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ABSTRACT Revealing the ecological roles of the core microbiota in community
maintaining and soil nutrient cycling is crucial for understanding ecosystem func-
tion, yet there is a dearth of continental-scale studies on this fundamental topic in
microbial ecology. Here, we collected 251 soil samples from adjacent pairs of maize
and rice fields at a continental scale in eastern China. We revealed the major ecolog-
ical roles of the core microbiota in maintaining complex connections between bac-
terial taxa and their associations with belowground multinutrient cycling. By identi-
fying the habitat preferences of the core microbiota, we built a continental atlas for
mapping the spatial distributions of bacteria in agro-soils, which helps forecast the
responses of agricultural ecosystems to anthropogenic disturbance. The multinutri-
ent cycling index for maize and rice soils was related to bacterial a-diversity and
B-diversity, respectively. Rice soils exhibited higher bacterial diversity and closer bac-
terial cooccurrence relationships than maize soils. In contrast to the macro- or micro-
ecological latitudinal richness patterns in natural terrestrial ecosystems, the bacteria
in maize soils showed higher richness at high latitudes; however, this trend was not
observed in rice soils. This study provides a new perspective on the distinct bacterial
biogeographic patterns to predict the ecological roles of the core microbiota in
agro-soils and thus helps manage soil bacterial communities for better provisioning
of key ecosystem services.

IMPORTANCE Disentangling the roles of the core microbiota in community main-
taining and soil nutrient cycling is an important yet poorly understood topic in mi-
crobial ecology. This study presents an exploratory effort to gain predictive under-
standing of the spatial atlas and ecological roles of the core microbiota. A
systematic, continental-scale survey was conducted using agro-soils in adjacent pairs
of maize (dryland) and rice (wetland) fields across eastern China. The results indicate
that the core microbiota play major ecological roles in maintaining complex connec-
tions between bacterial taxa and are associated with belowground multinutrient cy-
cling. A continental atlas was built for mapping the bacterial spatial distributions in
agro-soils through identifying their habitat preferences. This study represents a sig-
nificant advance in forecasting the responses of agricultural ecosystems to anthropo-
genic disturbance and thus helps manage soil bacterial communities for better pro-
visioning of key ecosystem services—the ultimate goal of microbial ecology.

KEYWORDS agricultural ecosystems, continental atlases, core microbiota,
multinutrient cycling

oil microorganisms, representing one of the largest biodiversity reservoirs, partici-
pate in a variety of ecological processes in terrestrial ecosystems (1-3). For example,
microorganisms undertake soil decomposition and mediate C, N, S, and P biogeochemi-
cal cycles (2, 3). In general, ecosystems perform multiple simultaneous functions and
services (ecosystem multifunctionality), which depend on the ecological roles of the
organisms living within a given area (4). Existing research on the links between
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biodiversity and ecosystem multifunctionality has mainly focused on plants over the
past 2 decades (5-7). The diversity of soil organisms is known to promote ecosystem
multifunctionality under controlled experimental conditions (3, 8), yet relationships can
differ geographically due to spatial variation in abiotic factors (9). At large spatial scales,
positive relationships are observed between microbial diversity and ecosystem multi-
functionality in natural habitats (10), which may be primarily mediated by climate (9).
Agricultural fields are typical human-managed terrestrial ecosystems essential for
global food supply. Due to long-term agricultural land uses, soil physicochemical
properties and ecosystem processes may vary compared with those in natural ecosys-
tems, resulting in distinct microbial community assemblage patterns (11). Nutrient
cycling is the most important agricultural ecosystem process for crop yields and
supporting human welfare. Therefore, understanding the important factors involved in
soil functionality linked to nutrient cycling is critical for managing human-dominated
ecosystems. Currently, we still have limited knowledge on the relationships between
microbial diversity and soil multiple-nutrient cycling in agricultural ecosystems, espe-
cially across different environments at continental scales.

