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Abstract

The genus Flavivirus contains many mosquito-borne human pathogens of global epidemio-

logical importance such as dengue virus, West Nile virus, and Zika virus, which has recently

emerged at epidemic levels. Infections with these viruses result in divergent clinical out-

comes ranging from asymptomatic to fatal. Myriad factors influence infection severity includ-

ing exposure, immune status and pathogen/host genetics. Furthermore, pre-existing

infection may skew immune pathways or divert immune resources. We profiled immune

cells from dengue virus-infected individuals by multiparameter mass cytometry (CyTOF) to

define functional status. Elevations in IFNβ were noted in acute patients across the majority

of cell types and were statistically elevated in 31 of 36 cell subsets. We quantified response

to in vitro (re)infection with dengue or Zika viruses and detected a striking pattern of upregu-

lation of responses to Zika infection by innate cell types which was not noted in response to

dengue virus. Significance was discovered by statistical analysis as well as a neural net-

work-based clustering approach which identified unusual cell subsets overlooked by con-

ventional manual gating. Of public health importance, patient cells showed significant

enrichment of innate cell responses to Zika virus indicating an intact and robust anti-Zika

response despite the concurrent dengue infection.

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008112 March 9, 2020 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Zhao Y, Amodio M, Vander Wyk B,

Gerritsen B, Kumar MM, van Dijk D, et al. (2020)

Single cell immune profiling of dengue virus

patients reveals intact immune responses to Zika

virus with enrichment of innate immune

signatures. PLoS Negl Trop Dis 14(3): e0008112.

https://doi.org/10.1371/journal.pntd.0008112

Editor: Sujan Shresta, La Jolla Institute for Allergy

and Immunology, UNITED STATES

Received: September 3, 2019

Accepted: February 3, 2020

Published: March 9, 2020

Copyright: © 2020 Zhao et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data supporting

this study is available at ImmPort (immport.org)

under study accession SDY1369.

Funding: This work was supported in part by

awards from the NIH (AI089992 to YZ, MA, BVW,

BG, DvD, KM, XW, AM, MEC, EF, SHK, SK, RRM),

the Indo-U.S. Vaccine Action Program (MMR, PK,

XW, RRM), the Claude D. Pepper Older Americans

Independence Center from the NIH/NIA

(P30AG021342 to BVW), and Department of

http://orcid.org/0000-0001-7065-3160
http://orcid.org/0000-0002-8661-4454
https://doi.org/10.1371/journal.pntd.0008112
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0008112&domain=pdf&date_stamp=2020-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0008112&domain=pdf&date_stamp=2020-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0008112&domain=pdf&date_stamp=2020-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0008112&domain=pdf&date_stamp=2020-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0008112&domain=pdf&date_stamp=2020-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0008112&domain=pdf&date_stamp=2020-03-19
https://doi.org/10.1371/journal.pntd.0008112
http://creativecommons.org/licenses/by/4.0/
http://immport.org


Author summary

Mosquitoes carry many globally important human pathogens including a family of related

viruses: dengue virus, West Nile virus, Yellow Fever virus, and recently of critical signifi-

cance, Zika virus. The Zika virus epidemic emerged very rapidly in the susceptible South

American population and in many cases immune responses were unable to control the

infection. Immune history is a key element of susceptibility or resistance to severe disease.

We examined whether pre-existing infection would skew or divert immune resources and

might play a role in the severity of Zika infection in the Americas. Using samples from

dengue patients and healthy controls from India, we tested functional responses to Zika

virus in the context of pre-existing dengue infection. We quantified frequency and func-

tional status of 36 individual cell subsets in depth using advanced profiling techniques and

a novel deep learning algorithm. We showed an intact response to new infection with

Zika virus which was enriched for early innate immune pathways and robust even during

existing dengue infection. Thus, our study suggests that concurrent dengue infection

would not be expected to impair immune responses to new infection with Zika virus.

Introduction

The genus Flavivirus contains many mosquito-borne human pathogens of global epidemiolog-

ical importance, including dengue virus, West Nile virus (WNV), Yellow Fever virus, and is

currently of critical significance with the recent outbreak of Zika virus [1–5]. Dengue has an

estimated incidence of 50–100 million infections annually [6–9] and can lead to severe febrile

illness with fever, headaches, joint pain, with the most severe manifestations—hemorrhagic

fever and shock syndrome—occurring upon a second infection with any distinct serotype.

Notably, in endemic regions, seroprevalence levels reach 57% of the population with consider-

able heterogeneity in clinical symptoms [10]. Similarly, for infections with WNV, which is esti-

mated to have infected 7 million people in the USA [11, 12], the predominate infection

outcome is asymptomatic with CDC reporting infection of>46,000 people and more than

2,000 fatalities [12–18]. The closely related Zika virus, first identified in Uganda in 1947 [19],

has recently expanded to South America leading to widespread infection including Guillain-

Barré syndrome and more than 6,700 cases of microcephaly and neurological abnormalities

in newborns [20–25]. As for the other flaviviruses, the majority of infected individuals are

asymptomatic or develop mild disease, however Zika virus has been shown to infect fetal

brains and neurons and lead to cell death and microcephaly [26–29]. Evidence from pregnant

women with acute Zika virus infection suggests that the virus is not always transmitted to the

fetus and that only a subset of infants from infected mothers develop detectable neurologic

abnormalities.

