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Computer simulations of individual-based models are frequently used to
compare strategies for the control of epidemics spreading through spatially
distributed populations. However, computer simulations can be slow to
implement for newly emerging epidemics, delaying rapid exploration of
different intervention scenarios, and do not immediately give general
insights, for example, to identify the control strategy with a minimal
socio-economic cost. Here, we resolve this problem by applying an analytical
approximation to a general epidemiological, stochastic, spatially explicit
SIR(S) model where the infection is dispersed according to a finite-ranged
dispersal kernel. We derive analytical conditions for a pathogen to invade
a spatially explicit host population and to become endemic. To derive
general insights about the likely impact of optimal control strategies on inva-
sion and persistence: first, we distinguish between ‘spatial’ and ‘non-spatial’
control measures, based on their impact on the dispersal kernel; second, we
quantify the relative impact of control interventions on the epidemic; third,
we consider the relative socio-economic cost of control interventions.
Overall, our study shows a trade-off between the two types of control inter-
ventions and a vaccination strategy. We identify the optimal strategy
to control invading and endemic diseases with minimal socio-economic
cost across all possible parameter combinations. We also demonstrate the
necessary characteristics of exit strategies from control interventions. The
modelling framework presented here can be applied to a wide class of
diseases in populations of humans, animals and plants.
1. Introduction
For emerging diseases, such as COVID-19 [1–7], and re-occurring diseases
typified by annual influenza [8–13], there is usually a large variety of control
measures of different effectiveness and different socio-economic cost. Given
limited resources, it is crucially important to have a good understanding of
what combination of control measures would constitute an optimal control
strategy [14–25], and to be able to identify such an optimal strategy quickly.
This requires two key elements: (i) an accurate description of epidemics that
allows a general understanding and rapid exploration of different scenarios
and (ii) a reliable model of control measures to quantify their relative cost
and impact on epidemics.

Rapid and reliable identification of an optimal control strategy for an emer-
ging epidemic is still a major challenge mainly due to theoretical and
computational difficulties in describing the spatial stochastic spread and persist-
ence of diseases. Simulations of individual-based models [15,25–28] and network
models [3,29–31] often are highly detailed and may provide reliable predictions,
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but can take a long time to provide results. Complex simu-
lation models do not allow quick exploration of different
epidemic and control scenarios. Analytical models, in contrast,
can provide insights about epidemic principles, e.g. regarding
the invasion threshold for a pathogen [32–39], or the level of
vaccination needed to stop the spread of the pathogen in a
population [40,41]. However, most analytical insights are
based on classical, non-spatial epidemiological models [32]
that do not account for spatial dynamics. Analytical approxi-
mations in the form of ‘moment closure’ [42–44] for
individual-based models and ‘pair-approximation’ [29] in lat-
tice and networks models currently have two important
limitations. One limitation is that the approximation schemes
are uncontrolled and not guaranteed to provide an exact
result in any particular limit [45,46]. An alternative more
reliable approximation scheme introduced in Ovaskainen &
Cornell [47] and Ovaskainen et al. [48] for spatial point pro-
cesses and individual-based models provides asymptotically
exact results when interactions between individuals are suffi-
ciently long-ranged. The approximation can be applied to a
wide class of individual-based models [49], but until now
has rarely been applied to epidemiological problems (but see
[50] for applications to spatially explicit metapopulations).

A second limitation of moment closure and pair approxi-
mation techniques is revealed when estimating the invasion
threshold for infectious diseases [43,44]. Bolker, in particular,
has shown [43] that spatial moment equations cannot be
used to compute invasion eigenvalues for a dynamic system
such as an epidemic. Instead, as stated in Brown & Bolker
[44], ‘to compute the threshold, one needs to compute the
spatial structure of the initial phase of the (potential) epidemic’.
Accordingly, it is necessary to estimate or assume the local
spatial structure [29,44,50] and use that to determine whether
a global invasion can proceed. The invasion threshold is there-
fore estimated not at the start of the epidemic, but at a certain
later time when the so-called ‘pseudoequilibrium’ at the local
scale is achieved [44]. Examples of such estimates can be
found in individual-based models [44], in network-based
models [29] as well as in spatially explicit metapopulation
models [50].