In a particular type of habitat, a suite of members is broadly distributed among
microbial communities at different locations, defined as the core microbiota (12, 13).
Discovering such a core microbiota is critical to understand the assemblage and
stability of microbial communities (12). Recently, a global atlas of the dominant soil
bacteria in natural ecosystems was built, and a “most wanted” list was narrowed down
to improve our knowledge of the spatial distributions of soil bacteria and their
contributions to ecosystem functioning (14). However, we still lack a predictive under-
standing of the ecological attributes of individual bacterial taxa in agricultural ecosys-
tems and their environmental preferences, traits, and metabolic capabilities. In addi-
tion, whether there exists a core microbiota of bacterial communities that are abundant
and ubiquitous across agricultural soils from sites located far apart and, if so, whether
this plays a major ecological role remain critical issues to resolve if we are to advance
our understanding of soil bacterial community assemblage. Given that soil microor-
ganisms rank among the most abundant and diverse groups of organisms on Earth, it
is challenging to clarify their specific ecological attributes and contributions to ecosys-
tem processes (14, 15). Moreover, agricultural ecosystems can be separated into
wetland (e.g., paddy) and dryland (e.g., maize). Due to the differences in oxygenation,
irrigation management, and agronomic practices, microbial diversity patterns are likely
to be different in wetland and dryland soils. Presently, the fundamental processes
underlying microbial biogeographic patterns remain poorly understood in these two
distinct agricultural ecosystems, and this impedes our ability to predict agricultural
ecosystem responses to current and future environmental changes.

Maize and rice are globally important crops, producing most of the world’s agricul-
tural calories (16). Both of the crops are widely cultivated across China, making them
suitable models for assessing the above-mentioned broad-scale questions. Here, we
present a large-scale soil survey conducted across eastern China, including 126 maize
and 125 rice fields under long-term cultivation. Most soil samples were collected from
adjacent pairs of maize and rice fields at the same time to allow us to probe the
influence of spatial scale and climatic factors on microbial diversity patterns. We
analyzed bacterial diversity in soil samples by sequencing 16S rRNA genes and calcu-
lated a soil multinutrient cycling index based on measurements of edaphic variables
associated with nutrient cycling. The aims of the present study were to (i) identify the
core microbiota and construct a continental atlas for prediction of spatial distribution
of soil bacteria in maize and rice fields and (ii) explore the ecological roles of the core
microbiota in maintaining the connections between bacterial taxa and their potential
associations with soil multinutrient cycling. Our findings provide insight into the spatial
distributions and ecological roles of the core microbiota in agricultural ecosystems and
thus help manage soil bacterial communities for better provisioning of key ecosystem
services.
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FIG 1 General patterns of bacterial - and B-diversity in soil samples from maize and rice fields in eastern China. (A) Differences in a-diversity (operational
taxonomic unit [OTU] richness and Shannon index) were estimated for maize and rice soils. Blue asterisks indicate that the a-diversity index was significantly
higher in rice soils (***, P < 0.001; Wilcoxon rank sum test). Spatial distributions of OTU richness were mapped, and their associations with mean annual
temperature (MAT) for each pairwise set of soil samples were estimated via linear least-squares regression analysis. Cross-validation (CV) of the maps was based
on Pearson correlation between the predicted and observed values at each sampling site. (B) Constrained analysis of principal coordinates (CAP) showing the
B-diversity patterns between maize and rice soils and among different soil types. Eighty percent confidence ellipses are shown around each group. Similarity
values among the samples between maize and rice soils (cultivation) and among soil types (soil type) were examined via the ANOSIM test and are shown at
the bottom of the plot. The constraints of the CAP model are cultivation and soil type. The CAP model and its first two axes and terms were significant (P <
0.01; by permutation tests).

RESULTS

Bacterial diversity patterns in maize and rice soils. Across all samples (see
Fig. ST1A in the supplemental material), we observed substantial differences in edaphic
properties between maize and rice soils (see Fig. S2 in the supplemental material),
although most soil samples were collected from adjacent pairs of fields. Cation ex-
change capacity (CEC), organic matter (OM), dissolved organic carbon (DOC), total
nitrogen (TN), ammonium (NH,-N), microbial biomass carbon (MBC), microbial biomass
nitrogen (MBN), total sulfur (TS), available sulfur (AS), and available iron (AFe) were
significantly higher in rice fields. In contrast, nitrate (NO5-N), total phosphorus (TP), and
available potassium (AK) were higher in maize soils.

