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ABSTRACT

Combinatorial regulation by transcription factor com-
plexes is an important feature of eukaryotic gene
regulation. Here, we propose a new method for
identification of interactions between transcription
factors (TFs) that relies on the relationship of their
binding sites, and we test it using Saccharomyces
cerevisiae as a model system. The algorithm predicts
interacting TF pairs based on the co-occurrence of
their binding motifs and the distance between the
motifs in promoter sequences. This allows investi-
gation of interactions between TFs without known
binding motifs or expression data. With this
approach, 300 significant interactions involving 77
TFs were identified. These included more than
70% of the known protein–protein interactions.
Approximately half of the detected interacting motif
pairs showed strong preferences for particular dis-
tances and orientations in the promoter sequences.
These one dimensional features may reflect con-
straints on allowable spatial arrangements for
protein–protein interactions. Evidence for biological
relevance of the observed characteristic distances is
provided by the finding that target genes with the
same characteristic distances show significantly
higher co-expression than those without preferred
distances. Furthermore, the observed interactions
were dynamic: most of the TF pairs were not constitut-
ively active, but rather showed variable activity
depending on the physiological condition of the
cells. Interestingly, some TF pairs active in multiple
conditions showed preferences for different

distances and orientations depending on the
condition. Our prediction and characterization of TF
interactions may help to understand the transcrip-
tional regulatory networks in eukaryotic systems.

INTRODUCTION

Eukaryotic transcriptional regulation is multifaceted. Tran-
scription factors (TFs), co-activators, chromatin structure,
promoter elements and other proteins co-operate in the control
of gene expression. With the availability of large datasets
derived from high throughput experiments, the understanding
of gene regulation is no longer confined to the study of single
genes, TFs or regulatory elements. Instead, complex network
relationships can now be explored.

Numerous technological advances make possible the under-
standing of combinatorial transcriptional control. Complete
genome sequencing provides the DNA information of pro-
moter regions (1,2); large-scale expression profiling provides
the global perspective of gene expression (3,4); yeast two
hybrid experiments provide interactions between proteins
(5,6); and chromatin immunoprecipitation (ChIP) provides
the protein–DNA interactions (7,8). With bioinformatics ana-
lysis, we can now integrate the many sources of large-scale
biological data to gain more insight into the mechanisms of
gene regulation.

Previously, various in silico approaches have been used
to study combinatorial gene regulation. The main focus has
been on examining the relationship between gene expression
profiles and transcriptional control. Synergistic relationships
between TFs are inferred when their common target genes
show highly correlated expression patterns (9–11). Non-
linear models (12) and Bayesian approaches (13) have also
been used to identify the relationship between gene expression
and interacting motifs. In another approach, Nagamine et al.
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(14) predicted cooperative TFs by using the information from
protein–protein interaction networks, based on the hypothesis
that proteins that are close to each other in the interaction
networks are more likely to be co-regulated by the same set
of TFs.

In this paper, we describe a new approach to understanding
interactions between TFs, and we test the method using
Saccharomyces cerevisiae as a model system. Instead of
gene expression profiles, we focus on the sequence motifs
in the upstream promoters. The strength of this algorithm
lies in the fact that it is sequence-based; it can be applied
to genes without expression data or previously determined
binding motifs. By taking groups of genes whose upstream
sequences are known to be bound by two TFs, we made
ab initio predictions of their corresponding TF binding sites
and examined the relationship between these two sites on
the promoter sequences. The sequence relationships between
the binding motifs were examined in terms of preferences
in distance and orientation, reflecting possible spatial relation-
ships between TFs. We further analyzed these predicted
relationships using gene expression data and found that
they are dynamic and condition-dependent.

MATERIALS AND METHODS

Identification of interacting motif pairs

Motif-PIE, a C++ program, was developed to identify inter-
acting TF binding motif pairs. Interacting motif pairs are
defined as those that have over-represented co-occurrence in
the input promoters and the distances (in units of base pairs)
between the two motifs are significantly different from
random expectation. For a set of genes believed to be regulated
by two TFs, Motif-PIE was designed to detect the interacting
motif pairs that reside in the promoters of these genes. The
promoter is operationally defined as the upstream sequence
relative to the predicted translational start codon.