In this paper, we adapt the method of Cornell et al. [49] to
present a reliable analytical description of epidemics in
spatially explicit epidemiological models. Our solution per-
mits rapid exploration of the relative impact of different
control scenarios with a view to the identification of the opti-
mal control strategy. Our approach also overcomes the
limitations associated with uncontrolled approximation
schemes. By exploiting the fact that the invasion is a localized
phenomenon when interactions are localized, we estimate the
invasion threshold at the start of an epidemic. In the case
when re-infection is possible, we also quantify the fraction
of infected individuals at the endemic equilibrium. We
show that our analytical model allows a classification of a
wide class of control measures into spatial and non-spatial
measures based on their influence on spatially explicit trans-
mission of infection. This classification leads to a quantified
estimate of the impact of control measures on disease inci-
dence, and, therefore, to the identification of the optimal
control strategy subject to the known relative cost of different
control measures. This paper was motivated by the current
COVID-19 pandemic [51,52], and, therefore, for numerical
results, we used parameters of the COVID-19 epidemic in
the UK as the most relevant example. However, our approach
is applicable to a wide class of diseases in populations of
humans, animals and plants.
2. Methods
2.1. Model
We use the modelling framework introduced in Cornell et al. [49].
The modelling framework [49] formulates individual-based
models by stochastic spatio-temporal point processes, derives
an exact expression for the moment equations to all orders and,
using a perturbation scheme [47,48], provides equations that
reliably approximate the effects of space and stochasticity.

We consider the simplest example of a spatially explicit host
population where all individuals are stationary and distributed
randomly (Poisson process). Within this modelling framework,
individuals are distributed with a constant spatial density, n, in
infinite two-dimensional Euclidean space. However, one can
think of this as representing a population of total size N distrib-
uted over a large area A, so that n =N/A. Individuals can be
susceptible, infected or recovered, described by their expected
densities QS, QI and QR, respectively. Correspondingly, for a
real-life population of total size N, these densities are calculated
as QS = S/A, QI = I/A and QR =R/A, where S, I and R denote the
total number of individuals in the susceptible, infected or
recovered compartments.

Individuals change type by one of the following transitions
(figure 1a): one infected individual interacting with N susceptible
individuals creates βN newly infected individuals per unit of
time, where β is the infection rate per contact; each infected indi-
vidual becomes a recovered and immune individual with rate μ;
the immunity to a pathogen disappears with rate γ, i.e. the aver-
age duration between the end of infectiousness and the loss of
immunity is 1/γ. The SIRS model reduces to a SIR model,
when γ = 0. For diseases with confirmed short-lasting immunity,
one should use γ > 0, and the model corresponds to an SIRS
epidemiological model.

The infection transmission in the model is spatially explicit:
the infection rate β is distributed in space according to a dispersal
kernel, b(r). This means that an infection of a susceptible individ-
ual located at the point xS by an infected individual located at the
point xI will occur with the rate βb(r), where r is the distance
between individuals, r = |xS− xI| (figure 1b). The dispersal
kernel b(r) is defined as a normalized (

Ð1
0 2prb(r) dr ¼ 1), non-

increasing, non-negative function of the distance r between
infected and susceptible individuals. Moreover, the kernel, b(r),
is a finite-ranged kernel characterized by the length scale L (e.g.
a radius of the Tophat kernel, or a standard deviation of the
Gaussian kernel). Thus, within the spatially explicit model with
finite-ranged kernel b(r), one infected individual has direct contact
only with a finite number of susceptible individuals and does
not contact individuals located at distances much larger than L.
By contrast, in non-spatial models because of homogeneous
mixing each infected individual can infect each susceptible indi-
vidual in a population directly with the same constant infection
rate. In our model, which considers individuals in infinite space,
homogeneous mixing is obtained in the limit L→∞. In such a
case, when L =∞, our model provides the same results as a corre-
sponding non-spatial epidemiological model; see electronic
supplementary material, Supplementary Note S1.