We identified a total of 13,222,875 high-quality sequences, which were clustered
into 32,107 operational taxonomic units (OTUs) based on 97% sequence similarity. First,
we determined bacterial a-diversity, including OTU richness and Shannon index. The
overall a-diversity indices were significantly higher in rice soils than maize soils
(Fig. 1A). When we modeled the spatial distributions of OTU richness using a kriging
interpolation method, maize soils showed a greater value at high latitudes than low
latitudes; however, this trend was not observed in rice soils. In addition, significant and
negative linear regressions were found between bacterial a-diversity and mean annual
temperature (MAT) for maize soils but not rice soils. Second, we estimated bacterial
B-diversity based on Bray-Curtis distance. Constrained analysis of principal coordinates
(CAP; Fig. 1B) and nonmetric multidimensional scaling ordination (NMDS; see Fig. S1B
in the supplemental material) showed that soil samples from maize and rice fields
formed distinct clusters in the ordination space, with significant differences being
found at taxonomic levels (analysis of similarities [ANOSIM]). In addition, we observed
significant differences in bacterial community among different soil types (P < 0.001).
The different distributions of bacterial taxa between maize and rice soils and among
soil types are detailed in the supplemental material.
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Identifications and spatial atlases of core bacterial taxa. To identify the core
microbiota, we selected the most abundant and ubiquitous OTUs in all soil samples. A
total of 1,038 and 1,383 OTUs were denoted as the core bacterial taxa in maize and rice
soils, respectively, accounting for 4.1% and 5.0% of all observed taxa. However, these
taxa accounted for, on average, 67.5% and 68.5% of sequences across all samples from
maize and rice fields, respectively (see Tables S1 and S2 in the supplemental material).
These core taxa were mainly classified into Proteobacteria, Acidobacteria, Actinobacteria,
and Chloroflexi. To limit colinearity effects between variables, we used variable cluster-
ing to assess the redundancy of environmental variables, and the variables with
Spearman’s correlation coefficients of >0.6 were removed in the further analysis (see
Fig. S3 in the supplemental material). To seek for the major environmental variables in
shaping bacterial community composition, we performed a distance-based linear
model and forward selection procedure. Soil pH and MAT were found to be the most
important variables for bacterial community assemblage in maize and rice soils, re-
spectively (Fig. 2A and D). Since each individual soil type occurs across a broad
latitudinal range, we examined whether MAT is another important variable for bacterial
B-diversity independent of soil type. The permutational MANOVA (ADONIS) analysis
showed that MAT significantly affected the bacterial community in each soil type (see
Table S3A in the supplemental material). Thus, we focused on these two variables when
identifying the ecological preferences of the core bacterial taxa based on Spearman
correlations. Since some taxa were simultaneously correlated with both pH and MAT,
we selected the correlations with higher coefficients as the preferred ecological attri-
butes for the particular taxa. In total, the core taxa were grouped into four ecological
clusters sharing environmental preferences for (i) high pH, (ii) low pH, (iii) high MAT,
and (iv) low MAT (Fig. 2; also see Tables S2 and S3 in the supplemental material). The
strong relationships between environmental variables and relative abundance of the
corresponding ecological clusters indicated reasonably well-defined ecological clusters
(Fig. 2).

To map the spatial distributions of the core taxa, we performed kriging interpola-
tions on the relative abundance of each ecological cluster in maize and rice fields
separately (Fig. 3A). Our maps provide estimates of the regions where we would expect
the clusters of core bacterial taxa to be most abundant (Fig. 3A). The low- and high-MAT
clusters were relatively abundant in low- and high-MAT regions, and the low- and
high-pH clusters were particularly abundant in areas known for their low- or high-pH
soils, respectively. Each of the ecological clusters identified included taxa belonging to
multiple genera (Fig. 3A). We found that Sphingomonas was present in low-pH and
high- and low-MAT clusters in both maize and rice fields. Meanwhile, Lysobacter and
Nocardioides preferred high pH in maize fields. Mizugakiibacter and Bradyrhizobium
were abundant in low-pH clusters in both maize and rice fields. In high-MAT regions,
Clostridium and Bacillus were abundant in both maize and rice fields. RB41 preferred
low-MAT environments in both maize and rice fields. In rice fields, Geobacter was
consistent in low-pH as well as high- and low-MAT environments. Moreover, correlation
network analyses were used to cross-validate whether bacterial taxa sharing similar
habitats and environmental preferences tended to cooccur. All core taxa were included
in the network analysis, while those taxa having no robust correlation relationships
(Spearman’s correlation coefficients of >0.6 and false-discovery-rate-corrected P values
of <0.01) with other taxa were lost during the generation of the networks. We found
that nodes within the same ecological clusters (e.g., high pH, red nodes) were more
connected (Fig. 3B).

