,987,619 c 0.049 INF 3 2.28E-07 4.84E-08 1.62E-09 1.38E-07 M

65 HDAC5 rs228757 17 44,087,517 c 0.266 PHY 3 1.11E-05 1.59E-05 4.54E-08 2.27E-04 D 6.41E-04 2

66 HDAC5 rs8065686 17 44,116,529 a 0.093 16P 5 2.45E-04 7.70E-05 4.47E-09 8.62E-05 D 1.35E-03 1

67 SLC4A1 rs5035 17 44,261,630 c 0.040 16P 6 2.53E-05 2.02E-05 1.06E-08 3.03E-08 C 8.72E-03 2

68 OSBPL7 rs12602461 17 47,811,983 a 0.052 16P 4 6.57E-05 1.64E-06 3.63E-08 5.62E-08 C 9.14E-04 2

69 RPS6KB1 rs1292034 17 59,912,499 a 0.445 16P 5 1.16E-08 1.07E-05 9.55E-05 3.81E-03 HP

70 APOH rs1801689 17 66,214,462 c 0.034 BLD 3 1.19E-09 3.26E-09 2.93E-04 3.87E-02 HP 4.92E-06 1

71 SYNGR2 rs4789546 17 78,171,312 a 0.045 16P 3 2.81E-08 1.02E-07 1.30E-07 1.78E-05 M

72 BCL2 rs10164240 18 63,277,305 g 0.022 INF 3 9.57E-07 3.38E-07 2.10E-08 2.51E-06 D

73 BCL2 rs4987719 18 63,293,077 a 0.032 24P 6 1.97E-08 1.51E-06 2.59E-08 3.48E-04 M 3.70E-03 1

74 LMNB2* rs2392769 19 2,461,807 g 0.237 16P 5 3.56E-09 4.68E-06 5.15E-06 1.57E-03 HP

75 NKX2-2* rs6035877 20 21,531,894 c 0.474 16P 6 2.28E-07 5.30E-05 1.66E-08 2.25E-04 D 1.72E-05 4

76 APP rs17001660 21 26,051,722 g 0.051 INF 2 4.24E-04 2.96E-04 8.05E-05 2.22E-08 H1a

77 APP rs12481729 21 26,148,455 c 0.025 16P 4 1.47E-11 4.61E-10 4.09E-09 4.79E-07 M

78 MMP11 rs738792 22 23,779,191 g 0.085 16P 7 1.51E-03 5.00E-03 6.14E-07 6.40E-09 H1a

79 HSCB rs5752792 22 28,757,771 g 0.190 16P 6 1.23E-05 4.09E-04 3.73E-09 2.03E-05 D 4.80E-05 3

a If an index SNP was not within protein coding gene, the closest gene was assigned. Multiple genes were assigned if they were at about the same distance up- and downstream from

the index SNP or if the index SNP was within the region of overlapping genes. Loci were naturally associated with genes.
*Protein coding genes within ±100Kb flanking region for the index SNP.
**Protein coding genes for four SNPs (#25, 37, 43, and 55) are within ± 1Mb flanking region for the index SNP.
bProxy SNPs with linkage disequilibrium (LD) r2 > 70% were excluded. LD for SNPs within ± 1Mb flanking region retained in the table is given in Supplementary Table 4A.

Chr, chromosome; EA, effect allele; EAF, EA frequency.

Domain indicates the pleiotropic domain in which minimal GW significant p-values were attained in our pleiotropic meta-analysis examining: physiological (PHY), blood (BLD), inflammation

(INF), 16 quantitative markers (16P), 7 diseases and death (8DD), and all 24 phenotypes (24P) domains. P-values are given for all four pleiotropic meta-tests (FcFp, MFp, MOp, and

MOb) for a given domain (Figure 1E).

Group indicates the type of association defined in the “Genetic heterogeneity and correlation in pleiotropic meta-analysis” section.

PGRASP shows p-values from the pleiotropic meta-analysis of results for the index SNPs reported in GRASP.

NP and NG show the number of phenotypes that attained a minimal p-value (p < 0.05) in the meta- or Fisher test in a given phenotypic domain in pathway 1 and Fisher test of GRASP

results, respectively.

More details on the associations for these pleiotropic SNPs are given in Supplementary Tables 4B–D.

with most associations clustered in the domain of 16 quantitative
markers. Figure 3 shows pleiotropic SNPs that attained GW
significance in the domains of 16 quantitative markers or 24
phenotypes. Our analysis also identified 11 SNPs in the MHC
(Supplementary Table 6).

Because ppleio < pGW < puni for pleiotropic SNPs, this
inequality automatically validates pleiotropy for 79 SNPs in
pathway 1, as it implies that pleiotropic statistics improved to

attain ppleio < pGW by pooling contributions from multiple
phenotypes with puni > pGW (Supplementary Tables 4B–D).
Because combining statistics in pathway 2 may yield ppleio <

pGW driven by strong pleiotropy in one cohort only, the set of
97 SNPs did not include SNPs with ppleio < pGW in one cohort
that did not attain nominal significance (adjusted for six tests,
p > 0.05/6 = 8.3 × 10−3) in at least one additional cohort
(Supplementary Table 7).
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TABLE 4 | Novel pleiotropic SNPs attained genome-wide significance (p < 5 × 10−8) in pathway 2.

