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ABSTRACT
Objective. Lung cancer is the most common malignancy worldwide and exhibits
both high morbidity and mortality. In recent years, scientists have made substantial
breakthroughs in the early diagnosis and treatment of lung adenocarcinoma (LUAD),
however, patient prognosis still shows vast individual differences. In this study,
bioinformatics methods were used to identify and analyze ferroptosis-related genes
to establish an effective signature for predicting prognosis in LUAD patients.
Methods. The gene expression profiles of LUAD patients with complete clinical and
follow-up information were downloaded from two public databases, univariate Cox
regression and multivariate Cox regression analysis were used to obtain ferroptosis-
related genes for constructing the prognos tic risk model, AUC and calibration plot
were used to evaluate the predictive accuracy of the FRGS and nomogram.
Results. A total of 74 ferroptosis-related differentially expressed genes (DEGs) were
identi fied between LUAD and normal tissues from The Cancer Genome Atlas (TCGA)
database. A five-gene panel for prediction of LUAD prognosis was established by
multivariate regression and was verified using the GSE68465 cohort from the Gene
Expression Omnibus (GEO) database. Patients were divided into two different risk
groups according to the median risk score of the five genes. Based on Kaplan-Meier
(KM) analysi, the OS rate of the high-risk group was markedly worse than that of the
low-risk group.We also found that risk score was an independent prognostic indicator.
The receiver operating characteristic ROC curve showed that the proposed model
had good prediction ability. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) functional analyses indicated that risk score was prominently
enriched in ferroptosis processes. Moreover, at the score of immune-associated gene
sets, significant differences were found between the two risk groups.
Conclusions. This study demonstrated that ferroptosis-related gene signatures can be
used as a potential predictor for the prognosis of LUAD, thus providing a novel strategy
for individualized treatment in LUAD patients.
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INTRODUCTION
The incidence and mortality of lung cancer rank first in the world (Siegel, Miller &
Jemal, 2020). Among all lung cancer subtypes, lung adenocarcinoma (LUAD) accounts
for the highest proportion (∼40%) (Testa, Castelli & Pelosi, 2018). At present, LUAD
treatments include surgery, radiotherapy, and chemotherapy, as well as targeted therapy
and immunotherapy (Eberhardt & Stuschke, 2015). However, regardless of conventional
or novel combination therapy, there appears to be no significant improvement in patient
prognosis, metastasis risk, or recurrence rate, and five-year survival remains at only 15%
(Chen et al., 2019). Therefore, it is crucial to find innovative prognostic models to provide
better diagnosis and treatment strategies for LUAD patients.

Scientists have recently discovered a novel type of programmed cell death that differs
from apoptosis and cell necrosis, called ferroptosis, which depends on iron ions and
reactive oxygen species (ROS) to induce lipid peroxide accumulation (Latunde-Dada, 2017;
Stockwell et al., 2017; Conrad et al., 2018). An increasing body of evidence suggests that
ferroptosis is involved in the initiation, progression, and suppression of cancer (Fearnhead,
Vandenabeele & Vanden Berghe, 2017). Thus, induction of ferroptosis may be an emerging
target for the treatment of malignant tumors (Liang et al., 2019; Hassannia, Vandenabeele
& Vanden Berghe, 2019), and polyunsaturated fatty acid (PUFA) in phospholipids, redox
active iron, and lipid peroxidation (LPO) repair defects, may determine the susceptibility of
cancer cells to ferroptosis. Current studies have shown that ferroptosis mainly involves two
pathways: GSH / GPX4 pathway and FSP1 / CoQ / NADPH pathway (Dixon et al., 2012).
P53 is the most closely related tumor suppressor gene. It cannot only induce apoptosis, but
also induce ferroptosis. P53 can inhibit the absorption of cystine by systemxc by inhibiting
the transcription of SLC7A11 (Wang et al., 2016), resulting in the inhibition of the GSH /
GPx4 pathway, the reduction of cell antioxidant capacity and the occurrence of ferroptosis.
Jiang et al. (2015) confirmed that SLC7A11 is a new regulatory target of p53 gene.