Disease severity and outcome result from individual differences that define immune status

and contribute to responses to infection. Clinical outcomes to viral infection reflect a summary

of differences in exposure, genetics (pathogen or host), infection and vaccination history, and

acute status. The role of human genetic factors in susceptibility to flavivirus infection includes

racial/ethnic differences in susceptibility to dengue [30, 31], single nucleotide polymorphisms

in molecules associated with viral entry into susceptible cells or anti-viral immunity [31], as

well as epigenetic modifications which accrue over a lifetime [32]. In addition, protection may

result from long-term immunity including adaptive T cell responses, neutralizing antibody,

and differentiation of natural killer cell responses based on history of viral exposure [33–35].
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The rapid emergence of the Zika virus epidemic in previously unexposed populations in

South America highlights the possible role of immune history in susceptibility to severe dis-

ease. Prior or concurrent infection is a critical element defining immune status and may skew

immune pathways or divert immune resources resulting in sub-optimal responses to the sub-

sequent infection. The severity of co-infection is well documented in responses to influenza in

aging where infection in older people may be accompanied by severe bacterial pneumonia [36,

37]. In light of the recent epidemic spread of Zika virus infections in dengue virus-endemic

areas of Brazil and worldwide in 2015 [25], we conceived of the current studies to assess effects

of pre-existing infection with dengue virus on responses to a new viral exposure and whether

existing infection might either intensify or curb immune responses to infection with Zika

virus. Beyond immune consequences of any co-infections, the similarities of these two viruses

are evident—dengue and Zika viruses are closely related genetically and have similar modes of

transmission by Aedes mosquitoes [5, 38]. Further, recent studies have shown cross-reactivity

of dengue-specific immune cells to Zika antigens, higher magnitude of T cell responses to Zika

virus following previous dengue infection [39–41] and protection from severe Zika infection

by pre-existing humoral immunity to dengue virus [42].

Thus, we reasoned that pre-existing infection might play a role in the severity of Zika infec-

tion in the Americas. We assessed this with samples from a cohort of acute dengue patients

and controls enrolled in India—which was endemic for dengue but not for Zika at the time of

sample collection. These samples provided a unique opportunity to assess effects of pre-exist-

ing dengue infection on response to Zika virus. We have investigated functional responses to

viral infection in cells from acute dengue patients in comparison to their convalescent samples

and to healthy subjects from dengue-endemic areas in India. We employed mass cytometry or

CyTOF (Cytometry by Time-Of-Flight) to quantify frequency and functional responses in

multiple distinct immune cell populations of the immune system simultaneously and SAUCIE,

a novel deep learning algorithm for analysis [43]. These state-of-the-art methodologies for

immune profiling [44, 45] provide in-depth characterization of immune mechanisms prevail-

ing in dengue patients and demonstrate that critical elements of initial immune responses to a

new viral infection remain intact in the setting of existing dengue infection and would be

expected to contribute to resistance to infection with Zika virus.

Materials and methods

Ethics statement

Dengue virus patients and healthy volunteers were enrolled with written informed consent

under the guidelines of the Institutional Ethics Committee of the NIMHANS (National Insti-

tute of Mental Health and NeuroSciences) and Apollo Hospital, Bangalore, India, and Yale

University. The Ethics Committees of each institution approved this study.

Study subjects

Patients with dengue virus infection were classified based on WHO clinical criteria as dengue

fever, none as dengue haemorrhagic fever [46]. Dengue infection was confirmed by demon-

stration of serum dengue NS1 antigen using a Panbio Dengue Early ELISA kit (Inverness

Medical Innovations, Australia). Healthy volunteers included household contacts who accom-

panied the patient to Apollo Hospital and volunteers from the NIMHANS laboratory commu-

nity. Participants were of both genders (26.7% female) and were all of Indian descent. Subjects

from the symptomatic and healthy cohort groups were not statistically different for age, gen-

der, or race in this study (Table 1).
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Sample collection and cell isolation

Heparinized blood was collected from patients, contacts, and healthy volunteers. Purification

of peripheral blood mononuclear cells (PBMC) was performed by density-gradient centrifuga-

tion using Ficoll-Paque (GE Healthcare) according to the manufacturer’s instructions follow-

ing isolation and cryopreservation guidelines established by the Human Immunology

Phenotyping Consortium [44]. PBMCs for CyTOF were frozen in 90% FBS containing 10%

DMSO and stored in liquid N2 for shipping following the guidelines of the Department of Bio-

technology (DBT), Government of India. Samples for this study were received at Yale in three

shipments after receiving authorization for each shipment from the DBT and viability aver-

aged 85% (range 50–98) across the shipments.

Flow cytometry

The analysis of surface molecules was performed by flow cytometry on fresh cells at NIM-

HANS. For flow cytometry, monoclonal antibodies from BD Biosciences (CA) were used.

Cells were labeled for 30 min at 4˚C protected from light with antibodies for surface lineage

markers in 8 panels of which 5 were defined by the Human Immunophenotyping Consortium

(HIPC) [44] as shown in Supplemental S1A Table. HIPC phenotyping panel marker labeling

and detection was performed as described previously [47]. Samples were acquired using a

FACS Verse instrument (BD Biosciences, CA) and analyzed using FlowJo software (Tree Star,

OR).

Virus stocks and infection studies

Dengue virus type 2 strain 16681 was propagated in Vero cells (American Type Culture Collec-

tion; ATCC, Manassas VA) at 37˚C with 5% CO2 in DMEM with 10% FBS and 1% Pen/Strep

as described previously [48]. For purified virus stock, supernatant was cleared to remove cells

and cell debris, and concentrated 100-fold using Centricon centrifugal filter device (100 kda

cutoff). Virus stocks were aliquoted, and frozen at -80˚C until use. Zika virus strain MEX2-81

was propagated in C6/36 cells (ATCC) at 30˚C in DMEM with 10% FBS, 1% tryptose, and 1%

Pen/Strep [29, 49]. Zika supernatant was cleared before concentration using a centrifugal filter

unit (Millipore #UFC100008). Dengue and Zika virus titers were determined by plaque assay

(PFU/ml) in Vero cells as described previously [48] and were 2x108 PFU/ml for dengue and

3x109 PFU/ml for Zika. A single stock of each virus was used throughout the study.

Virus infection of PBMCs, labeling, and mass cytometry acquisition

For mass cytometry at Yale University, PBMCs (5 x 106 cells/vial) were thawed, incubated in

Benzonase (50U/ml) in RPMI/10% human serum, seeded in 96-well culture plate (6 x 103−1.2

x 106 cells/well), and incubated in medium alone or infected with dengue (MOI = 10) or Zika

(MOI = 5) virus in vitro for 24h. Experimental infections used a single stock of each virus for

infection studies and no difference was detected between uninfected samples incubated in

Table 1. Demographics of subject cohorts of dengue virus patients and well controls.