Dynamical equations for the expected densities QS, QI and
QR are constructed from equations presented in Cornell et al.
[49] for the spatial point process ‘Infection’ (to model the
dispersal of infection, i.e. when infected individuals infect
susceptible individuals) and for the spatial point process
‘Change in Type’ (to model the recovery of individuals, and
the loss of immunity). The complete closed system of equations
describing the dynamics of QS, QI and QR are presented in the
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Figure 1. Modelling the impact of spatial and non-spatial control measures on disease incidence in spatially explicit individual-based models. (a) Epidemiological
compartments and transitions in the SIR(S) model. (b) Spatially explicit transmission of a pathogen in the model is defined by the normalized dispersal kernel b(x)
shown here as a red curve centred around the location xI of an infected individual. A susceptible individual located at xS becomes infected with the rate βb(xI− xS)
where xI− xS is the distance between individuals; the process of infection is illustrated by a vertical line, the resulting state is shown in the bottom part of the
panel. (c) Spatial and non-spatial control measures are defined by their impact on the dispersal kernel b(x); their impact on the basic reproduction number R0 in an
SIR model. (d ) The impact of control measures on the percentage of infected individuals 100%� QendemicI =n at the endemic equilibrium in an SIRS model. (e)
Invasion threshold R0 = 1, and endemic threshold QendemicI ¼ 0 are not identical in spatially explicit systems with finite range, L, of dispersal kernels. In both SIR and
SIRS models, individuals are stationary and distributed randomly with an average density, n, of one individual per unit area, n = 1. L is measured in units where the
population density is equal to 1.
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electronic supplementary material, Supplementary Note S2.
According to the definition of the modelling framework
introduced in [49], the expected densities of individuals are
given by an infinite perturbation series in the approximation of
a long-ranged dispersal kernel, i.e. in the approximation
of large L. We use only the leading and sub-leading contri-
butions: the leading contribution is identical to a non-spatial
analogue of this model, i.e. where the dispersal kernel is
infinitely long-ranged (L =∞); the sub-leading contribution
becomes relevant when infection occurs over local spatial
scales, i.e. the sub-leading contribution accounts for spatial
and stochastic effects in a population of discrete individuals
interacting over finite spatial scales.
2.2. Basic reproduction number and the invasion
threshold

The basic reproduction number R0 is a powerful but also intui-
tively clear concept [33–36,38,39]. It defines the invasion
threshold for a pathogen and hence for the invasion of disease:
when R0 > 1 an initial introduction of a pathogen grows, and
the pathogen invades the population causing an epidemic;
when R0 < 1 an initial introduction of a pathogen decays. Also,
in non-spatial models, R0 determines the so-called ‘herd immu-
nity threshold’ [40,41]: the pathogen cannot invade the
population of N individuals where N(1− 1/R0) individuals are
immune to the infection. Herd immunity may be achieved
by the accumulation of natural immunity or by vaccination.
However, it has been shown that the estimates of R0 based on
non-spatial models may break down when stochasticity and
discreteness of individuals are taken into account [53].

R0 is defined as ‘the expected number of secondary cases pro-
duced by a typical infected individual during its entire period of
infectiousness in a completely susceptible population’ [33]. Thus,
R0 can be calculated as ‘the product of the infection rate and the
mean duration of the infection’ [35]. Assuming the invasion of a
pathogen occurs at time t = 0, the infection rate can be expressed
as Q�1

I (0)� ½(dQI=dtÞjt¼0 þ mQI(0)], where the term in square
brackets represents the rate of emergence of new infected indi-
viduals, which can be computed as the net rate of change of
infected individuals (infections minus recoveries) plus the rate
of recoveries; the pre-factor Q�1

I (0) guarantees that the infection
rate is calculated for a unit initial introduction (in non-spatial sys-
tems an initial introduction corresponds to a single infected
individual per whole finite population). Multiplying the infec-
tion rate by the infectious period 1/μ yields the basic
reproduction number R0:

R0 ¼ 1þ 1
mQI(0)

dQI(t)
dt

jt¼0: ð2:1Þ

Expressions for QI(0) and (dQI/dt)|t=0 are non-trivial in
spatially explicit models. In contrast with non-spatial models, a
single infected individual within a spatially explicit model inter-
acts not with the whole infinite-sized population, but only with
individuals that can be contacted directly via a finite-ranged dis-
persal kernel, b(x). Even if mathematically the dispersal kernel
b(x) is positive everywhere in infinite space, the infection trans-
missions over sufficiently large distances have an extremely
low probability and therefore can be omitted from consideration.
Thus, practically, the invasion is a localized phenomenon. There-
fore, it is reasonable to consider a local neighbourhood area
around an introduced infectious individual, such that all individ-
uals within this neighbourhood area have a sufficiently high
probability of having direct contact with the initially introduced
infected individual during a single period of infectiousness. For
clarity and in order to provide a mathematically transparent
and intuitively clear estimate for R0, we define a neighbourhood
area around an introduced infectious individual as a disk that
includes a newly infected individual from that initial infected
individual with probability P = 0.95. The radius L* of the
neighbourhood area is determined by the equation