Some genes, such as SLC7A11 (Ji et al., 2018), SLC3A2 (Huang et al., 2005), and STYK1
(Lai et al., 2019), are overexpressed in lung cancer cells and mediate the inhibition of
ferroptosis. In addition, some lung cancer drugs have been shown to induce ferroptosis.
For example, cisplatin is reported to be an inducer of ferroptosis in non-small-cell lung
cancer (NSCLC) A549 cells (Guo et al., 2018) and cisplatin and erastin (a type I ferroptosis
inducer (FIN)) in combination exhibit synergistic effects on anti-lung cancer cell activity.
Sorafenib has also been found to induce ferroptosis in the lung cancer cell line NCI-H460
(Lachaier et al., 2014). In addition, previous studies have found that GPX4 had high activity
in cells with epithelial mesenchymal transition related gene expression. When using first-
line chemotherapy drugs to treat melanoma, breast cancer and lung cancer cell lines, the
remaining drug-resistant cancer cells were found to have stem cell like characteristics,
mesenchymal like gene expression characteristics and GPX4 dependent characteristics
(Hangauer et al., 2017). However, there are almost no studies on ferroptosis-related genes
and LUADprognosis. In this research, we explored the prognostic role of ferroptosis-related
genes in LUAD.
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MATERIALS & METHODS
Databases
We used the NCI Genomic Data Commons (https://portal.gdc.cancer.gov) for online
analysis and visualization of genomic data from The Cancer Genome Atlas (TCGA) to
obtain raw data. We downloaded the TCGA-LUAD Htseq_counts.tsv dataset, which
contains 528 tumor samples and 57 normal samples, and downloaded related phenotype
information (e.g., age, sex, and TNM stage) and corresponding survival information
(e.g., survival status and time to latest follow-up). We searched the LUAD gene expression
dataset from the Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/)
database and collected a cohort based on the GPL96 platform, resulting in 441 cancer
patients with complete clinical information.

Collection of ferroptosis-related data
FerrDb (http://www.zhounan.org/ferrdb) (Zhou & Bao, 2020) is a manually collected and
curated database for the study of markers and regulators of ferroptosis and the association
of ferroptosis disease. At present, ferroptosis-related genes (259) have been found and
reported in the literature (Table S1).

Identification of differentially expressed genes (DEGs)
The DEGs were obtained using the ‘‘limma’’ software package (Ritchie et al., 2015) and
those DEGs with log2FC |≥ 1 and Padj<0.05 were included in subsequent analyses.

Constructing and validating a prognostic ferroptosis-related gene
signature
The ferroptosis-related genes associated with prognosis in LUAD patients were identified
using univariate Cox regression analysis. Genes with an adjusted P- value of < 0.05 were
included for further analysis. The STRINGonline database (STRING; http://string-db.org/)
(v11.0) (Szklarczyk et al., 2019) was used to analyze the interactions among genes with
significant differences in univariate analysis, and a protein-protein interaction (PPI)
network was constructed. Using Cytoscape (v3.7.1) (Smoot et al., 2011) to further visualize
the DEGs, the top ten genes were screened by the degree method using the cytoHubba
plug-in. Multivariate Cox regression analysis was used to obtain the gene panel for
constructing the prognostic risk model, which was determined as risk score =

∑
(Coefi ×

Expi). According to themedian valuescalculated using the R software packages ‘‘survminer’’
and ‘‘survival’’, the tumor samples were divided into high-risk or low-risk groups. Kaplan–
Meier (KM) survival was further plotted using the ‘‘survival’’ package (Ranstam & Cook,
2017). A time-dependent receiver operating characteristic (ROC) curve drawn with the R
package ‘‘survivalROC’’ was used to test the accuracy of the model prediction (Szklarczyk
et al., 2019)

Nomogram generation
The R package ‘‘RMS’’ was used to draw a compound nomogram based on risk scores
and clinicopathological characteristics, and consistency between the predicted and actual
results was evaluated using a calibration curve.
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Biological pathway of ferroptosis-related prognostic genes
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses (Ashburner et al., 2000) of DEGs in the two risk groups were performed to
determine their main biological functions. The ‘‘clusterProfiler’’ package with R language
was used to generate corresponding files.Single sample gene set enrichment analysis
(ssGSEA) and the ‘‘gsva’’ package (Hänzelmann, Castelo & Guinney, 2013) in R were used
for scoring each sample in the two risk groups based on 29 immune-related genes (Table S2)
sets to explore the correlations among different risk groups and immune status.