Parameter Dengue acute patients (n = 30) Well control

(n = 15)

Total (n = 45) P value�

Mean age (yr) (SD) 28.2 (4.9) 31.3(6.4) 29.2 (5.6) 0.1152

range 18–41 24–51 18–51 0.2166

No. (%) of females 9 (30.0) 3 (20) 12 (26.7)

https://doi.org/10.1371/journal.pntd.0008112.t001
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medium alone or in Vero- or C6/36-cell conditioned medium. Monensin (2 μM, eBioscience)

and Brefeldin A (3 μg/ml, eBioScience) were added for the final 4 h of incubation for all

groups. Groups of samples (8-13/day) were infected in vitro per day on 5 separate days and

included a CD45-labeled spike-in reference sample in every sample [50]. Surface markers were

labeled prior to fixation and detailed staining protocols have been described [51, 52]. Briefly,

cells were transferred to 96-well deep well plates (Sigma), resuspended in 25 μM cisplatin

(Enzo Life Sciences) for one minute, and quenched with 100% FBS. Cells were surface labeled

for 30 min on ice, fixed (BD FACS Lyse), and frozen at -80˚C. Intracellular labeling was con-

ducted on batches of samples (12/day). Fixed PBMCs were permeabilized (BD FACS Perm II)

for labeling with intracellular antibodies for 45 min on ice. Cells were suspended overnight in

iridium interchelator (125 nM; Fluidigm) in 2% paraformaldehyde in PBS and washed 1X in

PBS and 2X in H2O immediately before acquisition. A single batch of metal-conjugated anti-

bodies (S1B Table) was used throughout for labeling panels. Metal-conjugated antibodies were

purchased from Fluidigm, Longwood CyTOF Resource Core (Cambridge, MA), or carrier-

free antibodies were conjugated in house using MaxPar X8 labeling kits according to manufac-

turer’s instructions (Fluidigm).

A total of 180 samples were assessed by the Helios (Fluidigm) on 15 independent experi-

ment dates using a flow rate of 0.03 ml/min in the presence of EQ Calibration beads (Flui-

digm) for normalization. An average of 112,537 ± 71,444 cells (mean ± s.d.) from each sample

were acquired and analyzed by CyTOF. The protocol is available at protocols.io (dx.doi.org/

10.17504/protocols.io.babdiai6) and the data supporting this study is available at ImmPort

(immport.org) under study accession SDY1369.

Data processing and analysis

All FCS files generated by CyTOF were normalized using Normalizer v0.1 MCR. Manual gat-

ing of cell populations and functional markers was performed on the Cytobank platform by

exclusion of debris (Iridiumlow, DNAlow), multi-cell events (Iridiumhi, DNAhi), and dead cells

(cisplatinhi) as described previously [51] according to standard ontogenies from the Human

Immunology Project Consortium [44, 53]. FCS files of live single cells were normalized using

SAUCIE, an unsupervised deep learning model that performs several tasks for analysis of

CyTOF data including clustering, batch correction, visualization, denoising, and imputation

[43]. The batch normalization regularization with MMD was used to perform batch correction

to remove technical artifacts but preserve biological variation as described previously [43]. The

batch normalized output data was also denoised by imputation on the data manifold by the

autoencoder prior to statistical analysis.

Statistical analysis

Multivariable linear regressions were fit to the outcomes of cell proportions and cytokine

expression using predictors of group, stimulation type, and their interaction. Age and gender

were included as covariates. A factor capturing within subject covariance across measurements

was included, using a compound symmetry structure. To account for the non-normal distribu-

tion of cell proportions, we used a generalized linear mixed model assuming a beta distribution

and a logit link function. Statistical analysis was performed using the PROC MIXED, PROC

GLIMMIX, and PROC LOGISTIC functions of SAS version 9.4 (SAS Institute, Cary, NC).

SAUCIE automated clustering

SAUCIE information dimension regularization was used to cluster cells into similar cell types

for analysis. SAUCIE is based on the autoencoder neural network model that learns to recreate
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its own input by passing it through a low-dimension informational bottleneck. This bottleneck

forces the autoencoder to learn high-level properties of the data that can then be used for fur-

ther analysis. A two-dimensional bottleneck layer was chosen for SAUCIE, which provided a

visualization for analysis of the cell space as shown previously for manually gated T cell subsets

[43]. Immune cell lineage markers were assigned as binary variables prior to clustering. By

using SAUCIE, each of these tasks was performed on the entire dataset (without dimensional-

ity reduction) or having to employ separate algorithms for visualization, clustering, denoising,

or batch correction that may make different (and mutually exclusive) assumptions about the

form of the data. Cell proportions derived from the automated clustering were analyzed using

a two-part model. First, whether individual observations contributed to a given cluster was

modeled with logistic regression. Second, the conditional proportional contributions

(contributions > 0) were modeled using the methods described above.

Enrichment and leading-edge analysis

For each group (acute (n = 30), convalescent (n = 15), well (n = 15)) and stimulation (Zika,

dengue), cell/cytokine combinations were ordered by stimulation vs mock p-value (lowest to

highest) from the cytokine expression regression analysis. Cell/cytokine combinations with a

cell subset from any of the NK, DC, and monocyte subsets (90 combinations out of 360 total)

were labeled ‘innate’. The enrichment score (ES) for this innate set was calculated using equa-

tion 1 (with p = 0) from Subramanian et al. [54]. Statistical significance of the ES was estimated

by generating an empirical null distribution using 100,000 permutations of the cell subset

labels for each cytokine. Two-tailed p-values were computed using the percentile method. The

leading edge was identified as the cell/cytokine combinations from the start of the ordered list

until the ES reached maximal deviation from 0. Analyses were performed using R version 3.6.0

and the tidyverse package [55].

Results

Cross platform immune cell profiles of dengue patients

To identify factors associated with susceptibility to flaviviral infection, we enrolled a cohort of

study participants with acute dengue infection, and a well cohort comprised of relatives or

household contacts of the acute patients and healthy controls from a different endemic site

(Table 1). Patients were identified using the WHO criteria [46] and confirmed as dengue-

infected by demonstration of NS1 antigen in the serum. Participants were 26.7% female and

were all of Indian heritage. To identify characteristic individual differences in immune

responses to dengue virus infection, subjects enrolled during acute infection also had a follow-

up (convalescent) sample collected after resolution of the acute response (2.5 ± 1.8 months

after hospital discharge), at which point functional measurements would be expected to reflect

baseline immune status [56, 57].