ðL�
0
2prb(r) dr ¼ 0:95: ð2:2Þ

Note, the length L* is proportional to the characteristic length
scale, L, of the kernel, b(x), i.e. in the limit of large L the length L*
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is also large. Next, considering the whole space as such that
is covered by non-overlapping neighbourhood areas, the intro-
duction of a single infected individual to each neighbourhood
results in the initial density QI(0) ¼ 1=(p L2�). We assume that
the total size of the population as well as the density, n, of the
population are conserved; therefore, an infection can be intro-
duced to each neighbourhood area by converting a single
susceptible individual in each neighbourhood area into an infec-
tious individual. Consequently, the initial values of other
densities are as follows: QS(0) = n−QI(0), QR(0) = 0, i.e. the total
density equals n. The initial rate of change (dQI/dt)|t=0 consists
of leading and sub-leading contributions and is expressed
straightforwardly from dynamical equations for these contri-
butions, see electronic supplementary material, Supplementary
Note S2. Substituting the formal expressions into the definition
of R0 one obtains:

R0 ¼ bN
m

1� 1
np L2�

þ p L2�
nm

ð1
0
2pk~b(k)~gSI(k,0) dk

� �
, ð2:3Þ

where ~b(k) and ~gSI(k,0) represent a Fourier transform of the
dispersal kernel, b(x), and the second-order spatial cumulant
gSI(x, t) between susceptible and infected individuals in the
initial configuration in the system at time t = 0, respectively. We
estimate ~gSI(k,0) approximately by constructing an auxiliary
dynamical system where an equilibrium state has the same
spatial structure as the initial condition in the main system,
i.e. there is a single infected individual per neighbourhood
area, on average. Details of this estimation and resulting
analytical expression for ~gSI(k,0) are presented in electronic
supplementary material, Supplementary Note S3. By exploring
the dependence of expression (2.3) on the range L of dispersal
kernel, we find that, in the limit of infinitely long range L→∞,
the only non-vanishing contribution is equal to the basic
reproduction number in non-spatial models, R0 = βN/μ. Notice
that equation (2.3) does not depend on the rate γ of the immunity
loss; therefore, equation (2.3) is applicable for both SIR and
SIRS models.

2.3. Endemic equilibrium and endemic threshold
For diseases with short-lived immunity, i.e. when γ > 0, an
important characteristic of disease incidence is provided by the
density of infected individuals at the endemic equilibrium,
which we denote as Qendemic

I . The disease is endemic when
Qendemic

I . 0, and we refer to the condition Qendemic
I ¼ 0 as ‘the

endemic threshold’. Within the analytical framework used in
the current analysis, the analytical expression for Qendemic

I is
obtained as a stable fixed point of the corresponding dynamical
equations for the densities of individuals. The resulting
expression is shown below:

Qendemic
I ¼ g=m

g

m
þ 1

n
R(0)
0 � 1

R(0)
0

 !
�
ð1
0
dk

2pk~b
2
(k)

(R(0)
0 � ~b(k))

2

"

�
(R(0)

0 � 1)g=m(g=mþ R(0)
0 þ 1)þ R(0)

0 (R(0)
0 � ~b(k))

þ (1� ~b(k))(Rð0Þ
0 g=mþ R(0)

0 � 1)

g=m(g=mþ R(0)
0 )þ (1þ g=m)(1� ~b(k))

3
775,
ð2:4Þ

where R(0)
0 ¼ bN=m is the basic reproduction number in non-

spatial models.