The program first calculates the most over-represented sin-
gle motifs (5 to 7mers) in the input promoter sequences. It then
enumerates all possible pair combinations between the top
n motifs (e.g. n ¼ 10). These motif pairs are ranked according
to their P-values. If the most significant motif pair has a lower
P-value than a threshold (see below), we predict that their
binding TFs interact with each other. The program was per-
formed on all TFs whose target genes have been determined
by various experimental works (see Results). Although motif
discovery methods via enumeration cannot detect motifs with
sequence variation, it is a widely used approach because of its
efficient and easy implementation (15,16). Our preliminary
analysis indicates that for most motifs a short core motif
(5 to 7mers) is often conserved and thus can be detected by
this method. Note that the main purpose of Motif-PIE is to
detect interacting motif pairs, not to precisely predict motif
sequences.

To evaluate the significance of motif pairs, we calculated
the P-value for each possible motif pair. The P-value of a
motif pair reflects two contributions—one is from motif
pair co-occurrence and the other is from the distance con-
straint. The overall P-value is defined as:

P ¼ PoccPd

where Pocc evaluates the over-representation of a motif
pair occurrence (g) in the input promoters compared to its
occurrence (G) in all promoters in yeast genome, and Pd

evaluates the deviation of the observed distance distribution
from a random expectation.

The contribution of the occurrence over-representation,
Pocc, is calculated according to

Pocc ¼
Xminðn‚ GÞ

k¼g
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where n is the number of the input promoters; N is the total
number of yeast promoters; g is the occurrence of the motif
pair in the input promoters; and G is the overall occurrence
of the motif pair in promoters of entire yeast genome. The
equation is used to obtain the chance probability of observing
the motif pair g or more times in the n input promoter, given
that the motif pair occur G times in total N promoters.

The contribution of the distance constraint between two
motifs in promoter sequences, Pd, is calculated by comparing
the observed distance distribution with a background distri-
bution using the Kolmogorov–Smirnov (KS) test. The back-
ground distance distribution is considered to be from motif
pairs that do not interact with each other. In other words, if we
simultaneously throw two random motifs on promoters and
measure the distances between them (in unit of bp), the
obtained distance distribution is our background. Given the
length of one promoter sequence (L) and motif pair distance
(d), the number of all possible arrangements for the motif
pair is L � wf � wb � d + 1, where wf and wb are the widths
of the two motifs. The chance of observing distance d is
proportional to the number of arrangements for a given d,
and can be normalized as

f dðLÞ ¼
L � wf � wb � d þ 1PL�wf�wbþ1

i¼1 ðL � wf � wb � i þ 1Þ
:

Given the length distribution F(L) of promoter sequences
in yeast, the random distribution of the motif distances
is f d ¼

P
L FðLÞf dðLÞ. Pd is calculated by comparing the

observed distance distribution and fd.

Threshold for significant motif pairs

To determine if a motif pair is significant enough (i.e. the
two motifs interact with each other), we derived a threshold
from a background simulation. We constructed 8000 back-
ground groups of randomly selected promoter sequences
from yeast genome in which we expect no meaningful
motif pairs. The sizes of random groups were set to be the
same as input groups. The same procedure was applied to
the random gene groups and the resultant distribution for
the most significant P-values from each random group was
obtained (Supplementary Figure 1). The P-value at the
95th percentile of the random distribution is defined as the
threshold for a significant motif pair. The final thresholds
for the heterotypic and homotypic TF pair groups were defined
as �log(P) ¼ 8.0 and 3.6, respectively. The Motif-PIE
program is available from the authors upon request.
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Comparison between known motif and
detected motif sequences

We compared the detected motif and known motif sequences.
The sequence similarity between two motif pairs, A1:A2 and
B1:B2, is defined as

SðA1:A2‚B1:B2Þ ¼

max
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SðA1‚B1ÞSðA2‚B2Þ
p

‚
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðA1‚B2ÞSðA1‚B1Þ

p i
:

where S(A1,B1) is defined as the matching percentage of
two single motifs. We then compared the known motif pair
of a TF pair with the top-10 motif pairs derived by Motif-PIE,
and we used the maximal similarity to measure the ability of
Motif-PIE to recover known motif pairs.