ID Locusa SNPb Chr Location,

base pairs

EA EAF Domain Meta p-values Group PGRASP NG

POpFcc PObFcc PFpFcc

1 HTR6 rs3790756 1 19,669,739 a 0.136 16P 6.28E-09 6.30E-04 2.19E-04 HP 1.24E-03 2

2 PODN rs17107806 1 53,066,863 c 0.023 16P 1.49E-08 6.51E-04 2.00E-03 HP

3 PDE4B rs6667596 1 66,320,317 g 0.065 16P 8.94E-12 2.02E-06 8.76E-06 HP 4.92E-02 1

4 PDE4B rs6696880 1 66,335,812 g 0.062 16P 4.46E-09 1.95E-05 7.82E-05 HP 1.19E-04 4

5 ABCA4 rs10874828 1 94,004,017 a 0.095 16P 3.20E-08 2.02E-04 4.89E-04 HP

6 VCAM1 rs3917011 1 100,726,586 g 0.027 16P 3.36E-08 2.80E-05 9.17E-07 M

7 ARNT rs10305670 1 150,858,612 c 0.021 16P 1.63E-11 2.23E-05 1.27E-05 HP

8 SHC1 rs12076073 1 154,971,680 g 0.038 24P 1.24E-04 1.07E-04 3.30E-08 C

9 NOS1AP rs2661808 1 162,302,581 c 0.022 16P 8.79E-09 1.75E-04 3.06E-03 HP 1.08E-02 2

10 PARP1 rs3219123 1 226,367,647 a 0.062 24P 3.24E-08 4.56E-04 6.75E-04 HP

11 NLRP3 rs4925659 1 247,440,161 a 0.384 24P 2.32E-08 2.03E-04 1.48E-05 HP 5.99E-03 2

12 CXCR4* rs9973445 2 136,121,046 c 0.103 16P 3.36E-08 7.61E-05 3.05E-04 HP 1.22E-02 1

13 NEB/RIF1 rs1061305 2 151,490,465 g 0.410 16P 1.03E-08 5.40E-04 7.50E-03 HP 4.18E-04 4

14 TFPI rs8176595 2 187,504,645 a 0.030 16P 2.54E-10 8.68E-06 3.06E-05 HP 3.14E-02 1

15 SLC39A10* rs6748661 2 194,818,116 a 0.142 16P 7.91E-10 7.02E-06 1.56E-06 HP

16 INPP5D rs6715810 2 233,164,597 a 0.172 16P 1.34E-09 5.68E-05 1.86E-03 HP 7.09E-05 2

17 INPP5D rs6725722 2 233,164,999 a 0.038 16P 3.84E-08 1.06E-04 1.19E-05 HP 1.27E-02 1

18 CAV3/SSUH2 rs6764715 3 8,744,886 a 0.026 INF 3.05E-07 1.53E-07 1.31E-08 C

19 IRAK2 rs713016 3 10,237,012 a 0.126 16P 3.86E-08 5.72E-04 1.86E-04 HP

20 SCN5A rs7624535 3 38,623,711 c 0.215 16P 1.92E-08 3.87E-03 1.20E-01 HP

21 GNAI2 rs762707 3 50,252,421 a 0.023 INF 2.44E-08 3.12E-08 5.11E-08 M

22 EVC rs2291157 4 5,719,294 c 0.086 16P 4.31E-09 1.68E-05 1.52E-06 HP

23 EVC rs7674034 4 5,741,326 g 0.338 16P 5.47E-08 9.88E-05 3.94E-08 CB 8.78E-04 2

24 IL21* rs17005953 4 122,635,086 a 0.054 24P 3.34E-08 4.48E-05 1.76E-05 HP 2.72E-04 2

25 IL15 rs7698675 4 141,673,566 t 0.264 16P 6.77E-10 5.15E-06 1.05E-05 HP 3.62E-02 1

26 SLC9A3 rs6864158 5 505,936 g 0.423 16P 4.84E-08 2.54E-04 1.53E-03 HP 3.32E-03 2

27 SSBP2 rs6452419 5 81,575,583 a 0.323 16P 3.76E-08 1.01E-03 8.16E-04 HP 7.00E-03 1

28 ADGRV1 rs2438353 5 90,770,429 a 0.482 16P 5.58E-09 6.53E-04 7.42E-03 HP 1.29E-03 2

29 ADGRV1 rs7712313 5 90,932,581 g 0.309 24P 7.50E-08 2.40E-06 4.44E-08 CB 3.53E-05 4

30 ADGRV1 rs16869425 5 91,089,281 c 0.104 16P 2.29E-08 3.06E-04 6.93E-04 HP 2.69E-04 4

31 SLCO4C1 rs10066650 5 102,251,670 c 0.105 16P 4.12E-08 4.44E-05 3.12E-05 HP

32 FBN2 rs3805652 5 128,425,725 g 0.135 16P 8.16E-09 3.06E-04 7.68E-03 HP 5.03E-03 2