2.4. Control measures
It is natural to classify many control interventions into spatial
and non-spatial interventions based on their influence on
spatially explicit pathogen transmission. Spatial control interven-
tions reduce the distance over which individuals mix (e.g. the
characteristic length scale L of the dispersal kernel b(x)), i.e.
they reduce the number of contacts. However, we assume that
this does not change the transmission rate at small distances,
i.e. βb(0) = constant; figure 1c. Spatial interventions include
many forms of restricted movement of individuals including
quarantine. Within the context of the current pandemic of
SARS-CoV-2, spatial interventions include lockdown [7,9,15]
and social distancing acting on a large spatial scale, i.e. restriction
of long-distance travelling [54,55]. Within agricultural systems,
involving the spread of crop disease, spatial interventions
include restriction of movement of inoculum, for example, on
farm machinery [56], as well as quarantine in the movement of
contaminated produce [57]. The ‘strength’ of the spatial control
is denoted by the parameter sL, where 0≤ sL≤ 1. Thus, we
model spatial control measures as such that transform model
parameters in the following way:

L ! (1� sL)L,

and b ! (1� sL)
2b,

)
ð2:5Þ

where the scaling of β follows from the requirement βb(0) =
constant and the normalization of the kernel b(x).

Non-spatial control measures reduce the infection rate, β;
they do not change the characteristic length scale, L, of the dis-
persal kernel b(x); figure 1c. Within the context of an epidemic
of SARS-CoV-2, and similar highly transmissible human
pathogens, non-spatial control measures include using facemasks
[4,5] and other personal protective equipment (PPE), good
sanitation, hand washing, surface disinfecting [52,58], distanc-
ing between individuals by 1–2–3 m in public referred to
as social distancing [31]. Contact tracing and subsequent iso-
lation of infected people [2,3] can be considered as non-spatial
control measures since this intervention does not reduce
the distance over which undetected infectious individuals mix
in the population. Within agricultural systems, non-spatial
control measures include the use of pesticides and roguing
(removal of symptomatically infected hosts). The ‘strength’
of the non-spatial control is denoted by the parameter sβ, 0≤
sβ≤ 1. Non-spatial control transforms the parameter β in the
following way:

b ! (1� sb)b: ð2:6Þ
The impact of control measures on disease incidence is calcula-
ted by their impact on R0 and Qendemic

I according to definitions
(2.5) and (2.6), i.e. R0→R0(sL,sβ) and Qendemic

I ! Qendemic
I (sL,sb).

We incorporate vaccination into the model by removing a frac-
tion of the population from the susceptible compartment.
For example, when 70% of the population is vaccinated, 0.7n
individuals per unit area are no longer susceptible and
play no further role in the epidemic, so the initial spatial
density of susceptible individuals is equal to 0.3n. We explore
how the impact of control measures depends on the range
of the dispersal kernel and the shape of the dispersal
kernel (e.g. Gaussian or Tophat, or intermediate case; see elec-
tronic supplementary material, Supplementary Note S4 for
further details).
2.5. Socio-economic cost of control measures
The socio-economic cost of applying control measures during a
fixed time interval is assumed to be a function of the control
strengths sβ and sL. To demonstrate that an optimal control strat-
egy depends on the relative cost of control measures, we consider
three hypothetical scenarios with different costs for spatial and
non-spatial control measures. Scenario (a): spatial control is
moderately cheaper than non-spatial control. Scenario (b): spatial
control is moderately more expensive than non-spatial control.
Scenario (c): spatial control is much more expensive than
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non-spatial control. For illustration purposes, we choose the fol-
lowing cost functions:

scenario (a): cost of sL ¼ s2L; cost of sb ¼ sb,
scenario (b): cost of sL ¼ 2s2L; cost of sb ¼ s2b,

scenario (c): cost of sL ¼ 2sL; cost of sb ¼ s2b:

9>=
>; ð2:7Þ

In each scenario (a)–(c), we considered all possible combi-
nations of control measures with a constant total cost (equal to
the sum of the cost of sL and the cost of sβ) and identified a com-
bination under which an invasion threshold is achieved with the
minimal total cost. Details of the mathematical formulation of the
problem and its solutions are shown in electronic supplementary
material, Supplementary Note S5.