Note that if the binding motif sequences of two input
TFs are known, we can compare the predicted and known
sequences as described above. However, in cases for which
the two input TFs have no documented binding sequences, we
cannot compare predicted and known sequences. In such
cases, we are unable to link the predicted motif sequences
to the input TFs.

Characteristic distance between two motifs

The distances between two motifs are not always uniformly
distributed. If two motifs show a strong preference for par-
ticular distances, we defined these distances as characteristic
distances. We obtained the characteristic distance by calcu-
lating the probability that a random system has a frequency at
this distance more than or equal to the observed one. This
probability can be expressed as

Pcðq > qdÞ ¼
X
q>qd

Q
q

	 

f q
d ð1 � fdÞQ�q

‚

where qd is the observed frequency at this distance; Q is the
total frequency at all distances (i.e. the size of the gene group
targeted by the motif pair); p is the expected probability at this
distance as discussed above. For an extremely small Pd, the
probability that a random system has a frequency at any dis-
tance more than or equal to qd is approximately PdNd, where
Nd is the number of possible distances. We set this probability
to be 0.01, and with Bonferroni correction the corresponding
Pd is 0.01/Nd. The average Nd is 850, so the threshold for
�log(Pd) is 4.93.

Effect of TF pairs on the expression of their target genes

For a TF pair, we obtained its target genes by searching the
motif pair in promoter sequences and calculated expression
correlations of all pairs of target genes. To get the background
gene expression correlation, we calculated the correlations of
any gene pairs in the entire yeast genome. By comparing the
correlation distribution of the target genes with the back-
ground using the KS test, we obtain a P-value indicating
the deviation of the observed correlation from the random
expectation. We assumed that the deviations are due to
the effects of the TF pairs. Thus, the degree of deviation
corresponds to the effect of the TF pair on the expression
of its target genes.

RESULTS

Detecting interacting motif pairs

The purpose of our approach is to predict interacting TF pairs
based on the co-occurrence of their binding motif pairs in a set
of promoter sequences. Given a pair of TFs, we searched
significant motif pairs in the promoters of their common target
genes. If the P-value of the detected motif pair is lower than a
threshold, we inferred that the two TFs interact with each other
(Figure 1).

We collected an initial set of known target genes of 152
TFs by integrating currently available chromatin immuno-
precipitation on microarray (ChIP-chip) experiments and tra-
ditional genetic and biochemical results (7,8,17–19). For each
of the pair combinations of the TFs (152 * 151/2 ¼ 11 476),
Motif-PIE discovered their binding motifs in the promoters
of their common target genes (Figure 1). We then compared
the most significant P-values from each TF pair with a pre-
determined threshold (see Materials and Methods). From the

TF1 TF2

Motif-PIE

TF Interaction
Inference

TF1 TF2

Figure 1. Prediction of interacting motif pairs. The figure shows a schematic
description of the algorithm used for identifying heterotypic TF interactions.
Based on known TF target genes, we searched significant motif pairs in the
promoters of the common target genes of two TFs. We inferred TF interaction if
we found a significant motif pair.

Nucleic Acids Research, 2006, Vol. 34, No. 3 919



11 476 possible TF pairs, we found that 300 of them have
statistically significant interactions, which involve 77 TFs
(Supplementary Figure 1).

To examine possible interaction of a single TF with itself,
we examined potential ‘homotypic TF–TF interactions’ with
an altered Motif-PIE setting so that only homotypic motif pairs
were under consideration (Supplementary Figure 2). With a
threshold setting of 3.6 (95th percentile of the random distri-
bution), 45% (69/152) of the TFs were predicted to have
homotypic interactions. Note that in some cases, the predicted
‘homotypic’ interactions may actually represent interaction
between two distinct TFs that share the same binding motif.