33 GMNN* rs6904263 6 24,771,241 a 0.181 16P 4.40E-04 1.17E-02 2.45E-08 C 2.63E-03 2

34 TREM2* rs7759295 6 41,168,112 a 0.124 16P 2.39E-08 1.60E-04 1.17E-03 HP 2.11E-03 2

35 PKHD1* rs10948623 6 51,553,432 a 0.219 16P 2.55E-08 3.28E-03 1.24E-03 HP 5.28E-04 2

36 PDSS2 rs12199523 6 107,187,066 g 0.199 16P 2.46E-09 4.07E-05 1.18E-06 HP

37 ARG1/MED23 rs17788484 6 131,573,218 a 0.023 16P 7.35E-11 2.44E-06 9.60E-05 HP

38 MTHFD1L rs2073188 6 150,937,175 a 0.063 16P 7.36E-09 1.01E-04 9.20E-05 HP

39 MTHFD1L rs9478918 6 151,037,163 a 0.139 16P 2.36E-08 5.56E-05 3.73E-05 HP 2.47E-03 3

40 PLG rs9456577 6 160,724,214 c 0.028 16P 2.68E-08 1.00E-04 3.11E-05 HP 2.06E-03 2

41 IGFBP3 rs3793345 7 45,918,079 g 0.204 16P 3.35E-08 1.15E-04 1.07E-02 HP

42 HGF rs5745692 7 81,728,950 g 0.033 BLD 3.26E-08 4.30E-05 4.12E-04 HP

43 CDK6 rs17690388 7 92,716,043 a 0.052 16P 7.42E-10 1.44E-05 2.36E-05 HP 8.11E-03 2

44 MSRA rs7840347 8 10,214,840 g 0.439 16P 1.15E-08 4.34E-05 2.03E-05 HP 3.24E-06 5

45 DLC1 rs1442534 8 13,117,098 a 0.168 16P 3.26E-08 3.39E-03 7.66E-04 HP

46 STMN4 112kb** rs11135979 8 27,123,055 a 0.040 16P 6.30E-09 1.26E-05 1.35E-07 M 9.90E-03 1

47 PLAT* rs2020918 8 42,214,920 a 0.341 24P 2.30E-08 4.15E-05 4.88E-09 CB 9.90E-03 1

(Continued)
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TABLE 4 | Continued

ID Locusa SNPb Chr Location,

base pairs

EA EAF Domain Meta p-values Group PGRASP NG

POpFcc PObFcc PFpFcc

48 TERF1 rs10104094 8 73,016,217 a 0.455 16P 1.14E-12 2.27E-06 7.81E-07 HP

49 MMP16 rs10103111 8 88,062,998 a 0.223 16P 3.99E-08 1.48E-04 1.74E-04 HP 9.22E-03 2

50 SDC2 rs2464474 8 96,585,444 g 0.110 16P 1.97E-11 1.83E-03 9.71E-03 HP 4.68E-02 1

51 SCRT1/TMEM249* rs4333645 8 144,345,873 a 0.433 16P 2.31E-08 1.56E-04 1.19E-04 HP 4.96E-05 1

52 CA9 rs7858447 9 35,677,248 g 0.192 16P 1.62E-09 1.64E-05 1.23E-07 HP

53 C9orf114/ENDOG rs2280845 9 128,820,891 a 0.249 24P 2.51E-09 1.83E-05 5.32E-04 HP 5.77E-07 2

54 PTGES rs7872802 9 129,753,451 g 0.136 16P 3.34E-06 3.11E-05 4.37E-08 C 2.58E-02 1

55 RXRA* rs36123461 9 134,441,548 g 0.020 16P 3.64E-09 8.30E-05 2.05E-04 HP

56 OIT3 rs2394931 10 72,906,307 a 0.055 16P 9.90E-09 2.03E-04 1.30E-04 HP 2.92E-02 1

57 VCL rs2395075 10 74,008,422 g 0.251 16P 2.95E-08 1.20E-03 5.92E-04 HP 5.32E-03 1

58 NRG3 rs1649960 10 82,273,509 g 0.065 16P 3.15E-08 4.85E-05 6.36E-05 HP 2.57E-02 1

59 NRG3 rs10509455 10 82,507,966 c 0.101 24P 1.30E-08 4.67E-04 9.69E-04 HP

60 GRK5 rs2230349 10 119,436,823 a 0.100 16P 3.19E-09 3.58E-05 6.89E-05 HP

61 LSP1 rs2089910 11 1,853,174 a 0.235 INF 2.42E-08 1.72E-07 5.59E-07 M

62 LRRC4C 110

kb**
rs1457326 11 41,573,519 a 0.242 16P 1.40E-08 1.40E-03 5.79E-04 HP 1.68E-02 1