2.6. Parameters for numerical calculations
For numerical results, we used parameters of the COVID-19 epi-
demics caused by SARS-CoV-2 in the UK as the most relevant
example: the population size N = 60 million corresponds to the
approximate mainland GB population size; the basic reproduc-
tion number for SARS-CoV-2 R(0)

0 ¼ 4 [1], where the definition
based on non-spatial models was used, R(0)

0 ¼ bN=m; the average
duration between onset of asymptomatic infectiousness and the
end of infectiousness μ−1 = 4.4 days [5,59]; the infection rate per
individual β = 0.15 × 10−7, inferred from the equation
R(0)
0 ¼ bN=m using default values of N, R(0)

0 and μ; the average
duration between the end of infectiousness and the loss of immu-
nity is assumed to be infinite for SARS-CoV-2, γ−1 =∞, subject to
the current absence of evidence for wide-spread loss of immunity
to SARS-CoV-2. (We also considered γ−1 = 1 year which is con-
sistent with data for other coronaviruses in human populations
[60].) To study spatial effects, we assumed that individuals are
distributed in space and interact with each other as follows: the
average number of individuals per unit area n = 1; individuals
are distributed randomly (Poisson process); individuals interact
with each other via a Gaussian dispersal kernel, b(x), depending
upon the distance, x, between interacting individuals,
bðxÞ ¼ 1=ð2pL2Þ expð�x2=ð2L2ÞÞ. The main results are shown
using the length scale L = 3 (here L is measured in units where
the population density is equal to 1); however, we also
considered L = 1, 2, and L =∞.
3. Results
First, to derive an accurate analytical description of epidemics
in spatially explicit individual-based models, we used the
unified framework for the analysis of individual-based
models introduced in Cornell et al. [49]. We obtained the
analytical expression for the basic reproduction number, R0,
shown in equations (2.1)–(2.3); for diseases with short-lived
immunity (γ > 0), we obtained the analytical expression for
the density of infected individuals Qendemic

I at the endemic
equilibrium, equation (2.4).

Second, to quantify the relative impact of control inter-
ventions on epidemics, we classified control interventions
as spatial and non-spatial based on their impact on dispersal
kernel (figure 1c, equations (2.5) and (2.6)), and calculated R0

and Qendemic
I for a range of possible combinations of spatial

(with strength sL) and non-spatial (with strength sβ) control
measures. We used numerical values of parameters that cor-
respond to ongoing COVID-19 epidemics in the UK, see
results of calculations shown in figure 1c,d.

To identify the optimal strategy for controlling a disease,
we first defined a disease as being controlled when the
invasion threshold R0(sL,sβ) = 1 is achieved; an alternative
definition for the case of endemic diseases is when the ende-
mic threshold Qendemic

I (sL,sb) ¼ 0 is achieved. Next, we
explored properties of these thresholds. We find that the
thresholds for R0(sL,sβ) = 1 and Qendemic

I (sL,sb) ¼ 0 differ in
spatially explicit models (figure 1e). Thus, in spatially explicit
models the pathogen (and hence disease) can invade a popu-
lation, but then can fail to become endemic even when
re-infection is possible, contrary to predictions for non-spatial
models. This difference between thresholds occurs due to the
lower density of susceptible individuals when the disease is
endemic, making it less probable to find a susceptible
individual near an infected individual. However, when the
range of the dispersal kernel, L, increases, it is expected that
the difference between invasion and endemic thresholds
decreases and eventually vanishes. This was confirmed by
our model: figure 2a where both thresholds coincide when
L =∞. Earlier studies [44,61] showed that in spatially explicit
models where the host density is uniform, the invasion
threshold is unchanged whether the interaction is short- or
long-ranged. In line with those findings, we find only a
weak dependence of the invasion threshold on L (figure 2a(i)).
Such a dependence is weak because changing only L
increases the local transmission rate due to the normalization
of the dispersal kernel, thus the reduction in the number of
contacts is compensated by the increase in the intensity of
transmission. In contrast with the invasion threshold, the
dependence of the endemic equilibrium on L is much stron-
ger (figure 2a(ii)). This is again explained by the lower
density of susceptible individuals at the endemic equilibrium.
In principle, a disease can also be controlled by increasing the
fraction of the population that has immunity to a pathogen,
e.g. this can be achieved by vaccination. We have considered
the trade-off of two types of control measures and the level of
vaccination required to achieve invasion and endemic
thresholds (figure 2b). Vaccination has a strong effect on
both thresholds. Unsurprisingly, if a larger fraction of the
population is vaccinated, then weaker control measures are
required to control the disease. However, the inverse is prac-
tically useful when available vaccines or resources are
limited: if stronger control measures are in place, then a
lower fraction of the population needs to be vaccinated to
control the disease. The shape of the dispersal kernel (e.g.
Gaussian or Tophat, or intermediate case) has a weak effect
on the invasion threshold, but a stronger effect on the ende-
mic threshold, see electronic supplementary material,
Supplementary Note S4 for further details.