Table 1 lists some representative predictions. Mbp1 and
Swi4 (denoted as Mbp1:Swi4) are known to form a complex
to regulate cell cycle process (20). Motif-PIE detected a sig-
nificant motif pair from the promoters of their known target
genes, which corresponds to known binding sites of these
two factors. Motif-PIE also predicted many previously
unknown TF interactions based on significant motif pairs.
In most cases, the predicted motif sequences are similar to
known binding motifs. The average similarity between pre-
dicted and known motif sequences for the heterotypic TF pairs
is 0.763. Also, the average similarity for the homotypic TF
pairs is 0.874 (see Materials and Methods for definition of
similarity). These high similarities indicate that Motif-PIE
performs well in discovering significant motif pairs, and the
detected motifs are highly likely to correspond to the input
TFs. However, for two factors without known binding motifs
(e.g. Cup9:Yap6 in Table 1), we cannot make an association
between predicted motif sequences and their binding TFs. The
assignment of first and second motifs in the Table (column 3)
is arbitrary. For example, the first motif (GGCAC) is not
necessary to be the binding motif of Cup9. The main purpose
of Motif-PIE is not to predict single TF binding motif. Instead,
it is used to detect possible interacting motif pairs and to
infer TF interactions based on the motif pairs. The entire
list of our predictions can be found in Supplementary Table 1.

Distance constraint for interacting motif pairs

For interacting TF proteins, it is conceivable that they must
satisfy certain spatial requirements to have a functional

interaction. Consequently, their corresponding binding motifs
may demonstrate characteristic distance relationships in
promoter sequences. To explore this possibility, we calculated
the distance distribution of motif pairs in their target
promoters.

Figure 2 shows some typical distance distributions for
interacting motif pairs. The analysis revealed that several
interacting motif pairs demonstrate a preference for specific
separation distances. For example, the distances between
motifs for Dig1 and Ste12 (Dig1:Ste12) have a predominant
peak at 34 bp, whereas the peak for Gat3:Yap5 is at 49 bp.
Compared with the random expectation for the distance
distribution (dashed lines, see Materials and Methods),
these peaks are highly significant. A similar observation
was true for homotypic interactions, such as Mcm1:Mcm1
with a distance peak at 43 bp (Figure 2C).

We defined a threshold for significance, and the peaks above
the threshold are called characteristic distances for the motif
pair. The threshold was corrected for multiple hypothesis test-
ing and defined as �log(p) ¼ 4.93 (see Materials and Methods
for details). According to this threshold, 154 of 300 detected
motif pairs have one or more characteristic distances, which is
remarkably larger than the expected number from random
events (300 · 1% ¼ 3). It indicates that our detected motif
pairs are much more likely to have distance constraints than
are random motif pairs.

From the distribution of characteristic distances, we found
that 75% of the characteristic distances are smaller than
166 bp, with 25% sporadically distributed in the broad region
ranging from 166 to 2536 bp (Figure 2E). The occurrence of
short genomic distances between motif pairs is suggestive of
possible physical interaction between their respective TFs.
The finding that some pairs have large characteristic distances
may reflect secondary structure DNA looping or indirect
interaction through complex formation.

We further explored the biological relevance of the char-
acteristic distances by looking at the co-expression of their
target genes. The degree of co-expression of gene groups
targeted by a motif pair with a characteristic distance is
significantly higher than that by a motif pair without
characteristic distances (Figure 2F). Thus, characteristic
distances provide an additional constraint for TF interaction.

Table 1. Representative results of predicted motif pairs

Input TF pair Known binding motifs Predicted top motif pair Known TF–TF interaction �log(p)

Mbp1:Swi4 ACGCGTnA:TTTTCGCG ACGCG:CGCGa 1 25.6
Fkh1:Fkh2 TTGTTTACST:TTGTTTACST TTGTTTA:TGTTTA 1 17.0
Msn4:Swi5 CCCCT:KGCTGR CCCTg:caGCcGc 16.7
Fkh2:Swi6 TTGTTTACST:ACGCGT TGTTTAC:ACGCG 16.2
Fkh2:Mbp1 TTGTTTACST:ACGCGTnA TTGTTTA:gACGCG 16.1
Ste12:Swi6 RTGAAACA:ACGCGT cAcGAAA:ACGCG 14.2
Pdr1:Rap1 CCGCGG:ACACCCATACATTT GCGG:ACCCA 14.0
Cup9:Yap6 N.A.:N.A. GGCAC:TGCAGG 13.7
Rlm1:Swi6 CTAWWWWTAG:ACGCGT AAACTA:aACGCG 13.6
Fkh1:Swi6 TTGTTTACST:ACGCGT TTGTTTA:ACGCG 13.5
Mcm1:Swi6 TTWCCCnWWWRGGAAA:ACGCGT ATCGGGA:ACGCG 12.9
Fkh2:Mcm1 TTGTTTACST:TTWCCCnWWWRGGAAA TGTTTAC:TAGGA 1 11.3
Ace2:Fkh1 GCTGGT:TTGTTTACST GCTGGTt:TcTTTAg 11.2
Ino2:Ino4 CATGTGAAAT:CATGTGAAAT CATGTGA:caCATGC 1 10.4
Msn4:Rap1 CCCCT:ACACCCATACATTT CACCCA:CCCCCA 9.4
Mcm1:Ste12 TTWCCCnWWWRGGAAA:RTGAAACA GGAAAtt:TGAAACA 1 9.2
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We have therefore designed Motif-PIE so that motifs pairs
with characteristic distances are given a higher significance
than those without. However, motif pairs without distance
preference are not excluded because some known interacting
TF pairs, such as Hir1:Hir2 (Figure 2D), do not show evidence
of a characteristic distance.