63 NOX4 rs553635 11 89,496,263 a 0.074 16P 1.90E-08 9.94E-06 2.00E-05 HP 6.43E-04 3

64 MMP10 rs17359286 11 102,772,987 a 0.037 24P 2.16E-08 4.35E-05 1.55E-06 HP 1.52E-02 2

65 BCAT1 rs7964239 12 24,920,751 g 0.082 16P 3.07E-08 5.54E-04 1.39E-03 HP 6.43E-04 3

66 HDAC7 rs2301783 12 47,788,458 c 0.123 16P 4.54E-09 4.64E-05 3.48E-06 HP 1.75E-02 1

67 ATF1 rs3742065 12 50,795,836 g 0.051 16P 4.39E-08 2.32E-05 1.76E-05 HP 1.90E-03 2

68 RARG rs10082919 12 53,225,680 a 0.045 16P 1.25E-08 9.51E-05 2.81E-04 HP

69 IRS2 rs7999797 13 109,773,653 g 0.449 24P 4.83E-08 1.59E-05 9.82E-05 HP 7.64E-04 3

70 MTHFD1 rs17824591 14 64,420,993 a 0.213 16P 2.51E-08 5.13E-05 3.02E-07 M

71 SERPINA1 rs1980618 14 94,386,086 t 0.355 16P 3.37E-09 9.48E-04 9.92E-03 HP 3.72E-02 1

72 EXOC3L4/TNFAIP2* rs7155575 14 103,116,465 a 0.1524 16P 3.02E-08 5.43E-04 5.25E-04 HP 4.13E-02 1

73 BAG5* rs10129426 14 103,552,118 g 0.462 16P 8.47E-10 9.88E-04 2.40E-04 HP 3.88E-04 1

74 C15orf41 rs8039329 15 36,658,364 a 0.129 16P 3.14E-08 2.85E-04 2.37E-03 HP 9.69E-03 2

75 PCSK6 rs8042699 15 101,386,868 a 0.331 16P 1.11E-08 5.95E-05 2.32E-06 HP 3.21E-03 2

76 HBA2* rs2974771 16 171,058 a 0.471 16P 1.89E-08 1.29E-03 3.53E-04 HP 3.90E-02 1

77 ACSM3/EXOD1 rs5716 16 20,785,065 c 0.084 16P 2.72E-08 1.79E-05 5.61E-05 HP

78 GAS7 rs9545 17 9,910,885 g 0.058 16P 1.14E-09 1.26E-04 5.90E-04 HP 2.54E-02 1

79 SEPT9 176kb** rs7218173 17 77,676,394 c 0.075 16P 1.31E-08 6.95E-06 4.35E-07 HP 3.72E-02 1

80 SOCS3 rs4969168 17 78,357,712 a 0.140 16P 1.76E-09 3.29E-05 2.24E-03 HP 1.81E-05 4

81 BCL2 rs2046135 18 63,147,019 a 0.033 BLD 1.62E-08 7.42E-07 4.19E-06 HP

82 BCL2 rs17070739 18 63,152,150 c 0.038 16P 1.20E-09 2.86E-06 3.00E-05 HP 3.90E-02 1

83 BCL2 rs8097624 18 63,153,066 a 0.022 BLD 5.88E-09 2.87E-07 3.95E-05 HP

84 C3 rs11666133 19 6,686,410 a 0.043 16P 9.13E-06 8.29E-04 2.18E-08 C 4.31E-02 1

85 LRRC25* rs8101249 19 18,391,020 c 0.176 16P 2.32E-09 1.98E-03 2.92E-04 HP 3.81E-03 2

86 DMPK rs16939 19 45,772,798 a 0.459 16P 4.25E-08 4.29E-05 3.88E-05 HP 1.12E-02 1

87 IGFL4* rs10500295 19 46,072,145 a 0.028 24P 1.61E-08 3.40E-04 2.46E-03 HP 4.44E-02 1

88 SLC8A2 rs11083878 19 47,436,586 g 0.083 16P 3.29E-09 2.17E-04 3.69E-03 HP

89 BPI rs5741804 20 38,323,940 a 0.047 16P 1.81E-10 5.39E-05 5.77E-06 HP 4.20E-02 1

90 MMP9 rs9509 20 46,016,514 g 0.024 16P 1.37E-08 4.39E-05 1.67E-06 HP

91 NFATC2 rs6067766 20 51,423,549 a 0.115 16P 1.02E-08 2.82E-04 5.63E-04 HP

92 APP rs743532 21 26,066,185 g 0.059 INF 1.33E-08 7.68E-08 8.31E-08 M

93 ABCG1* rs4148082 21 42,199,305 a 0.090 24P 3.43E-05 5.83E-03 1.86E-09 C 1.27E-02 2

94 ABCG1 rs3788010 21 42,295,912 g 0.411 BLD 3.48E-08 8.45E-06 4.15E-07 M

(Continued)
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TABLE 4 | Continued

ID Locusa SNPb Chr Location,

base pairs

EA EAF Domain Meta p-values Group PGRASP NG

POpFcc PObFcc PFpFcc

95 VPREB3/C22orf15* rs6003875 22 23,759,673 g 0.237 16P 1.92E-08 2.04E-05 1.44E-06 HP

96 PPARA rs4253721 22 46,212,338 g 0.045 16P 1.25E-08 2.35E-04 1.43E-04 HP

97 PPARA rs4253778 22 46,234,737 c 0.184 16P 7.10E-09 4.53E-04 3.71E-03 HP 1.65E-05 2

a If an index SNP was not within protein coding gene, the closest gene were assigned. Multiple genes were assigned if they were at about the same distance up- and downstream from

the index SNP or if the index SNP was within the region of overlapping genes. Loci were naturally associated with genes.
*Protein coding genes within ± 100Kb flanking region for the index SNP.
**Protein coding genes for three SNPs (#46, 62, and 79) are within ±200Kb flanking region for the index SNP.
bProxy SNPs with linkage disequilibrium (LD) r2 >70% were excluded. LD for SNPs within ±1Mb flanking region retained in the table is given in Supplementary Table 5A.

Chr, chromosome; EA, effect allele; EAF, EA frequency.

Domain indicates the pleiotropic domain in which minimal GW significant p-values were attained in our pleiotropic meta-analysis examining: physiological (PHY), blood (BLD), inflammation

(INF), 16 quantitative markers (16P), 7 diseases and death (8DD), and all 24 phenotypes (24P) domains. P-values are given for all three pleiotropic meta-tests (FpFc, OpFc, and ObFc)

for a given domain (Figure 1D).

Group indicates the type of association defined in the “Genetic heterogeneity and correlation in pleiotropic meta-analysis” section.

PGRASP shows p-values from the pleiotropic meta-analysis of results for the index SNPs reported in GRASP.

NG show the number of phenotypes that attained a minimal p-value (p < 0.05) in the Fisher test of GRASP results.

More details on the associations for these pleiotropic SNPs are given in Supplementary Table 5B.

TABLE 5 | Selected novel pleiotropic genome-wide significant SNPs.

ID Gene SNP Chr Location

base pairs

EA EAF Domain NP Meta p-values Group PGRASP NG

MOp/OpFc MOb/ObFc MFp FcFp/FpFc

PATHWAY 1

9 COL5A2 rs10191420 2 189,159,234 g 0.037 24P 7 8.70E-05 9.02E-03 3.75E-04 4.12E-09 H1a 1.62E-03 3

21 NRM rs1075496 6 30,690,462 a 0.431 PHY 4 9.09E-08 4.88E-09 1.58E-05 2.29E-02 HB

24 CYP39A1 rs2277119 6 46,642,168 a 0.233 24P 10 5.57E-05 4.18E-04 7.01E-09 5.29E-03 D 6.68E-04 3

33 TNFRSF10A rs13278062 8 23,225,458 c 0.479 24P 10 1.34E-04 2.19E-03 4.55E-10 3.07E-09 C

70 APOH rs1801689 17 66,214,462 c 0.034 BIO 3 1.19E-09 3.26E-09 2.93E-04 3.87E-02 HP 4.92E-06 1

73 BCL2 rs4987719 18 63,293,077 a 0.032 24P 6 1.97E-08 1.51E-06 2.59E-08 3.48E-04 M 3.70E-03 1

PATHWAY 2

29 ADGRV1 rs7712313 5 90,932,581 g 0.309 24P 7.50E-08 2.40E-06 4.44E-08 CB 3.53E-05 4

54 PTGES rs7872802 9 129,753,451 g 0.136 16P 3.34E-06 3.11E-05 4.37E-08 C 2.58E-02 1

59 NRG3 rs10509455 10 82,507,966 c 0.101 24P 1.30E-08 4.67E-04 9.69E-04 HP

92 APP rs743532 21 26,066,185 g 0.059 INF 1.33E-08 7.68E-08 8.31E-08 M

Chr, chromosome; EA, effect allele; EAF, EA frequency.