Samples were collected over a period of 15 months from Apollo hospital (Bangalore). Fresh

PBMC were profiled on the day of isolation by flow cytometry using 5 standardized multi-

parameter antibody panels of immune markers across 8 fluorescent channels (S1A Table) as

recently employed in immunoprofiling a stratified cohort of West Nile virus patients [44, 57].

Cryopreserved samples were shipped to Yale for in depth immune profiling using CyTOF,

employing a 40-marker antibody panel to broadly quantify both immune cell lineages and

functional markers (S1B Table). Frequencies of immune cell subsets were determined on both

platforms after gating according to a standard strategy (S1 Fig). For CyTOF data, markers of

functional status within each subset were also quantified simultaneously. Although variability

was noted both between individuals and across the cohorts—as would be expected—the
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frequency of cell subsets within each individual was consistent across both profiling platforms.

This congruency was noted despite the differences in cell status—fresh vs cryopreserved—and

using different antibody panels and instruments. For example, naïve B cell were present at

comparable frequencies (% of parent B cells, flow cytometry 80.24±17.87, CyTOF 84.71±7.99)

(Fig 1A). The highly significant degree of correspondence between the subset frequencies

determined by two methods at two sites reflects the value of shared protocols in translational

investigations with human cells [58]. These consistent results support analysis and interpreta-

tion of cellular responses in the study cohort and CyTOF technology was adopted for analysis

of samples from India.

Batch normalization of CyTOF data using neural net autoencoder SAUCIE

Biological variation is a significant challenge to understanding underlying mechanisms in

studies with human subjects and model systems. To identify meaningful differences that con-

tribute to diverse clinical responses, experimental variation must be minimized. The current

study design includes variations in the days of subject enrollment, shipment to Yale, experi-

mental assay, and instrument run. Numerous measures were adopted to reduce variation in

the study as described previously including uniform protocols for sample collection and pro-

cessing and a single lot of antibody reagents [57, 59, 60]. In addition, a control PBMC sample,

prelabeled for CD45, was added to each subject sample as a spike-in reference to minimize the

effects of batch variation in CyTOF [50]. Notably, we collected paired samples from acute and

convalescent times points (n = 15 dengue-infected patients, 30 samples), and we collected sam-

ples at a single timepoint for some acute subjects for whom the convalescent sample was not

available (n = 15) and for well subjects (n = 15 relatives/household contacts and unrelated

healthy subjects). Each was assessed under 3 culture conditions for a total dataset of 180 sam-

ples with 42 quantifiable markers. Processing data of this dimensionality and scale is an inher-

ently difficult prospect, especially considering the degree of noise, batch effects, artifacts,

sparsity, and heterogeneity in the data. To assess sources of non-biological variation among

samples, we employed a novel unsupervised deep learning model, SAUCIE (Sparse Autoenco-

der for Unsupervised Clustering, Imputation, and Embedding), that performs several tasks for

analysis of CyTOF data including clustering, batch correction, visualization, denoising, and

imputation [43]. SAUCIE is based on an autoencoder neural network model that learns to rec-

reate its own input by passing it through a low-dimension informational bottleneck. SAUCIE

provides an embedding layer that can be used for visualizing cells in a space that preserves

global as well as local information and performs batch correction by regularizing this layer to

penalize differences in the distribution of cells from different batches. SAUCIE leverages the

ability of an autoencoder to denoise, impute, and visualize, and adds carefully designed regu-

larizations to perform batch correction and clustering, which are essential tasks in single-cell

data analysis. Using SAUCIE on the reference (spike-in) cells detected in each experimental

sample, we were able to detect equivalence of data collected from samples in each of the ship-

ments and within each in vitro infection day (S2 Fig; differences NS). Notably, CyTOF run day

showed statistical difference in the spike-in samples on instrument days, despite instrument

performance at expected benchmarks each day of operation. Thus, we used SAUCIE to correct

batch effects using Maximal Mean Discrepancy in the CyTOF dataset (Fig 1B).

Effect of dengue infection on immune cell phenotypic and functional

responses

We quantified immune cell subsets of untreated samples by CyTOF following labeling with

antibodies for cell lineage specific surface markers (n = 28). Comparing between paired patient
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samples takes advantage of stable characteristics of individuals to allow a direct comparison at

acute and convalescent time points [57, 61]. Differences detected in frequencies of 36 immune

cell subsets highlights both similarities and significant differences expected during acute illness

and with recovery from infection and may reflect diapedesis into tissue during acute infection

(Fig 2; S1C Fig). In particular, in acute patients compared to their convalescent time point, we

detected elevated frequencies for monocytes (8.3 ± 1.1 vs 5.3 ± 0.9, P<0.02), activated CD4+

Fig 1. Frequency of immune cell subsets of study cohorts. Study subjects (n = 45) with acute dengue infection,

household contacts, and unrelated healthy controls were assessed for frequency of immune cell subsets. PBMCs were

profiled fresh by flow cytometry and after cryopreservation by CyTOF. (A) Immune subsets from flow and CyTOF

platforms as % of parent cell type (n = 19). Immune subset correspondence between flow cytometry (NIMHANS) and

CyTOF (Yale) sites. Shaded area shows 10% variance in the observed distributions. (B) SAUCIE’s maximal mean

discrepancy (MMD) regularization removes batch effects by penalizing differences in the distributions of the datasets

[43]. Shown are two spike-in samples run on different days with a significant batch effect between them. After removal

of the batch effects, the two samples are directly comparable.

https://doi.org/10.1371/journal.pntd.0008112.g001
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and CD8+ T cells (CD4+16.4 ± 2.4 vs 4.5 ± 1.3, P<0.001; CD8+ 29.3 ± 3.3 vs 5.2 ± 1.6,

P<0.001), natural killer (NK) cells (11.0 ±1.8 vs 4.6 ± 1.2, p<0.001), transitional B cells

(2.3 ± 0.4 vs 0.4 ± 0.2, P<0.001), and plasmablasts (12.3 ± 1.5 vs 4.1 ± 0.9, P<0.001). In con-

trast, acute subjects showed lower frequencies of subsets including total CD3+ and CD4+ T

cells. Such differences in monocytes and expanded populations of CD8+ T cells have also been

detected in a previous study of dengue patients [62, 63] and in travelers infected with Zika

virus [64, 65]. We note increases in frequency of both CD4+ and CD8+ TEMRA cells at conva-

lescent time points, as has been reported previously in dengue virus donors which may reflect

common exposure from an endemic area [66]. Similar differences were noted between fre-

quencies of cell subsets from acute patients compared with well subjects (S3 Fig). Notably,

other subsets were not significantly different between acute and well groups, such as CD4+ and

CD8+ TEMRA, γδT cells, memory B cells and monocytes.