Orientation constraint for interacting motif pairs

In addition to characteristic distances, we also explored
the orientation of TF DNA binding sites among motif pairs.
Orientation was defined as the relative directions of a
motif pair on the genome sequence. Four possible relative
orientations were examined for each motif pair: one divergent

(opposite directions away), one convergent (opposite direc-
tions towards) and two tandem orientations (Note that they
have different interaction interfaces) (Figure 3).

To determine if there is any orientation preference for
an interacting motif pair, we defined a quantity Po as the
fraction of the most dominant orientation. In an even distri-
bution of the four orientations, there would be no orientation
preference and Po ¼ 0.25 (see random distribution in
Figure 3A). A large Po indicates strong orientation preference
(i.e. one orientation is significantly over-represented).

Figure 3A shows the orientation distribution for the pairs
with and without characteristic distances. One can see that
for those motif pairs without characteristic distances, the
distribution is only slightly shifted toward larger values as

Figure 2. Distance features of interacting motif pairs. The distribution of the distances for each motif pair was plotted to reveal significant characteristic distances.
Examples for both heterotypic (A and B) and homotypic interactions (C) are shown. In these three examples, significant characteristic peaks can be seen. (D) Shows
an example of a motif pair without characteristic peaks. (E) The distribution of characteristic distances for all interacting motif pairs. Most of the characteristic
distances are smaller than 100 bp. (F) The co-expression distribution for target genes of motif pairs. The target genes with characteristic distances are more
co-expressed than those without distance peaks.
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compared with a random distribution. If we only consider the
target genes with characteristic distances, the orientation pref-
erence is dramatically increased. On closer examination, we
see that in most cases (>70%), motif pairs adopt only

one orientation (i.e. Po ¼ 1). These strong orientation
preferences of motif pairs presumably reflect requirements
for particular spatial arrangements for appropriate TF
interactions.

Figure 3. Orientation features of interacting motif pairs. TF pairs can be oriented with respect to each other in four configurations: one towards, one away and two in
the same directions, as shown in the left panel of (A). To examine the orientation preference of a TF pair, we calculated the fraction of the orientation in all instances
that is most over-represented for a given motif pair, which we named Po. As shown by the schematic pie charts below the x-axis, a large Po (e.g. 95%) means that the
dominant orientation represents 95% of the total orientation, whereas a small Po (e.g. 35%) shows almost an even distribution between the four different distributions.
The plot in (A) shows the distributions of Po for all predicted interacting motif pairs, for the subset with characteristic distances, and the background control group. As
shown, those with characteristic distances have a strong preference for one type of orientation. Over 70% of the motif pairs with characteristic distances have
Po ¼ 100%, meaning that all instances for a motif pair exhibit the same orientation. In contrast, the distribution for overall motif pairs is almost the same as that for
background. In (B) and (C), two examples of TF pairs are shown with multiple characteristic distances. At specific distances, labeled A, B or C, each of the distribution
of the orientations are shown below. Interestingly, for both Msn:Pdr1 and Sum1:Yap5, at the characteristic distances, all the motifs share the same orientation, but at
different distances the orientations are different.
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Characteristic distances are associated with orientations