Statistical analysis
Univariate Cox regression,multivariate Cox regression, wilcoxon testand log rank tests were
used in this study. Statistical analysis and related figures were generated using R software
(v3.5.3) (Diboun et al., 2006). In this study, P adj < 0.05 was regarded as statistically
significant.

RESULTS
Patient characteristics and DEGs
Our study flow chart is shown in Fig. 1. In total, there were 528 LUAD patients in the TCGA
dataset and 441 LUAD patients in the GSE68465 dataset. Their clinical characteristics are
shown in Table 1.

We obtained 5,438 DEGs in the TCGA database according to | log2FC | ≥ 1 and
Padj< 0.05. We used Venn online analysis to identify and visualize overlapping DEGs in
the two databases and downloaded the Venn diagram (Fig. 2A). The heat map and volcano
map (Figs. 2B, 2C) showed 48 up-regulated genes and 26 down-regulated genes.The list of
DEGs is shown in Supplement 3.

PPI analysis of DEGs
Using univariate Cox regression analysis, we identified 17 genes related to prognosis in
LUAD patients (Fig. 3A), the correlations of which are shown in Fig. 3B. We then imported
the above DEGs into the STRING database, and a PPI network was obtained after the
lowest confidence was set to 0.015 and genes without interactions were removed (Fig. 3C).
Subsequently, we used Cytoscape and cytoHubba to sketch the top 10 genes. SLC7A11,
SLC7A11, and GDF15 were determined to be the top hub genes (Fig. 3D).

Construction and validation of a prognostic model in TCGA and GEO
cohorts
We obtained a five-gene panel as a prognostic signature using the multivariate Cox
regression model. The forest plot of the five-gene panel is shown in Fig. 4A. The five
screened genes were Arachidonate 15-Lipoxygenase (ALOX15), DNA Damage Inducible
Transcript 4 (DDIT4), Hepatocyte Nuclear Factor 4 Alpha (HNF4A), Interleukin 33
(IL33), and Growth Differentiation Factor 15 (GDF15). Among them, DDIT4 and HNF4A
were highly expressed in tumor tissues, whereas ALOX15, IL33, and GDF15 were lowly
expressed (Table 2). Risk score= (−0.061165052× expression ALOX15) + (0.169594473×
expression DDIT4) + (0.072356312× expression HNF4A) + (−0.131023567× expression
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Figure 1 Flow diagram of the bioinformatic analysis in this study.
Full-size DOI: 10.7717/peerj.11931/fig-1

IL33) + (−0.107882858× expression GDF15). Therefore, the risk scores of LUAD patients
in the two databases were calculated according to the Cox regression model (composed of
five genes).

Patients were dichotomized into low-risk score (n= 251) and high-risk score groups
(n= 250) based on the median cut-off value (Fig. 5A). Compared with the low-risk group,
the high-risk group showed a higher risk of death (Fig. 5C). Based on three-dimensional
(3D) principal component analysis (PCA), the prognosis model clearly distinguished the
LUAD tumor samples of the two risk groups (Fig. 5E). Furthermore, KM curve analysis
showed that the OS of the high-risk group was significantly worse than that of the low-risk
group (Fig. 5G, P < 0.001). The clinical correlation heat map of the two risk groups is
shown in Fig. 5I. A time-dependent ROC curve was used to test the predictive performance
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Table 1 Clinicopathological characteristics of the LUAD patients.

Characteristics TCGA (n= 501) GSE68465 (n= 441)

Number of cases % Number of cases %

Age (years)
≥65 270 53.9 229 51.9
< 65 231 46.1 212 48.1

Gender
Male 232 46.3 222 50.3
Female 269 53.7 219 49.7

T
T1-2 436 87 401 90.9
T3-4 65 13 40 9.1

N
N0 329 65.7 299 59.7
N1-Nx 172 34.3 142 40.3

M
M0 336 67.1 NA NA
M1-Mx 165 32.9 NA NA

Stage
Stage 1–2 394 78.6 NA NA
Stage 3–4 107 21.4 NA NA

Figure 2 The differentially ferroptosis-related genes of LUAD in the TCGA database and the FerrDb
database.