Domain indicates the pleiotropic domain in which minimal GW significant p-values were attained examining: physiological (PHY), blood (BLD), inflammation (INF), 16 quantitative markers

(16P), 7 diseases and death (8DD), and all 24 phenotypes (24P) domains. P-values are given for all pleiotropic meta-tests for a given domain (Figures 1D,E).

Group indicates the type of association defined in the “Genetic heterogeneity and correlation in pleiotropic meta-analysis” section.

PGRASP shows p-values from the pleiotropic meta-analysis of results for the index SNPs reported in GRASP.

NP and NG show the number of phenotypes that attained a minimal p-value (p < 0.05) in the meta- or Fisher test in a given phenotypic domain in pathway 1 and Fisher test of GRASP

results, respectively.

ID numbers correspond to those in Tables 3, 4 and Supplementary Tables 4, 5 (Supplementary Material) with details on the associations for all novel pleiotropic SNPs.

Genetic Heterogeneity and Correlation in
Pleiotropic Meta-Analysis
The Fisher test in pathways 1b and 2a (Figure 1) combined
p-values across phenotypes assuming that they were
from independent associations. Given the evolutionary
uncertainty in establishing molecular mechanisms of age-
related phenotypes, these associations may or may not be
independent, even for correlated phenotypes, because the
mechanisms driving genetic associations with these phenotypes
and the correlations among them may have different origins

(see “Materials and Methods”). Then, differences in p-values
from the Fisher and omnibus tests (Figures 1D,E) reflect
the impacts of heterogeneity and/or correlation in genetic
associations. Below, we characterize these impacts. We used
an ad-hoc cut-off for the difference in p-values between
these tests of ≥1.5 orders of magnitude to characterize a
strong impact.

Our analysis identified conventional and unconventional
sets of associations in each pathway. The conventional set,
represented by three groups of SNPs in pathways 1 (D, C,
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FIGURE 3 | Heat map of phenotype-specific associations for selected pleiotropic SNPs. Data are for SNPs with pleiotropic associations in the domains of 16

quantitative markers (16P) and all 24 phenotypes (24P) from Table 3. Phenotypes are defined in Table 1. FcFp, MFp, MOp, and MOb denote pleiotropic meta-tests

(Figure 1). Colors code -log10 (p-value) trimmed at GW level -log10 (5 × 10−8) = 7.3 for better resolution.
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and M) and 2 (C, CB, and M) (Table 5), was characterized
by associations commonly expected in GWAS. It included 43
SNPs from pathway 1 (Table 3) and 16 SNPs from pathway 2
(Table 4), covering 33.5% (59 of 176) of SNPs. The C (6 SNPs
in each pathway) and CB (3 SNPs in pathway 2 only) groups
included 15 SNPs with p < pGW in the Fisher-based tests and
substantially larger (≥1.5 orders of magnitude) p-values in the
omnibus tests (e.g., pFcFp, pMFp< pGW< pMOp, pMOb for pathway
1). Although this is a commonly expected result for correlated
phenotypes, indicating a strong impact of correlation between
phenotypes and/or association signals, it was relevant to only
8.5% of SNPs. The difference between the C and CB groups
is that for the latter group there was a substantial difference
between pFpFc and pObFc but not between pFpFc and pOpFc. Group
D included 23 SNPs (13.1%) with GW significance attained
only in the MFp test (i.e., pMFp <pGW< pFcFp, pMOp, pMOb).
This result indicates SNPs with more homogeneous associations
in pathway 1a when pmeta is less than or approximately the
same as pFisher (Supplementary Tables 4C,D). Group M (14 and
7 SNPs in pathways 1 and 2, respectively) was characterized
by attaining GW significance in several tests and/or minor
(<1.5 orders of magnitude) differences between p-values in
these tests.

The unconventional set, represented by three groups of
pleiotropic SNPs in pathway 1 (H1a, HP, and HB) and
one group (HP) in pathway 2 (Table 5), was characterized
by associations with a strong impact of the evolutionary
uncertainty in establishing molecular mechanisms of age-related
phenotypes. It included 36 SNPs from pathway 1 (Table 3)
and 81 SNPs from pathway 2 (Table 4), covering 66.5% (117
of 176) of SNPs, which defined heterogeneous pleiotropy. The
HP group, the most common in each pathway (24 and 81
SNPs in pathways 1 and 2, respectively, covering 59.7% of
SNPs), was characterized by attaining GW significance in the
6P-based omnibus tests (Figure 1) and substantially larger
(≥1.5 orders of magnitude) p-values in the Fisher-based tests
(e.g., pMOp< pGW< pMFp for pathway 1). The HB group (2
SNPs) resembled the HP group except for having pMOb <

pGW instead of pMOp < pGW . These results indicate a strong
impact of antagonistic genetic heterogeneity (Figures 2D, 4)
characteristic for 107 SNPs (60.8%). Lastly, the H1a group
(10 SNPs) was characterized by attaining GW significance
in the FcFp test and substantially larger (≥1.5 orders of
magnitude) p-values in the other three tests in pathway 1 (i.e.,
pFcFp<pGW<pMFp, pMOp, pMOb). This result indicates a strong
impact of heterogeneity across cohorts because pFisher in this
case was typically smaller than pmeta for different phenotypes in
pathway 1a (Supplementary Tables 4C,D).