Further analysis of the 154 motif pairs with characteristic
distances revealed that 35.1% have more than one character-
istic distance. When we examined the orientation distribution
at these distances, we found that different distances often
correspond to different preferred orientations. These multiple
characteristic distances may reflect various interaction con-
figurations. For example, the Msn4 and Pdr1 pair has two
characteristic distances: one at 8 bp and the other at 67 bp
(Figure 3B). Interestingly, at a distance of 8 bp, all eight
instances share one orientation, whereas at a distance of
67 bp, all seven instances share a different orientation.
Figure 3C provides another example: Sum1:Yap5 has three
characteristic distances, 7, 9 and 46 bp. For each of the
characteristic distances, all the sites with that distance share
the same relative orientation, yet the common orientation
at each distance is distinct from that at the other distances.
These results reveal the potential spatial nature of TF
physical interactions, with different spatial alignments and
orientations associated with characteristic distances.

Evaluation of prediction by known
protein–protein interactions

The genomic features of interacting motif pairs strongly
suggest possible TF–TF interactions. Although our predicted
‘interactions’ between motifs could include both direct phys-
ical interactions between the factors themselves and indirect
interactions mediated by co-activators or other mechanisms, in
order to have a stringent evaluation scheme, we compared our
predictions with available data on direct protein–protein inter-
actions. We collected a set of known TF–TF interactions from
databases of general protein–protein interactions. We utilized
information from the DIP (21), TRANSFAC (18) and MIPS
(22) databases, but excluded data from high throughput experi-
ments such as yeast two hybrid (Y2H) screen. One reason for
excluding the datasets from high throughput experiments is a
concern about the quality of the data. Another reason is that
Y2H may not be suitable for detecting interactions between
TFs because of the problem of auto-activation (23).

The database survey identified 20 heterotypic and 21 homo-
typic interactions between the 152 TFs. Motif-PIE correctly
predicted 70% (14/20) of the known heterotypic interactions
and 81% (17/21) of the known homotypic interactions
(Table 1). One possible explanation for at least some of the
false negative predictions is that one of the interacting TFs
may not directly bind to the promoter. One such example is
Hap3:Hap4, where Hap4 does not directly bind to DNA but
still has a physical interaction with Hap3 (24).

Motif-PIE also predicted a number of interactions between
TFs that were not present in the available databases. Interest-
ingly, some of these interactions have been reported in the
literature. Examples include Fhl1:Rap1, which was recently
suggested experimentally (25,26) and Yap5:Yap5, which was
confirmed by two independent high throughput experiments
(27,28).

Dynamic effect of TF pair interactions on target genes

Having studied the yeast TF interaction network under static
conditions, we next attempted to explore the possible dynamic
behavior of interacting TF pairs. We examined the effects of

TF pairs on the expression of their downstream target genes
under various physiological conditions. For each of the TF
pairs, we performed a whole-genomic search in the upstream
promoter regions of the genes, and the target genes were
defined as those genes whose promoter sequences contain
the corresponding motif pair.

Researchers have previously used co-expression of common
target genes to predict interacting TF pairs (9–11). Similarly,
we assume that if we observe significant co-expression of
their target genes under one condition, we can infer that the
TF pair is active under this condition; otherwise, the TF pair is
likely to be inactive. This definition of ‘active’ is operational
and based upon the overall expression behavior of the down-
stream targets of the TF pair under consideration. It does
not necessarily mean that none of target genes are activated
by the TF pair, nor does it exclude the possibility that the TFs
could be physically interacting despite not leading to co-
expression. The effect of TF pairs on target gene expression
was calculated by checking the deviation of expression
correlation of target genes from a random expectation (see
Materials and Methods).

The combined database of expression data that was
used consisted of 82 experiments and six conditions
(3,4,29). Those conditions were cell cycle, elutriation, heat
shock, DNA damage, sporulation and drug treatment.
Figure 4A presents the degree of effect of TF pairs on their
target genes under the six conditions. From this plot, one can
see that some TF pairs show effect under all conditions, but
most TF pairs are active only under certain specific conditions.
More than 40% of the TF pairs are active only under a
single condition. In contrast, 16% of the TF pairs are constitu-
itively active under all six conditions (Figure 4A). This finding
suggests that, although a few are constitutively active, most TF
pair interactions are transient and affect downstream target
gene expression only under certain conditions.