Cellular activation from viral infection was readily detected ex vivo by elevated levels of key

anti-viral markers in baseline, untreated paired samples compared at acute infection and con-

valescence. In particular, elevations in IFNβ were noted in acute patients across the majority of

cell types and were statistically elevated in 31 of 36 cell subsets (S4A Fig) including mDCs,

monocytes, NK cells—CD16+ and CD16—(Fig 3; P < 0.01), and particularly dramatically

increased in cell subsets of plasmacytoid DCs (pDC), B cells (naïve, memory and plasma-

blasts), and multiple T cell subsets (Fig 3, p<0.05). Elevated levels of IFNβ in plasmablasts

have also been found in dengue patients from Thailand [67]. Levels of pro-inflammatory cyto-

kines IFNγ, MIP1β, and IL-6 were higher across T cell subsets of subjects at acute infection

Fig 2. Altered frequency of cell subsets during acute dengue infection. PBMCs from acute patients were labeled with metal-conjugated antibodies and analyzed

by mass cytometry. Frequency of cell subsets (percent of parent gate; S1C Fig) between paired samples from patients at acute (�) and convalescent (□) time points

(n = 15). Significance assessed by Generalized Linear Mixed Model with � p<0.05, ��� p<0.001.

https://doi.org/10.1371/journal.pntd.0008112.g002
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compared to convalescence (Fig 3, P<0.05). The active immune response was also reflected in

elevated levels of CD279 (PD-1) and CD69 in several T cell subsets (Fig 3, p< 0.05), reflecting

activation of those cells. Significant differences were also detected in acute subjects with ele-

vated levels of CD152 (CTLA-4) and perforin in multiple phenotypes of CD4+ and CD8+ T

cells (Fig 3, P<0.05). Further, TNFα and CD57 were significantly elevated in CD4+CD8+ dou-

ble positive T cells and activated Tregs (Fig 3, P<0.05). Similarly, the effect of acute illness is

evident not only longitudinally in paired samples but in a cross-sectional comparison of mark-

ers of functional anti-viral responses from acute subjects compared to well subjects in levels of

IFNβ, and other key markers of activation including CD69 and CD279 (S4B Fig). Notably, our

Fig 3. Altered immune functional markers during acute dengue infection. PBMCs from acute patients were labeled

with metal-conjugated antibodies and analyzed by mass cytometry. Production of cytokines or changes in activation

markers ex vivo (ratio log2 acute/convalescent) was assessed by multivariable linear regression for longitudinal

differences between paired samples from patients at acute vs convalescent time points (n = 15). Significance assessed

by Generalized Linear Mixed Model with � p<0.05, �� p<0.01 and ��� p<0.001.

https://doi.org/10.1371/journal.pntd.0008112.g003

PLOS NEGLECTED TROPICAL DISEASES Single cell profiles show intact innate immune response to Zika virus from dengue patients

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008112 March 9, 2020 10 / 25

https://doi.org/10.1371/journal.pntd.0008112.g003
https://doi.org/10.1371/journal.pntd.0008112


in-depth approach revealed high IFNβ levels in one subject from the ‘well’ cohort—likely an

incipient infection—however, the differences shown remain significant with or without inclu-

sion of data from that individual. These results (Fig 2, Fig 3) reflect fluctuations in cell subset

frequencies and functional markers during acute viral infection consistent with expected

changes noted previously [68–70]. In addition, the data provide more in-depth quantitation of

cell status during acute viral infection and validate the study samples for in depth functional

analysis.

Effect of existing dengue virus infection on immune responses to new viral

challenge

Concurrent infection is a critical element defining immune status and may skew immune

pathways or divert immune resources resulting in sub-optimal responses to a subsequent

infection. To assess whether active dengue infection or dengue experience (convalescent)

impact reinfection of immune cells, we incubated PBMCs ex vivo with dengue virus (reinfec-

tion) or Zika virus (new challenge). PBMCs from each subject (acute, convalescent, and well)

were infected in vitro with dengue (MOI = 10) or Zika (MOI = 5) virus for 24h and assessed

by multiparameter CyTOF as detailed above. As in the assessment of cell status at baseline (Fig

2), we first evaluated cell subset frequency between uninfected (mock) and in vitro stimulated

dengue- and Zika-infected samples. We noted equivalent cell frequencies for many cell subsets,

including monocyte and DC lineages, as would be expected from innate cell types, as well as

for as naïve and memory B cells. Notably, however, in vitro infection with dengue led to a sig-

nificant increase in frequency of CD4+ T cells and subsets of T cells—which was not noted in

response to Zika infection—likely reflecting experience with that virus (e.g., Treg, Th2, and

CD4+ Teff and CD8+ Teff cells) (S5 Fig). Thus, from the same patients, our results are consis-

tent with an intact T cell memory response for the endemic virus and an apparently primary

response for the new viral infection.