Pathway 2 provides a natural opportunity to validate
the antagonistic heterogeneity for 81 SNPs in different
cohorts. Our analysis shows that this heterogeneity,
characterized by pOpFc < pFpFc with a difference of ≥0.2
orders of magnitude, was replicated for all SNPs. For 5
SNPs this difference was observed in two cohorts and
for the remaining 76 SNPs in three to seven cohorts
(Supplementary Table 8).

FIGURE 4 | Empirical illustration of antagonistic genetic heterogeneity. (A,C)

Mean values and 95% confidence intervals of TG and TC, respectively, for

rs1801689 genotypes (green for AA, blue for CA, and red for CC) in the

Atherosclerosis Risk in Communities Study measured at baseline. Beta and p

denote effect sizes and p-values, respectively. Antagonistic genetic

heterogeneity is evidenced by opposite directions of changes in mean values

across genotypes for directly correlated phenotypes (i.e., a minor allele

associated with a larger concentration of TC is associated with a smaller

concentration of TG, whereas a larger concentration of TC correlates [r = 0.68

for CC genotype] with a larger concentration of TG for this allele). (B) Scatter

plot of TG vs. TC. The slopes of lines represent correlation coefficients given in

the upper left corner inset. The upper right corner inset illustrates antagonistic

genetic heterogeneity by showing opposite directions of genetic effect for TG

(black line) and projection of the vector of the correlation on TG (red line). See

other details in see “Materials and Methods” section and Figure 2.

Biological Pathway and Gene Ontology
(GO) Enrichment Analysis
We performed enrichment analyses of biological pathways and
toxicity (tox) functions using IPA (www.qiagenbioinformatics.
com) and GO biological processes (BPs) using DAVID (Huang
da et al., 2009) in two groups of four and two gene sets. The first
group included four gene sets: (i) three sets for pleiotropic SNPs
from Table 3 (pw1), Table 4 (pw2), and the two tables combined
(pw1&2) and (ii) one set for the AlbU-specific SNPs fromTable 2.
The second group included genes for SNPs from the identified
conventional and unconventional sets. The conventional set of
59 SNPs (Tables 3, 4, groups D, C, CB, and M) characterizes
associations commonly expected in genetic association studies.
The unconventional set of 107 SNPs is characterized by strong
impact of antagonistic heterogeneity (Tables 3, 4, groups HP
and HB).

The IPA analysis of the first group of four sets identified
41 pathways (Figure 5 and Supplementary Table 9) enriched
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for genes in at least one set at p < 10−4 (Fisher’s exact
test). Five pathways, inhibition of matrix metalloproteases,
neuroinflammation signaling, hepatic fibrosis/hepatic stellate
cell activation, IL-8 signaling, and apoptosis signaling, were
consistently enriched for pleiotropic genes from the pw1 and
pw2 sets (p < 10−2), with stronger enrichment attained in the
combined pw1&2 gene set (p < 10−4) as well as for genes
from the AlbU set (p < 10−2). One pathway, docosahexaenoic
acid (DHA) signaling, also attained the same cut offs for the
significance, although p-value in the combined pw1&2 set was
larger than that in the pw1 set. Pooling genes from the pw1 and
pw2 sets into the pw1&2 set improved the significance of the
enrichment for most biological pathways (25 of 41) in the pw1&2
set. One pathway, differential regulation of cytokine production
in macrophages and T helper cells by IL-17A and IL-17F, was
enriched (p < 10−4) exclusively in the pw1 set with no genes in
the pw2 set. Of 30 pathways enriched in the pw1&2 set at p <

10−4, 15 pathways were either not present (no genes) or did not
attain nominal significance (p > 0.05) in the AlbU set.

Nine and 10 pathways were enriched at p < 10−4

in the unconventional and conventional sets, respectively
(Supplementary Table 10). Two of them, neuroinflammation
signaling and IL-8 signaling pathways, attained p < 10−4

in both sets whereas the others predominantly characterized
the unconventional or conventional set. Thus, this analysis
identified 17 pathways enriched at p < 10−4 in the two
sets (Figure 6). Fourteen of these Seventeen pathways were
enriched at p < 10−4 in the pw1, pw2, and/or pw1&2 gene
sets (Supplementary Table 10). Analysis of the tox functions
for these two sets identified 43 terms enriched at p < 10−4 in
the conventional (20 terms) and unconventional (27 terms) sets
with four terms related to cardiotoxicity attaining p < 10−4 in
both sets (enlargement of heart, hypertrophy of heart, arrhythmia,
and familial arrhythmia) (Supplementary Table 11). Concurring
with the pathway analysis, these terms supported differences in
tox functions in the unconventional and conventional sets.

The GO analysis identified 8 BPs with enrichment for
genes at p < 10−4 (Fisher’s exact test) in at least one of the
four sets, i.e., pw1, pw2, pw1&2, and unconventional sets; no
enrichment at p < 10−4 was observed in AlbU and conventional
sets (Supplementary Table 12). These BPs were associated with
immune and inflammatory process (e.g., positive regulation of
B cell proliferation, platelet degranulation, response to drug,
response to hypoxia), extracellular matrix (extracellular matrix
disassembly), the coagulation system (platelet degranulation,
response to hypoxia), and specific metabolic events (triglyceride
metabolic process). BP positive regulation of B cell proliferation
showed the most significant enrichment (p = 9.3 × 10−7) in the
pw1&2 set and it was the only pathway enriched at p < 0.01 in all
five pleiotropic sets (i.e., excluding AlbU).