Under different conditions, TFs interact with different
partners. In Figure 4B and C, we show two TFs, Ndd1 and
Ste12, that have such varying interactions. Figure 4B shows
the interaction of Ndd1 with other TFs. Ndd1 cooperates with
eight TFs (Swi4, Mcm1, Fkh2, Swi5, Rlm1, Swi6, Ace2
and Mbp1) to affect expression of target genes under all six
conditions. However, when Ndd1 interacts with Fhl1 or Smp1,
there is no cooperative effect under the condition of sporula-
tion. More strikingly, TF pairs Ndd1:Ume6 and Ndd1:Gcr2
are active only in sporulation. Even though Ndd1 alone is
described as a TF involved in the mitotic cell cycle (30),
when we study it in the context of TF interactions, it demon-
strates different activity patterns across the various conditions.
The function of a TF and its activity may be better described
in relation to its interacting partners than to one factor alone.

Figure 4C shows the different interactions of Ste12, which is
known to be activated by a MAP kinase cascade and to activate
genes involved in mating or invasive growth pathways (31,32).
Consistent with its being activated only under specific bio-
logical circumstances, the interactions between Ste12 and its
partners do not show constitutive function, and each pair is
activated under a small number of experimental conditions.
The interactions of Ste12 with its different partners show
different patterns of activity.

We then investigated why some TF pairs are constitutively
active whereas the others are only active under certain
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conditions. We linked the dynamics of TFs to gene essenti-
ality. The essential genes are those that render cells non-viable
if they are knocked out. The gene essentiality in yeast has
been examined on the genomic scale (33,34). Bioinformatics
work has shown that the gene essentiality can be related to

many of the topological characteristics (e.g. hubs) of protein–
protein interaction networks (35). In terms of transcriptional
regulatory networks, TFs with many targets are more likely
to be essential than are other proteins (35). Beyond their
relationships with the static regulatory networks, in this

Figure 4. Dynamic effect of TF pair interactions on target genes. The effect of different TF pairs can be seen by measuring the downstream expression of target genes.
(A) provides a summary view of the different effects of the TF pairs. Each row represents a TF pair; and each column is one physiological condition. The cells show the
degree of co-expression of the target genes of TF pairs under various conditions. The values shown in the color bar are�log(p). Not only is there overall variation, but
also individual TFs may interact with different TF partners under different conditions. (B and C) show two expanded views of (A). They are two examples of TFs
interacting with a number of possible partners, depicting expression correlations under six sets of experimental conditions (noted in the box at the bottom of the
figure). (D) shows how the essentiality of a TF factor is related to the number of conditions under which a TF is active. TFs active in higher numbers of conditions are
more likely to be essential.

924 Nucleic Acids Research, 2006, Vol. 34, No. 3



work we found that TF pairs involved in more conditions were
more likely to include essential genes. The fraction of essential
TFs shows an almost monotonic increase with number of
active conditions. In other words, the TFs active under
more conditions are more likely to be essential than those
that are only active under specific conditions (Figure 4D).

Knowing the dynamic nature of these interactions as well as
the relationship between characteristic distances and particular
orientations, we explored the possible relationship between all
three features. We found that different conditions preferred
particular orientations as well as particular distances. For
example, in Figure 5, the motif pair Rlm1:Rox1 is examined
under all six conditions for all four characteristic distances and
all four orientations. Interestingly, all six conditions show
unique patterns of expression correlations for the subsets of
target genes. Under the sporulation condition the targets with a
characteristic distance of 4 bp show strong gene expression
correlation, whereas under the drug treatment condition the
expression correlation is highest for the genes with a 12 bp
separation (Figure 5B). Furthermore, for these two character-
istic distances, there were distinct orientation preferences as

well (Figure 5C). This example suggests the dynamic nature
and complexity of DNA binding and protein interaction as
well as potential different spatial and physical arrangements
of the TFs.

DISCUSSION

In this paper, we presented a novel sequence-based algo-
rithm to identify transcription factor interactions. Using 1D
genomic features, such as motif sequence and distance, this
algorithm can be used more generally and in instances where
gene expression experiments are not available. We hope that
this new perspective will add to the existing methods of
transcription factor analysis.