Full-size DOI: 10.7717/peerj.11931/fig-2

of the OS risk score composed of the five-gene panel. Results showed that the AUCs of
one-year, two-years, and three-years were 0.704, 0.668, and 0.693, respectively (Fig. 5K).
We also observed similar survival curves, survival statuses, risk scores, patient distributions,
and clinical prognostic characteristics in the validated GSE68465 dataset (Figs. 5B, 5D, 5F,
5H, 5J). When we performed 1-, 2-, and 3-year ROC curve analyses to assess the predictive
capacity of the prognostic five-gene signature, we found the AUCs for 1-, 2-, and 3-year
OS predictions were 0.653, 0.644, and 0.617, respectively (Fig. 5L).
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Figure 3 The differentially ferroptosis-related genes of LUAD in the TCGA database and the FerrDb
database.

Full-size DOI: 10.7717/peerj.11931/fig-3

Nomogram establishment
Based on the two cohorts, we constructed a nomogram using clinicopathological
characteristics (age, sex, TNM stage, grade) and risk scores, respectively, and calculated the
total score of each patient to predict the one-year, two-year, and three-year survival rates
of the LUAD patients (Fig. 6A). Further calibration curves showed that the third year OS
predicted by the nomogram was in good agreement with actual OS (Fig. 6B).

Assessment of independent prognostic value of risk score
To evaluate the relationship between risk score and prognosis of the five-gene model,
we used risk score as an index and clinicopathological characteristics of LUAD patients
for univariate and multivariate Cox regression analyses. Available variables of the TCGA
cohort included age, sex, TMN stage, and risk score. The GSE68465 cohort included age,
sex, TN stage, and risk score. In the TCGA cohort, the risk score was determined as an
independent prognostic factor for OS (HR = 1.809, 95% CI = 1.292–2.535, P < 0.001;
HR = 1.496, 95% CI = 1.056–2.121, P = 0.023) (Fig. 7A). The GSE68465 cohort results
were consistent (HR = 1.625, 95% CI = 1.254–2.105, P < 0.001; HR = 1.425, 95% CI =
1.098–1.850, P = 0.008) (Fig. 7B).

Functional enrichment analysis in TCGA and GEO cohorts
We used the R language clusterProfiler package to analyze enrichment in biological
functions (GO) and KEGG pathways for the 1,285 DEGs in the high- and low-risk groups
in the TCGA cohort. In total, 40 important functional annotations (P < 0.05, Fig. 8A)
were enriched in molecular functions, among which five were iron related (P < 0.05, Fig.
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Figure 4 Forest plot of multivariate Cox proportional hazards regression analysis of overall survival
for 5-gene signature model in the TCGA cohort.

Full-size DOI: 10.7717/peerj.11931/fig-4

Table 2 The prognostic value of five ferroptosis-related genes.

Gene Coef HR HR.95L HR.95H P vaule

ALOX15 −0.061165052 0.940667967 0.88 1.00 0.049434651
DDIT4 0.169594473 1.184824275 1.06 1.32 0.002251552
HNF4A 0.072356312 1.075038325 1.02 1.13 0.003200809
IL33 −0.131023567 0.877197101 0.79 0.97 0.010695027
GDF15 −0.107882858 0.897732752 0.83 0.98 0.011022652

Notes.
Coef is the risk coefficient of each gene, if the value of coef >0, it is regarded as the risk factor of prognosis, otherwise it is re-
garded as the protective factor of prognosis.
HR, hazard ratio.

8A), including a variety of enzymes, gluconosyltransferase and oxidoreductase activity.
Unfortunately, the 16 significantly enriched pathogenic KEGG pathways (P < 0.05, Fig.
8C) were not associated with ferroptosis. In the GSE68465 validation cohort, multiple
functional iron-related molecules were enriched (P < 0.05, Fig. 8B). In addition, one
iron-related pathway, namely ferroptosis, was enriched in the KEGG validation cohort
(P < 0.05, Fig. 8D).
We used ssGSEA to further score the samples from different risk groups in the TCGA and

GSE68465 cohorts. Differences in different immune cells, functions, and pathways were
detected between the two groups (Figs. 9A–9B). The high-risk group in the TCGA cohort
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Figure 5 Construction and predictive accuracy in different risk models with TCGA and the GSE68465
dataset.