DISCUSSION

Despite a modest sample of 26,371 individuals from five
longitudinal studies, our comprehensive univariate and
pleiotropic meta-analyses identified large number of 237 novel

FIGURE 5 | Enrichment of canonical biological pathways in four gene sets.

Pw1, pw2, and pw1&2 denote three sets of genes for pleiotropic SNPs

(Continued)
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FIGURE 5 | from Tables 3, 4 separately and combined, respectively. AlbU

denotes the set of genes for SNPs associated with albumin in urine (AlbU)

from Table 2. Color coding for –log10 (p-value) is given in the inset. Numerical

estimates are given in Supplementary Table 9.

FIGURE 6 | Enrichment of canonical biological pathways in two gene sets.

Conventional set includes genes for pleiotropic SNPs from Tables 3, 4, groups

D, C, CB, and M. Unconventional set includes genes for pleiotropic SNPs from

Tables 3, 4, groups HB and HP. The conventional set characterizes

associations commonly expected in genetic association studies whereas the

unconventional set highlights a phenomenon characterized by strong impact

of antagonistic heterogeneity. Color coding for –log10 (p-value) is given in the

inset. Numerical estimates are given in Supplementary Table 10.

SNPs in 199 loci with phenotype-specific (25.7%) and pleiotropic
(74.3%) associations and replicated associations for 160 SNPs
in 68 loci. We show that most previously reported SNPs, which
were replicated in our univariate meta-analysis (98.1%, 157 of
160 SNPs), exhibited relatively homogeneous associations in
the studied cohorts. Consistent with the framework of medical
genetics, this result provides evidence that currently prevailing
strategies of large-scale GWAS are well adapted to handle
homogeneous genetic effects. This result is contrasted by a

substantial impact of heterogeneity, with the natural-selection—
free genetic heterogeneity as its inevitable component, in a
large fraction of the 237 novel SNPs identified in our univariate
(18 of 61 SNPs, 29.5%) and pleiotropic (115 of 176 SNPs,
65.3%) meta-analyses. In pleiotropic meta-analysis, this result
underscores heterogeneous pleiotropy and its most common
type, antagonistic genetic heterogeneity (107 of 115 SNPs,
93%), which is characterized by antagonistic directions of
genetic effects for directly correlated phenotypes (Figures 2D,
4). Although antagonistic genetic heterogeneity is counter-
intuitive in medical genetics, it is naturally expected when
molecular mechanisms of age-related phenotypes are not due to
direct evolutionary selection. This heterogeneity also has been
reported for alleles from well-known apolipoprotein B gene
(Kulminski et al., 2017), which are involved in lipid metabolism.
It provides unprecedented insight into the genetic origins of
age-related phenotypes and side effects of medical care. Unlike
the common role of antagonistic genetic heterogeneity in
pleiotropic associations, our results do not support a common
role of mediated pleiotropy (Solovieff et al., 2013) (15 of 176
SNPs, 8.5%), which is conventionally assumed for correlated
phenotypes, especially in framework of medical genetics
(Teslovich et al., 2010).

Most pleiotropic SNPs (137 of 176, 77.8%) attained GW
significance in the two largest domains of 16 quantitative
markers (60.2%) and 24 phenotypes (17.6%), which supports
the hypothesis that genetic associations with multiple age-related
phenotypes can be driven by more fundamental mechanisms
than those underlying common etiologies of phenotypes (Goh
et al., 2007; Franco et al., 2009; Kirkwood et al., 2011;
Kulminski et al., 2016a). This idea has been conceptualized
in the rapidly developing discipline of geroscience (Kaeberlein
et al., 2015; Franceschi and Garagnani, 2016), which is based
on observations that age and aging (Guarente, 2011) are among
the most important risk factors for geriatric diseases of distinct
etiologies. This pleiotropy may provide a basis for improving
health care by reducing the burden of a major subset of
common diseases (Martin et al., 2007; Sierra et al., 2008).
However, the dominant role of antagonistic heterogeneity in
pleiotropic associations cautions against simplistic approaches in
studies of the genetic origin of multiple age-related phenotypes.
Antagonistic heterogeneity emphasizes the importance of
personalized medicine (Schork, 2015), which can potentially
handle antagonistic risks [due to gene-gene and/or gene-
environment interactions (Jazwinski et al., 2010; Ukraintseva
et al., 2016)] on an individual basis. Our results suggest
that merging geroscience and personalized medicine is highly
promising for the efficient translation of discoveries regarding the
genetics of age-related phenotypes to health care developments.

The degree of similarity or mismatch of correlation patterns
between genetic and phenotypic factors is of enduring interest
in the evolutionary genetics as it informs about forces driving
development and clustering of phenotypes (Cheverud, 1988).
For example, the similarity of the patterns suggests that the
same environmental exposures contribute to the genetic and
phenotypic variation (Cheverud, 1988) whereas their mismatch
indicates that different exposures likely affect them (Hebert
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et al., 1994). If a study considers phenotypes directly shaped
by natural selection (e.g., fitness-related phenotypes), the
analysis of the degree of similarity or mismatch leveraging
the genetic basis of pleiotropy helps in dissecting pathways
leading to organisms’ morphological modularity (Cheverud
et al., 2004). As the age-related phenotypes are considered
not to be directly shaped by natural selection (Nesse and
Williams, 1994; Nesse et al., 2012), it is unlikely that this
analysis of such phenotypes can help in gaining insights into
organisms’ morphology. Still, it informs on potential role
of the environment. Specifically, co-direction of the genetic
associations with phenotypes and correlation between them may
indicate the mechanism of biological or mediated pleiotropy
(Solovieff et al., 2013) shaped by the same environment.
Anti-collinearity of the genetic associations and correlation
between phenotypes likely indicates heterogeneity of genetic
mechanisms in pleiotropic predisposition to such phenotypes
shaped by different environmental exposures. Thus, our finding
of extensive effect of antagonistic heterogeneity driven by such
anti-collinearity supports a key role of the environment
in shaping heterogeneous pleiotropic predisposition to
age-related phenotypes.