Incubation in vitro with both dengue and Zika viruses achieved strong activation of the

cells from all subjects which was quantified in changes in multiple activation markers and

cytokine levels in multiple cell subsets. Using multiparameter CyTOF data allowed us to quan-

tify 10 functional activation markers simultaneously in 36 distinct cell subsets. To examine the

possible role of immune history in susceptibility to severe disease, we compared responses in

each cell subset by fold change of in vitro treated compared to mock for all acute patient sam-

ples (n = 30). We assessed significant differences by a generalized linear mixed model includ-

ing age and gender as covariates (S2 Table for full data and statistical analysis). A dramatic

example is noted in increased levels of the pro-inflammatory cytokine MIP-1β compared to

uninfected (mock) cells in numerous cell subsets—in particular from the NK and DC lineages

(Fig 4A). Indeed, cell responses reflect abundant changes in vitro noted across the cell types in

particular for pro-inflammatory cytokine production (IFNγ, IFNβ, IL-6, MIP1β, TNF0α), and

for activation markers CD57, CD69, CD152, CD279. These multivariate data are displayed in

a two-dimensional radar plot for representative cell types (Fig 4B). Of the significant differ-

ences, some were especially dramatic, including levels across the proinflammatory markers in

DCs following incubation with Zika virus where significant increases were detected in IFN, Il-

6α, MIP-10β, TNFα, Perforin, CD57, CD69, and CD279 (Fig 4B). Responses of CD4+ Teff cells

and Treg cells to dengue virus in vitro showed highly significant differences compared to

mock for multiple functional markers as well (Fig 4B). Certain cell responses were equivalently

significant in response to in vitro exposure for both viruses, namely CD69 in pDCs, and in

mDCs, virus-induced production of cytokines MIP-1β and IFNγ, as well as CD57 and perforin

(S2 Table). Unexpectedly, although monocytes are critically important for many flaviviral
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Fig 4. Response to Zika and dengue infection in vitro. PBMCs from acute subjects (n = 30) were incubated with

medium alone (mock) or infected in vitro with dengue virus (MOI = 10) or Zika virus (MOI = 5) for 24 h and labeled

with metal-conjugated antibodies for mass cytometry. (A) Levels of MIP-1β detected in 36 cell subsets from PBMCs

untreated (mock) or stimulated with dengue or Zika virus. (B) For each cell type, proportional changes in 10 activation

markers and cytokine levels were quantified comparing mock to the level post-infection with dengue (red lines) or
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infections and might be expected to show elevated responses to infection, most monocyte/

cytokine combinations did not change significantly after stimulation (p> 0.05; S2 Table).

When we compared the changes in MIP-1β responses, we noted differential responses to

the two viruses, with an increase following exposure to Zika virus, and a decrease in response

to dengue virus. When we examined this pattern more broadly across other cell types and

cytokines/functional markers, we noted a striking pattern of upregulation of responses to Zika

infection by innate cell types which was not noted in response to dengue virus. Given our

observation of changes in cell frequency between the two viruses where adaptive cell types in

vitro specifically tended to change frequency in response to dengue virus (S5 Fig), we sought

to determine whether a similar virus-specific pattern was present in the functional activation

markers. We quantified the differences vs mock for all significant cell subset/functional marker

combinations to assess the most significant changes following virus exposure (S3 Table). For

each virus we rank ordered the p-value of the cell type/functional marker combinations differ-

ences to calculate an enrichment score of ‘innate’ cell/cytokine combinations using gene set

enrichment definitions for cell assignments [54]. For responses to Zika virus, significant differ-

ences were detected in functional markers in innate cell lineages in DCs, monocytes, and NK

cells for IFNγ, MIP-1β, IL-6, TNFα, with 29/100 significant combinations defined as ‘innate’

and only 4/260 defined as adaptive (S3 Table). Consistent with functional changes following in

vitro infection with Zika being significantly enriched for innate cell types, we noted changes in

functional markers in adaptive cell types were significantly enriched for dengue. In response to

dengue virus, only 5/100 significant differences were defined as innate combinations and 67/

260 significant combinations were defined as ‘adaptive’ immune responses. The significant

enrichment of innate cell responses to Zika virus indicates that even during acute dengue

infection, innate cell types mount an intact and robust anti-Zika response despite the concur-

rent dengue infection.

To better understand the relative contributions of the different immune cell subsets to the

in vitro responses, we compared the composition of significant p-values for innate cell/func-

tional marker combinations and quantified the composition of the leading edge of the enrich-

ment score (Fig 4C). The leading edge following in vitro infection with Zika highlights

significant enrichment in innate lineage/functional marker combinations particularly in the

DCs, CD16+ monocyte subsets, and NK cell populations, suggesting a broad engagement of

the innate response (Fig 4C). The leading edge for dengue is composed mainly (>75%) of

adaptive cell types, with subsets of CD4+ T cells (activated, effector, effector memory), memory

subsets of CD8+ T cells, and Tregs expressing elevated levels of CD152, CD69 and producing

pro-inflammatory mediators IFNγ, MIP-1β, IL-6, TNFα, and perforin. The relative contribu-

tion of adaptive and innate cell types to the leading edge of Fig 4C shows increased adaptive

Zika (blue lines) by log2 of the fold-change (infected/mock). The range of plotted fold-changes is indicated at the

center and top of each radar plot, with no change (i.e., log2(fold-change) = 0) indicated by the solid grey line.

Significant changes are indicated adjacent to each cytokine/activation marker with � p<0.05, �� p<0.01 and ���

p<0.001 and color indicates whether the change was significant following incubation with dengue (red �) or Zika (blue
�). (C) Each of the 360 cell type/functional marker combinations were rank-ordered by P value (lowest to highest along

the x-axis) comparing virus-induced changes with dengue (top panel) or Zika (bottom panel). Enrichment scores for

innate cell types were calculated as a running sum (solid blue lines), with comparisons involving innate cell types

indicated by grey bars (plotted along the x-axis at an enrichment score of 0). The maximum absolute enrichment score

was used to define the “leading edge” (light blue shaded area), and significance of this score was determined by

random permutation of cell type labels within each cytokine (horizontal dashed lines indicate the 95% confidence

interval). Significance is indicated as: ns (not significant), � p< 0.05, �� p< 0.01, ��� p< 0.001. (D) The relative

contribution of adaptive and innate cell types to the leading edge of Fig 4C for infection-induced changes with dengue

(top panel) or Zika (bottom panel). The number of cell type/functional marker combinations included in the leading

edge is indicated in the upper right of each panel.

https://doi.org/10.1371/journal.pntd.0008112.g004
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cell types for virus-induced changes with dengue (top panel) and innate cell types for Zika

(bottom panel). The difference between responses to Zika virus vs dengue virus is most strik-

ing in the acute subjects, however responses to Zika infection were also highly significantly

enriched in innate cell types of convalescent and well subjects (S6 Fig). These results of in vitro

infections suggest that initial immune responses to Zika infection would be intact and effective

in the setting of existing dengue co-infection.