With Motif-PIE, the software suite we developed to
implement our sequence-based algorithm, we were able not
only to recover many known S.cerevisiae TF interactions, but
also to make predictions about novel TF interactions and their
targets. Using data from experimentally verified ChIP-chip
experiments, we searched for statistically significant motif
pairs over various combinations of single motifs—not an

Figure 5. Integration of the spatial relationship and dynamic nature of the TF interactions. Under different conditions, there is a different preference for different
distances. These different distances are shown clearly in (A). (B) shows co-expression of target genes with different characteristic distances under different
conditions. With each of the distances, the associated orientation distribution is shown in (C). This example shows how under different conditions, there is a clear
association with particular distances and orientations.
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insignificant computational problem. Based on stringent stat-
istical criteria, we predicted 369 significant interactions,
including both homotypic and heterotypic interactions.

More detailed investigation revealed many interesting prop-
erties of the identified TF pair interactions. The analysis
demonstrated that, in general, short distances between binding
sites are preferred over longer distances. Of potentially greater
significance, we found that there are specific and characteristic
distances that are preferred for many TF motifs, and that these
characteristic distances are TF-dependent. Moreover, these
characteristic distances show strong preferences for particular
orientations of the TF motifs, possibly reflecting physical
constraints on the 3D interactions between TFs. Thus, TFs
do not seem to interact arbitrarily at any distance, but to
have specific preferences. Such information may be useful
in aiding ongoing efforts to model the physical and spatial
interactions between TFs.

We also explored the dynamics of TF interactions, i.e.
how they vary according to a cell’s physiological state. It is
of course well known that as an organism goes through
different stages of growth or is presented with various
environmental conditions, TF activity is modulated to modify
gene expression patterns (36,37). The dynamic nature of TF
interactions was analyzed for six different conditions
involving 82 microarray experiments. Not only did this ana-
lysis demonstrate that there are subsets of computationally
determined TF interactions that show distinct activity patterns
across multiple states, it also indicated that those TFs that
are constitutively active are more likely to be encoded by
essential genes.

Finally, we found that even the same TF pair may behave
differently under different conditions, with different charac-
teristic distances and different orientations. This finding sug-
gests that interactions between the same two TFs can have
distinct transcriptional effects depending on the relative ori-
entation and distance between their respective binding sites. It
should be noted that the occurrence of such spatially variable
interactions is not rare—�30% of the interactions we identi-
fied fell into this class. The molecular basis for such spatially
dependent activities is unclear, but potentially could be
dependent upon interaction with distinct sets of co-factors.

Based on the results discussed above, we feel that Motif-PIE
can be a useful addition to the armamentarium of methods
currently available to study TF interactions. However, it cer-
tainly has a number of limitations, as well as ample room for
further improvement and development. For instance, in this
study we did not consider two overlapping binding sites; there-
fore, we would miss those cases in which two TFs compete for
the same or overlapping binding sites. Also, we are aware that
short inter-motif distances can be attributed to dimeric TFs,
such as basic leucine zippers. Consequently, we might dis-
cover two segments of one TF binding sequence instead of two
independent binding sites. We need to improve our algorithm
to distinguish these two situations. One possible solution is to
expand current vocabulary of motifs (5 to 7mers) by including
motifs with spacer segments between conserved sites. An
additional issues is that it is often not a trivial problem to
associate a detected motif sequence with its respective binding
TF, both because (i) in some situations the identified motif
does not resemble a known TF binding site and (ii) even when
the identified motif does resemble a known binding site,

multiple TFs can bind to the same or similar DNA sequences.
These issues are difficult to solve with a purely computational
approach, and would likely be best addressed by combin-
ing programs such as Motif-PIE with laboratory-based
experimental studies.

Having demonstrated that additional features of TF inter-
actions, such as the distance between binding sites, orientation
of sites and condition/time of activity, can be important, we
can use these features for future predictions. We can poten-
tially define ‘super-motifs’ that include not only the sequence
of the binding sites, but also multiple sites with set distances
between them with a particular orientation. This capability can
greatly increase prediction specificity for genomic scans. In
addition, this system can be applied to organisms, such as the
human, and it can potentially help elucidate the mechanisms of
gene regulation in diseases, such as cancer. With these addi-
tional features, we can better understand the gene regulatory
networks in eukaryotic systems.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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