Full-size DOI: 10.7717/peerj.11931/fig-5
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Figure 6 Construction of survival prediction nomogram and calibration plot of the nomogram.
Full-size DOI: 10.7717/peerj.11931/fig-6

Figure 7 Forest plot of univariate andmultivariate Cox regression analysis in TCGA set (a) and
GSE68465 validation set.

Full-size DOI: 10.7717/peerj.11931/fig-7
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Figure 8 Functional enrichment analysis of two risk groups by Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG).

Full-size DOI: 10.7717/peerj.11931/fig-8

showed lower scores in immune-related cells, such as mast cells, neutrophils, dendritic
cells (DCs), and T helper cells, with only natural killer (NK) cells showing higher scores
(all adjusted P < 0.05, Fig. 9A). Similar results were obtained for the GSE68465 cohort (all
adjusted P < 0.05, Fig. 9B). For pathways, the high-risk group in the two cohorts showed
lower scores for type II and type I IFN responses (all adjusted P < 0.05, Fig. 9B).
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Figure 9 Comparison of the ssGSEA scores between two risk groups.
Full-size DOI: 10.7717/peerj.11931/fig-9

DISCUSSION
While the incidence rate of lung cancer is no longer the top priority, the mortality rate is
still first among cancer deaths, accounting for more than 180,000 cases [20]. At present,
LUAD is still the most common histological subtype of lung cancer, with high mortality
among Asians, females, and non-smoking patients (Chen et al., 2020a; Chen et al., 2020b).
Although LUAD treatment has made great progress in recent years, most patients with
LUAD still exhibit poor prognosis and a low five-year survival rate due to tumor recurrence
and metastasis.Therefore, a reliable prognostic biomarker is crucial for evaluating and
predicting prognosis in LUAD patients. Recently, bioinformatics analyses have become an
important screening tool in cancer research (Huang, Du &Wang, 2019).

Most previous studies have focused on the relationship between ferroptosis and
tumorigenesis, development, proliferation, and invasion, with only one study by Liang et al.
(2020) exploring ferroptosis-related genes and survival rates in patients with hepatocellular
carcinoma (HCC). In this study, we used two independent databases and constructed a
ferroptosis-related gene panel to predict OS in patients with LUAD. Firstly, we performed
univariate Cox regression analysis on 74 ferroptosis-related DEGs in LUAD patients and
found that 17 genes were excellent predictors of prognosis, including seven down-regulated
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and 10 up-regulated genes. Five ferroptosis-related genes (i.e., ALOX15, ddit4, HNF4A,
IL33, and GDF15) were further screened by multivariate regression analysis. We then
divided patients into high- and low-risk groups according to their median risk score.
KM curve analysis showed that the high-risk group was associated with poorer survival
compared with the low-risk group. An ROC curve was used to evaluate the prognostic
reliability of this signature. The nomogram results indicated that the risk-score model may
be an effective method to predict survival status in LUAD patients over different years.
We applied GO and KEGG pathway enrichment analysis and found that risk score was
significantly correlated with the biological functions and pathways of ferroptosis. SsGSEA
further showed that there were significant differences in the immune status of the DEGs
between the high-risk group and low-risk group.

ALOX15 encodes a member of the lipoxygenase family of proteins,which can regulate
inflammation and immune responses. Recent studies have shown that ALOX15 is not
only involved in apoptosis, but also in autophagy and ferroptosis (Dixon et al., 2012).
ALOX15 is involved in ferroptosis through multiple pathways (Stoyanovsky et al., 2019),
including regulating the activation of Ras selective lethal small molecular 3 (RSL3) (Probst
et al., 2017), reducing the activation of glutathione (GSH), and forming a complex with
phosphatidylethanolamine binding protein 1(PEBP1) (Wenzel et al., 2017). Mounting
evidence indicates that ALOX15 is down-regulated in many human cancers, including
colorectal (Shureiqi et al., 2000), prostate (Tang et al., 2002), breast (Jiang, Douglas-Jones &
Mansel, 2003) and lung cancers (Gonzalez et al., 2004). Gonzalez et al. (2004) also reported
that the expression of 15-LOX-2 is higher in better differentiated NSCLC and is negatively
correlated with tumor grade and tumor cell proliferation. However, whether ALOX15
participates in the occurrence of NSCLC by targeting ferroptosis remains unclear. Previous
studies have indicated that the use of 12/15-LOX inhibitors or the silencing of ALOX15
expression can prevent cancer cells (including Calu-1 humanNSCLC) with RAS expression
from cell death in erastin- and RSL3-induced ferroptosis (Shintoku et al., 2017).