Finally, the identification of the optimal combination of
spatial and non-spatial control interventions depends on the
accurate estimation of the relative socio-economic cost of con-
trol interventions. We demonstrated this by using three
hypothetical scenarios with different relative costs of control
interventions (see equations (2.7)). The static optimal control
strategy for each scenario is shown in figure 3a–c. It is highly
likely that the optimal control strategy would change during
the course of an epidemic, due to inevitable changes in the
cost of control measures. To illustrate this, we assumed that
the socio-economic cost of spatial control measures increases
in time (e.g. due to the strong economic impact of lockdown
on the economy). Correspondingly, we assume that the
socio-economic cost of non-spatial control would slightly
reduce in time (e.g. due to the development of new production
facilities, or the increase in compliance with non-spatial control
regulations). Under these circumstances, the time-dependent
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optimal combination of control interventions shifts towards
using only non-spatial control measures (figure 3d), details
are discussed in electronic supplementary material, Sup-
plementary Note S5. If, eventually, the cost of spatial control
measures, such as lockdown, become unacceptably high, lock-
down may be relaxed or lifted entirely (i.e. decreasing the
strength, sL, of spatial control measure). Our results show
that the reduction of spatial control without a simultaneous
increase of non-spatial control inevitably increases disease inci-
dence by increasing the reproduction number; see the ‘red’
strategy in figure 3e. Alternatively, it is possible to keep the
reproduction number constant or even reduce it if non-spatial
control interventions increase in strength while spatial control
measures are being lifted; see the ‘green’ strategy in figure 3e.
 R.Soc.Interface

18:20200966
4. Discussion
We applied the unified framework of Cornell et al. [49] for the
analysis of individual-based models to assess the optimal
combination of spatial and non-spatial control interventions
taking into account the socio-economic cost of control and
the epidemiological impact on epidemics. In the current
paper, we considered a simple example of a spatially distrib-
uted population of hosts. However, the methods of our paper
could be used to model epidemics in populations in which
individuals move or aggregate in clusters. The approach
can also be applied to a wide class of diseases in populations
of humans, animals and plants. For example, the methods we
describe here can be readily applied to allow consideration of
a large number of different types of individuals and inter-
actions, therefore permitting analysis of, for example,
stochastic multitype epidemics [37] of multiple infective
strains [62] in heterogeneous spatially explicit populations
with age structure [63] and different levels of mixing
[63,64]. The work also contributes towards a new generation
of analytical epidemic models that combine the following
three characteristics that are necessary for realistic and
reliable predictions: (i) stochasticity, (ii) spatially explicit
dynamics and (iii) reliable mathematically controlled
approximations.

The strong advantage of analytical models is that they pro-
vide insight and a general understanding of what combination
of control measures would constitute an optimal control strat-
egy taking account of the relative socio-economic cost of the
measure. In addition, analytical models allow a rapid explora-
tion of different intervention scenarios. This has a practical
value: for example, the trade-off derived here between the
two kinds of control measure and vaccination can suggest an
optimal strategy for resource allocation. In particular, we
showed that the application of stronger control measures
reduces the level of vaccination required to achieve the herd
immunity threshold [41,65]. Therefore, when the required
number of doses of vaccine is not available or unacceptably
costly, the application of stronger control measures can help
to achieve the herd immunity threshold. This is valuable in
the case of the current COVID-19 pandemic with the avail-
ability of vaccines [66]. The results of the methods explored
here are also important in light of preparation for future epi-
demics especially in identifying ways to minimize the cost of
future optimal control strategies [67–69].
Data accessibility. The code for the model is released under the GNU
Public License v. 2 and are available from Figshare at https://doi.
org/10.6084/m9.figshare.13270265. To run the code, one needs to
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