Ecological roles of core microbiota. We then explored the ecological roles of the
core microbiota in maintaining the connections between bacterial taxa. Metacommu-
nity cooccurrence networks were established based on correlations for maize and rice
soils, respectively. The network of maize soils consisted of 2,451 nodes (i.e., OTUs) and
15,982 edges; the rice soil network captured 2,718 nodes and 27,400 edges (Fig. 4A).
The degree, betweenness, closeness, and eigenvector centrality of different subcom-
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FIG 2 The main environmental drivers and ecological clusters of the core microbiota identified in soil bacterial communities from maize and rice fields. The
main edaphic and climatic factors that influenced the bacterial community assemblage in maize (A) and rice (D) soils were identified by CAP analysis. Sample
points are colored according to soil pH (maize panel) and mean annual temperature (MAT; rice panel). Color bars from red to blue represent values from small
to large, respectively. Ecological clusters of the core bacterial taxa in maize (B) and rice (E) soils were explored by Spearman correlations between the relative
abundance of each core bacterial taxon and the major environmental drivers (soil pH and MAT). Four ecological clusters (high pH, low pH, high MAT, and low
MAT) were identified and are displayed as heat maps. Relationships between the relative abundance of the taxa assigned to each ecological cluster and their
major environmental drivers in maize (C) and rice (F) fields are shown.

munities were significantly higher (P < 0.001; Wilcoxon rank sum tests) for the core taxa
than for other taxa (Fig. 4B). To confirm these observations, we generated subnetworks
for each subcommunity. The average degree, clustering coefficient, and graph density
were all higher in the core subnetworks than in the other subnetworks. In contrast, the
average path length and diameter were lower for the core subnetworks (Table 1).

To disentangle the linkages between the core microbiota and soil multinutrient
cycling in agricultural ecosystems, we applied a random forest (RF) analysis to identify
the main microbial contributors to the soil multinutrient cycling index (see Fig. S4 in the
supplemental material). We observed that the soil multinutrient cycling index for maize
and rice soils was related to bacterial a-diversity and B-diversity, respectively. These
observations were supported by multivariate regression analysis (see Table S3B in the
supplemental material). Furthermore, we quantified the contributions of core and
noncore subcommunities to the soil multinutrient cycling index (Fig. 4C). In both maize
and rice soils, the bacterial diversity of the core microbiota, rather than other noncore
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FIG 3 Habitat preferences of the core microbiota in soil bacterial communities in maize and rice fields. (A) A continental atlas of the core bacterial taxa in soil
bacterial communities in maize and rice fields. The map shows the predicted spatial distributions of the relative abundance (RA%) of the four major ecological
clusters of the core bacterial taxa sharing habitat preferences for high pH, low pH, high MAT, and low MAT. Cross-validation (CV) of the map was based on
Pearson correlation between the predicted and observed values at each sampling site. (B) Network diagram with nodes (core bacterial taxa) colored according
to each of the four major ecological clusters identified in maize and rice fields. The size of each node is proportional to the relative abundance, and the thickness
of each connection between two nodes (edges) is proportional to the value of Spearman’s correlation coefficients.

taxa, made a major contribution to predicting the soil multinutrient cycling index.
These results were supported by a multivariate regression analysis (Table 2), collectively
pointing to strong associations between the core microbiota and belowground multi-
nutrient cycling.