DDIT4 is a stress-response protein whose main function is to inhibit mTOR under
stressful conditions.DDIT4 is considered an oncogene (Smith & Xu, 2009), and its
overexpression is significantly associated with poorer prognosis in tumor patients (Tirado-
Hurtado, Fajardo & Pinto, 2018). Jin et al. (2019) reported that constitutive overexpression
of DDIT4 can lead to HSP27 and HSP70 induction and AKT activation. This mechanism
is related to lung cancer cell survival and IR resistance, indicating that DDIT4 may be a
therapeutic target for lung cancer.

GDF15 is a member of the transforming growth factor-beta superfamily, and its
association with cancer can depend on cell state and tumor environment. Recent study
suggests that GDF15 is lowly expressed in NSCLC, and its down-regulation is associated
with poor prognosis in such patients (Lu et al., 2018). GDF15 is also suggested to inhibit the
growth and bone metastasis of LUAD A549 cells by targeting the TGF- β/Smad signaling
pathway (Duan et al., 2019). However, GDF15 is up-regulated in some malignant tumors,
such as gastric cancer in humans. For example, Chen et al. (2020a) and Chen et al. (2020b)
recently reported on the role of GDF15 in gastric cancer cell (MGC803) ferroptosis.GDF15
also plays an important role in erastin-induced ferroptosis by affecting the function
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of system Xc and regulating the expression of SLC7A11 (Chen et al., 2020a; Chen et al.,
2020b). However, the role of GDF15 in LUAD ferroptosis has not yet been reported and
needs to be further elucidated.

HNF4A is a nuclear transcription factor, which is highly expressed in most cancers and is
significantly associated with poor prognosis. Moreover, HNF4A is reported to play a role in
ferroptosis (Dai et al., 2020). Research has indicated thatHNF4A expression is up-regulated
in HCC (Dai et al., 2020), which can increase the synthesis of GSH and inhibit ferroptosis
by up regulating the expression of STMN1 (a ferroptosis down-regulated factor) (Xu et
al., 2001). In lung cancer, activation of GSH biosynthesis-related genes can also lead to
the inhibition of ferroptosis (Zhang et al., 2019). However, whether and how dysregulated
expression of HNF4A regulates GSH production in LUAD remain to be explored.

Martin-Sanchez et al. (2017) showed that IL-33 release is related to ferroptosis, and
ferroptosis in acute kidney injury may regulate inflammation by activating IL-33.However,
the relationship between ferroptosis in cancer and IL-33 is not clear.Previous studies
have reported that CD8 + T cells induce ferroptosis of tumor cells in vivo (Wang et al.,
2019; Tang et al., 2020). Our study also explored the relationship between risk score and
immune activity, but the mechanism between ferroptosis-related genes of LUAD and
tumor immunity needs to be further clarified.

The five genes included in our model play important roles in the occurrence and
development of LUAD, andmost are related to ferroptosis in malignant tumors. Therefore,
this model could be a useful prognostic indicator of LUAD. However, our research has
some limitations that most bioinformatics analysis studies share. Firstly, all our data are
from public databases, so it will be necessary to verify the prognostic value of the model in
clinical samples. Secondly, this study failed to explore the underlyingmolecular mechanism
of ferroptosis-related genes in the occurrence and development of LUAD.

CONCLUSIONS
We developed a prognosis signature of five ferroptosis-related genes (ALOX15, DDIT4,
HNF4A, IL33, GDF15), which showed good reliability. Analysis of two independent
databases demonstrated that this model was independently related to OS in LUAD patients,
and thus may be a good predictor of LUAD prognosis.
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