Novel clustering analysis reveals functional cell populations

The scale and complexity of CyTOF data present challenges for routine analytic approaches.

To accelerate analysis, identify additional structure in the CyTOF data, and identify differences

among the samples that may be missed by manual gating, we used SAUCIE to cluster the cells

using all the CyTOF data from all subjects and all treatments together (Fig 5A). Notably, SAU-

CIE is scalable—effective with large datasets exceeding 20 million cells—and our analysis

includes all cell events collected without need for ‘down-sampling’. SAUCIE directly creates a

clusterable representation for each cell by forcing the activations of the network’s internal neu-

rons to be amenable to clustering, thus looking inside the usual “black box” of a deep learning

model. Further, SAUCIE reads directly from the data without subjective elements of manual

gating which may be prone to error and which have many biases towards pre-conceived

canonical cell types. Immune cell lineage markers were assigned as binary variables prior to

clustering so that SAUCIE would treat lineage markers differently from functional markers.

The assignment of cell types to a cluster offers an unbiased view of cell types and functional

markers which may be relevant to understanding of immune status. In depth examination of

the markers in SAUCIE clusters suggest that clusters contain elevated proportions of certain

cell types and can be characterized by their dominant cellular markers (Fig 5A and 5B). Specif-

ically, SAUCIE clusters 9, 15, 18, 19, and 20 prominently feature B cell marker CD19+ cell

types subsets, and SAUCIE clusters 12, 29, 15, 16, 17, and 31 contain the bulk of the mono-

cytes. CD3+ T cell subsets are represented in 19 distinct clusters, which reflects the multiple

markers in the antibody panel to define distinct T cell subsets. Cluster 32 is populated with

both CD4+ and CD8+ T cells. Interestingly, for the CD4+ subpopulations, cluster 25 shows a

profile of pro-inflammatory activation expressing IFNγ, MIP-1β, IL-6, CD25, and is low for

CD45RA, a marker of memory responses. This is in contrast to CD4+ T cells of cluster 32,

which are higher in the naïve T cell marker CD45RA and lower for the effector cytokines,

reflecting a more naïve phenotype. For CD8+ T cells, cluster 10 shows very high expression of

CD279 (PD-1) and CD45RO, suggesting a memory cell type, distinct from CD8+ T cell cluster

26 with very high expression of effector cytokines and perforin.

We quantified the proportion of each cohort and stimulation condition in each cluster and

found dramatic differences between frequencies in different subject groups in our study (Fig

5C). These findings from SAUCIE clustering agree with manual gating and statistical evalua-

tion of cell subsets. We examined clusters which were statistically significantly elevated in sam-

ples from acute patients compared to convalescent or well, which we expect to include

markers relevant to the initial response to the viral infection. By analyzing the channel inten-

sity of markers, we found that samples from acute subjects showed the highest representation

in clusters 1, 3, 7, 8, 12, 13, 29, 31 which express CD14, CD4, CD56, TCRγδ, and proinflamma-

tory cytokines with IFNβ and perforin. Cluster 29 also includes markers CD38, CD24, and

CD185 (CXCR5) suggesting transitional/immature B cells, as would be expected during acute

infection as the antibody response is developing [71] and expression of functional molecules,

i.e., IFNβ, chemokine receptors CXCR5 and CCR6, relevant for function of the 4 critical sub-

sets predominant during acute infection. Samples from acute subjects have the lowest
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representation in clusters 0, 2, 4, 6, and 11 in which the dominant markers are CD3, CD4,

CD45RO and CCR7, suggesting a phenotype of activated memory T cells which increase in

the convalescent group (Fig 5C). Cluster 31, highly expressed in acute samples, includes ele-

vated expression levels of many of the innate markers in their nearest neighbor, cluster 5, but

also show CCR4, CCR6, CD183, TCRγδ, CD185. Cluster 31, which lacks CD4 and CD8, is the

Fig 5. Clustering identifies functional cell populations. Analysis of the clusters obtained from SAUCIE. (A) Heatmap of hierarchical linkage clustering shows

relationships between markers. Columns indicating SAUCIE’s clusters are shown with rows indicating z-scored mean expression profiles for all markers under

analysis. (B). Schematic view of most abundant cell type and markers represented in each cluster for mock and in vitro infected samples of dengue patients and well

subjects. (C) A histogram of the proportion of each group’s cells that were assigned to each cluster; Inset of smaller clusters with an expanded scale.

https://doi.org/10.1371/journal.pntd.0008112.g005
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farthest apart on the heat map from cluster 10, which expresses CD8 very highly. Thus cluster

31 may indicate in part anti-flaviviral responses including TCRγδ cell population, a major

early source of IFNγ [72]. Cluster 19, a smaller cluster which is not significantly different

between subject groups, has expression of multiple lineage markers and effector molecules

IFNβ and perforin indicative of active NK cells (CD56, CD38, perforin) and memory T cell

response (CD45RO, CD8, CD279) [73]. A number of clusters (19–32), which are lower in

abundance, show high representation of cell markers CD3, CD45RO, IL-6, Foxp3, CD152,

indicating memory T cells with regulatory pathways engaged to reduce cytokine production,

as would be expected in the post-viral recovery period.