Further, we used multiple regression modeling to evaluate the biological associa-
tions of the core microbiota at the class level with variations in soil available nutrient
levels. We found that different bacterial classes contributed to the variations in nutrient
levels in maize and rice soils (Fig. 5). For example, the Fimbriimonadia abundance was
an important variable for predicting many nutrient levels in maize soils, including AN,
AP, and DOG; however, this class only contributed to DOC level in rice soils. This result
indicates the importance of Fimbriimonadia in soil nutrient cycling of maize fields,
rather than rice fields. Other important variables for predicting soil nutrient properties
in maize fields were the Flavobacteriia abundance for AFe, the Cytophagia and Phyci-
sphaerae abundances for AK, and the Bacilli abundance for AFe and AP. In rice fields, the
Clostridia and Bacilli abundances were the most important variables for predicting NH,,,
while the Anaerolineae and Ktedonobacteria abundances were predictors for AK and AP,
respectively.
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FIG 4 Ecological roles of the core microbiota in soil bacterial communities in maize and rice fields. (A) Metacommunity cooccurrence networks of core bacterial
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0.01. Alpha-Richness, OTU richness; Alpha-Shannon, Shannon index; Beta-NMDST1, the first axis of nonmetric multidimensional scaling analysis; Beta-NMDS2, the
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Distinct distributions and cooccurrence patterns of maize- versus rice-enriched
taxa. To explore the distributions and cooccurrence patterns of bacterial communities,
we identified significantly enriched OTUs for maize and rice soils, separately. In total,
3,484 and 6,170 OTUs were significantly higher in relative abundance in maize and rice
soils, respectively. Across all sampling sites, the number and relative abundance of
maize-enriched OTUs were higher in northern fields than southern counterparts,
whereas the opposite trend was observed for rice-enriched OTUs. These results were
verified by significant linear regression relationships, indicating distinct bacterial com-
munity assemblages between these two agricultural ecosystems (Fig. 6A). Next, we
inferred a metacommunity cooccurrence network based on correlation relationships
(Fig. 6B), capturing 74,966 associations among 2,978 bacterial OTUs. Rice- and maize-
enriched OTUs clearly formed independent modules, and rice-enriched OTUs exhibited
much closer interconnections.

To verify this observation, we examined the degree, betweenness, closeness, and
eigenvector centrality of different groups of OTUs (Fig. 6C). The values of these
topological features were significantly higher (P < 0.05) for rice-enriched OTUs than
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TABLE 1 Topological features of different bacterial networks in the maize and rice soils

Clustering Avg path Graph

Category Avg degree coefficient length Diam density Modularity
Maize

Core 7.57 0.54 5.15 11.68 0.02 0.61

Others 3.72 0.44 10.30 17.05 0.01 0.81
Rice

Core 9.55 0.54 451 7.83 0.02 0.60

Others 5.47 0.44 7.04 11.55 0.01 0.76
Whole 25.17 0.54 5.90 11.86 0.02 0.32
Maize 9.33 0.42 3.95 8.85 0.02 0.44
Rice 45.06 0.54 2.65 5.88 0.07 0.21

maize-enriched OTUs. Additionally, we generated subnetworks for rice- and maize-
enriched communities and calculated a set of network-level topological features (Ta-
ble 1). The average degree, clustering coefficient, and graph density were all higher in
the rice subnetwork than the maize subnetwork, suggesting that rice-enriched OTUs
were more connected. Additionally, the average path length and diameter were lower
for the rice subnetwork, indicating closer relationships among rice-enriched commu-
nities.

DISCUSSION

The soil microbial diversity promotes multifunctionality in natural terrestrial ecosys-
tems (9, 10). Agricultural soils are typically Anthrosols influenced by human activity, and
long-term agricultural land uses may alter soil microbial biogeographic distributions
and microbially mediated nutrient cycling in agricultural ecosystems compared with
natural ecosystems. Here, we revealed that the core microbiota play a major role in
maintaining soil bacterial interactions while being strongly associated with below-
ground multinutrient cycling in agricultural fields across eastern China. We also built a
continental atlas of the core bacterial taxa based on their habitat preferences, which
shows the general spatial distributions of soil bacteria in agro-soils. The distinct
biogeographic and ecological diversity patterns of bacterial communities determined
the contributions of bacterial a-diversity and B-diversity to soil multinutrient cycling in
maize and rice fields, respectively.