Our bioinformatics analysis of enrichment of canonical
pathways in two groups of four (pw1, pw2, pw1&2, and
AlbU) and two (conventional and unconventional) gene sets
identified 41 and 17 pathways at p < 10−4. The signature of
these two groups was enrichment in the immune/inflammation
responses, 14 of 41 (Supplementary Table 9) and 8 of 17
(Supplementary Table 10) pathways, respectively. Of them,
two pathways (neuroinflammation signaling and IL-8 signaling)
were enriched in all six sets and four (inhibition of matrix
metalloproteases, hepatic fibrosis, apoptosis signaling, and
docosahexaenoic acid (DHA) signaling) in four sets of the first
group (pw1, pw2, pw1&2, and AlbU). Neuroinflammation,
an inflammatory response within the central nervous system,
is closely associated with neurodegenerative diseases such
as the Alzheimer’s and Parkinson’s diseases (Fulop et al.,
2018). Pro-inflammatory cytokine IL-8 plays an important
role in pathological aging as it promotes angiogenesis and
tumorigenicity (Qazi et al., 2011); it was also linked to
cardiovascular disease and neuroinflammation (Apostolakis
et al., 2009; Ramesh et al., 2013). Matrix metalloproteases
(MMPs), which are extracellular matrix-degrading enzymes,
are also involved in the modulation of inflammation and the
innate immune system (Sorokin, 2010). MMPs are associated
with the development of various age-related diseases including
cancer, cardiovascular pathologies, neurological diseases,
inflammatory, and fibrotic disorders (Freitas-Rodriguez et al.,
2017). Hepatic fibrosis is associated with the expansion of
potential cellular sources of extracellular matrix and crosstalk
with inflammatory and immune systems (Jiao et al., 2009).
Apoptosis occurs naturally as a mechanism of maintaining cell
populations in tissues and as a defense against harmful stimuli
and pathological processes via the immune response (Strasser
et al., 2000). DHA is relevant for brain function especially in
the context of neuroinflammation (Hashimoto et al., 2017).
The analysis of top GO BPs supported enrichment of pathways

related to inflammation and immunity. Specifically, B cells
(positive regulation of B cell proliferation) play an important
role in regulation of immune responses and inflammation
(Bouaziz et al., 2008; Cain et al., 2009). BP extracellular
matrix disassembly, tightly linked with MMPs, has a role in
physiological and pathological traits (e.g., tissue fibrosis, cancer,
cardiovascular disease, arthritis) and in mediating immune
responses and tissue inflammation (Sorokin, 2010; Bonnans
et al., 2014).

Comparative analysis of enrichment of pathways in the
conventional and unconventional sets identified death and stress
response as characteristic processes for the conventional set
and maintenance of extracellular matrix (ECM) components
and tissue homeostasis as those for the unconventional set.
The death/stress response is supported by enrichment of genes
in three apoptotic signaling pathways, myc mediated apoptosis
signaling, death receptor signaling, IL-15 signaling (Figure 6,
Supplementary Table 10). In addition, HMGB1 (HMGB1
signaling) codes a proinflammatory cytokine, which is critical
to the cell response to stress and is implicated in diseases
characterized by cell damages and death (e.g., Alzheimer’s
disease, stroke, cancer) (Bell et al., 2006). As a response to
stress, p53 signaling can activate multiple apoptotic signals
(Vousden and Lane, 2007). Glucocorticoids (glucocorticoid
receptor signaling) are essential for stress response (Oakley
and Cidlowski, 2013). The unconventional-set–specific role of
ECM/tissue homeostasis is supported by inhibition of matrix
metalloproteases, granzyme B signaling, IL-4 signaling, and Th17
activation pathways. The extracellular proteases, such as the
MMPs, are a regulator of extracellular matrix turnover playing a
role in tissue development, repair and remodeling (Stamenkovic,
2003). The serine protease granzyme B is implicated in
degradation of extracellular matrix proteins, particularly,
influencing age-specific impaired wound healing (Hiebert and
Granville, 2012; Parkinson et al., 2015). The pleiotropic cytokine
IL-4 may promote biogenesis of extracellular matrix proteins in
normal wound healing and in pathological fibrosis (Postlethwaite
et al., 1992; Salmon-Ehr et al., 2000). The IL-17, the key cytokine
produced by Th17 cells, contributes to tissue inflammation
associated with extracellular matrix destruction and activates
the production and function of matrix metalloproteinases
(Miossec and Kolls, 2012). In line, death and cardiotoxicity
terms characterize tox functions in the conventional set whereas
hepatotoxicity, which includes liver cancers tightly linked with
tissue homeostasis, along with cardiotoxicity are characteristic
tox functions for the unconventional set.

Thus, the results of our bioinformatics analysis suggest
that inflammation and immune responses, which are critical
processes in aging (Finch et al., 2010), may play a key role
in genetic predisposition to multiple phenotypes, highlighting
inflammation and immune responses as promising targets
in geroscience and personalized medicine (Franceschi et al.,
2018). They also provide first insights into potential biological
functions related to tissue homeostasis, which may underline the
antagonistic genetic heterogeneity.

In summary, our analysis shows that genetic association
studies relying on the rigor of large samples are adapted
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to handle homogeneous genetic effects. Most genetic
associations with complex, age-related traits examined
in this study are, however, inherently heterogeneous.
Accordingly, large fraction of variance in genetic predisposition
to such traits may be missed within the traditional
framework. Leveraging more comprehensive analyses
adapted to deal with the inherent heterogeneity in genetic
predisposition to age-related traits is critical to substantially
advance the progress in uncovering genetic architecture of
such traits.
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