A notable feature of SAUCIE derives from the unbiased data-driven reading directly from

the data. In addition to findings consistent with manual gating, SAUCIE also offers additional,

more granular information on cell populations that were not isolated via manual gating. For

example, SAUCIE identified novel clusters not identified using manual hierarchical gates

which may reflect relevant transitions in the acute immune response. These “silent” cells are

recognized by SAUCIE as a distinct cluster of cells and represent 12% of total cells yet are out-

side of any manual gate. Such ‘silent cells’ are overlooked by the traditional manual gating

strategies noted in S1 Fig. Specifically, cluster 0, which includes cells positive almost exclusively

for CD3, which statistical comparison finds is lower in acute subjects than convalescent sam-

ples (P< 0.001), suggests few of these CD3-only T cells would be present during acute infec-

tion. Further, SAUCIE identified cells in a unique cluster 3 which includes cell types lacking

strong expression of any lineage markers. Cells in cluster 3 are highly elevated in acute time

points compared to convalescent or well subjects (P< 0.001), suggesting a transient population

of possibly immature or less committed cells which are evident during an acute response. Such

cell subsets were revealed using SAUCIE, confirmed by manually gating, and introduce novel

elements for interpretation and evaluation of cellular responses. Taken together, the clusters

identified by SAUCIE provide an unbiased mechanism to view the complex data generated

from in-depth immune profiling studies across multiple human subjects in distinct subject

groups.

Discussion

Significant advances in technology—including single cell platforms—have driven the field of

Systems Immunology, where data-driven approaches provide insights for translational studies

[74, 75]. Human immunoprofiling has recently provided critical advances in our understand-

ing of responses to influenza and malaria vaccines [76–78]. Such systems approaches are

designed to build on stable characteristics of individual immune cell profiles [57, 61, 79] to

define molecular interactions and advance mechanistic understanding which can be employed

to promote effective immunity.

The current study is based on an effective international collaboration between investigators

in the USA and India, which is endemic for dengue infection, and builds on similar systems

level work by our group to identify a susceptibility signature from a stratified cohort of West

Nile virus patients [57]. To address critical elements of immune responses that may contribute

to susceptibility to Zika virus infection, we have investigated a role for underlying infection

with dengue, which is endemic in South America and carried by the same Aedes mosquito [5,

38]. Here we have quantified functional immune profiles of multiple arms of the immune sys-

tem and assessed responses between patients with dengue infection (acute or convalescent)

compared to an uninfected control cohort from the same endemic area. We hypothesized that

existing infection with dengue might intensify or curb immune responses to infection in vitro

with Zika, and thus be relevant for the epidemic. While this 24 hour ex vivo design cannot
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address more complex responses in vivo, results from initial responses suggest efficient

immune responses across multiple cell types. Notably, our data show that innate immune

responses to Zika infection are engaged in the setting of existing dengue infection and thus

pre-existing infection with dengue virus would not be expected to impair responses to new

infection with Zika virus. However, our studies do not address whether the activation of innate

cells noted in vitro would contribute to clearance of virus. Other recent studies with Zika virus

have noted downregulation of antiviral gene pathways, particularly interferon responsive

genes [80, 81] and inhibition of NK cell killing pathways [82], both key elements of host ability

to respond to infection.

Investigations in both human and murine hosts show that adaptive immune responses to

primary dengue infection influence the course of subsequent severe disease, as the primary

weak broadly neutralizing antibodies developed may promote antibody-dependent enhance-

ment (ADE) of subsequent dengue infection in FcγR-bearing cells [83, 84]. In addition, some T

cell response patterns during primary dengue infection have been hypothesized to contribute to

reduced efficiency of T cell responses in secondary infection, a phenomenon termed ‘original

antigenic sin’ [85]. Kinetic studies have shown that the innate responses that accompany early

dengue expansion (< 3 days), like production of the proinflammatory cytokine, TNF-α, from

infected myeloid cells, do not mediate the later severe effects of secondary dengue infection (i.e.

plasma leakage) [6, 86] but may polarize responses relevant to resistance to a new infection.

Studies in vaccine development clarify the potential role of pre-existing dengue immune sera,

which leads to enhancement of severe infection with dengue virus [84] and through cross-reac-

tivity with Zika [87] may enhance uptake of ZIKA in monocytes [88, 89]. However, while pre-

existing immunity to flaviviruses did not alter outcome to infection with Zika in rhesus

macaques [90], it has in contrast been protective against lethal fetal demise in mice [91, 92],

enhanced responses to specific targets of ZIKA E, prM, and C [39], and resulted in broader

cross-reactive antibody repertoire [93] and protection against infection in humans [42].

Using a shared immune profiling approach in two countries, we have documented previ-

ously-defined elements of anti-dengue immunity such as elevated levels of activation markers

(e.g., CD57 on T cells) and increased production of inflammatory mediators (e.g., IFNβ, per-

forin, IFNγ) [85]. And importantly, in our studies of subsequent infection in vitro, we show

robust immune responses to Zika virus from patient cohorts. The increased proportion of

innate inflammatory mediators from acute patients to Zika viruses in comparison to infection

with dengue virus may reflect an already maximal response to the concurrent infection which

may be expected as cells from acute patients may approach maximal activation during that

phase of their illness. While our in vitro studies cannot incorporate all elements of natural

infection, and our sample size may be insufficient to detect smaller effects, our study suggests

that primary dengue infection would not impair or limit immune responses to infection with

Zika. Furthermore, previous studies have reported that cross-reactive peptide sequences led

dengue-exposed subjects to develop stronger anti-Zika CD4 and CD8 T cells responses [39–

41], suggesting that exposure to dengue infection may in fact augment cellular immune

responses to infection with Zika.

Our results are significant for the in-depth profiling of a large dataset and the use of deep

learning to reduce effects of experimental variation and enhance analysis of meaningful varia-

tion. Our neural network program SAUCIE provides valuable insights into the phenotypic

and functional states which distinguish the patient populations. SAUCIE identified cellular

responses that were consistent with cells identified through manual gating and traditional sta-

tistical approaches and accelerated this identification. In addition, SAUCIE identified a dis-

tinct cluster of cells outside any gate and overlooked by manual gating. Further definition of

molecular signatures characteristic of flaviviral immunity and susceptibility phenotypes is
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essential to guide development of improved diagnostics, therapeutic interventions and vaccines

for Zika. Investigations to understand the ferocity of the Zika epidemic may include ongoing

research areas of epidemiological factors such as co-circulating pathogens [94], cellular signal-

ing pathways antagonizing the Type I or Type II IFN responses [80, 95, 96], or other immune

pathways such as RIG-I [97], viperin [98], or pathogenic cellular interactions including CD8

cells in pathology in neurons [99] or monocytes driving NK cells anti-Zika responses [100].
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