Long-term agricultural land uses can influence the soil environment, resulting in
different microbial metabolic strategy and biogeography (11). Here, we observed an
increasing trend in bacterial richness with increasing latitude in maize soils but not in

TABLE 2 Variation explained by bacterial a- and B-diversity indices of core and other
bacterial subcommunities in the regression models of soil multinutrient cycling index for
maize and rice fields

Soil multinutrient
cycling index (%)

Diversity index Maize Rice
Core

Alpha-Shannon 9.45

Alpha-Richness 1.08

Beta-NMDS1 4.69 9.72

Beta-NMDS2 2.16
Others

Alpha-Shannon 3.04

Alpha-Richness

Beta-NMDS1 2.25

Beta-NMDS2 2.09
Total 20.16 16.21
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FIG 5 Potential biological contributions of the core microbiota at the class level to soil nutrient properties. Correlation and best
multiple regression model for major taxonomic categories (class) of the core microbiota in maize and rice fields. Circle size represents
the variable’s importance (i.e., proportion of explained variation calculated via multiple regression modeling and variance decom-
position analysis). Colors represent Spearman correlations. AFe, available iron; AK, available potassium; AN, available nitrogen; AP,
available phosphorus; AS, available sulfur; DOC, dissolved organic carbon; NH,, ammonium-nitrogen; NO,, nitrate-nitrogen.

rice soils. The latitudinal richness pattern we observed in maize fields is contrary to
those most widely found in natural terrestrial ecosystems (17, 18). This discrepancy may
be attributed to the differences between human-managed agricultural and natural
terrestrial ecosystems. In addition, distinct irrigation management and agronomic
practices could explain, at least in part, the different latitudinal richness patterns
between maize and rice fields. Unlike dryland soils, waterlogged paddy soils provide a
unique habitat as oxygen-limited conditions occur during constant flooding manage-
ment (19). Due to dry-wet alternation, the bacterial communities in rice fields comprise
both aerobic and anaerobic taxa; this explains the higher bacterial a-diversity we
observed in rice fields than in maize fields. Among the environmental factors tested,
soil pH had the biggest influence on the bacterial community structure in maize soils,
while the bacterial assembly in rice soils was mainly correlated with MAT. These
findings indicate the distinct diversity and assembly patterns of the soil bacterial
community between maize and rice fields. Previous studies have demonstrated that soil
microbial diversity promotes multifunctionality in terrestrial ecosystems, mainly natural
dryland soils (9, 10). In the present work, we found that the soil multinutrient cycling
index for maize and rice soils was related to bacterial a-diversity and B-diversity,
respectively. In rice fields that are waterlogged during the growing season, metabolic
cooperation via syntrophy between bacterial groups could play potential roles in the
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FIG 6 Distinct spatial distributions and cooccurrence patterns of maize- and rice-enriched bacterial taxa. (A) Relationships of the number of OTUs and the
relative abundance of enriched taxa versus MAT were estimated for each pairwise set of soil samples via linear least-squares regression analysis. Cross-validation
(CV) of the map was based on Pearson correlation between the predicted and observed values at each sampling site. (B) Metacommunity cooccurrence
networks of bacterial taxa in maize and rice soils based on a Spearman correlation analysis. A colored cooccurrence network is shown for maize- or rice-enriched
taxa. A connection indicates a strong correlation (Spearman’s correlation coefficient of >0.6) and significance (false-discovery-rate-corrected P value of <0.01).
The size of each node is proportional to the relative abundance of the OTUs; the thickness of a connection between two nodes (i.e., an edge) is proportional
to the value of Spearman’s correlation coefficient. The external associations (black numbers) among each subcommunity are displayed. The numbers in black
below each node represent the inner associations of each subcommunity, and the numbers of nodes in each subcommunity are colored according to the
categories. (C) Unique node-level topological features of different categories of taxa, specifically the degree, betweenness, closeness, and eigenvector centrality.
Box plots that do not share a letter are significantly different (P < 0.05; multiple comparison by Kruskal-Wallis test). Maize, maize-enriched OTUs; Rice,
rice-enriched OTUs; Others, nonsignificantly different OTUs.

survival of the whole community under oxygen-limited conditions (20). This might
explain the major contribution of bacterial B-diversity to soil nutrient cycling in rice
fields. Together, our findings indicate the different performance of ecological diversity
indices in the prediction of the soil multinutrient cycling index between maize and rice
fields.

A better understanding of core (abundant and ubiquitous) soil bacteria is critical for
us to manipulate soil bacterial communities for functional improvements. The global
inventory of the dominant soil bacteria represents a small subset of phylotypes that
account for almost half of the 16S rRNA sequences recovered from natural terrestrial
ecosystems (14). In agricultural ecosystems, Walters et al. (21) performed a longitudinal
study of maize fields, finding seven proteobacterial OTUs as the core microbiome in all
samples (n > 4,800). Additionally, Edwards et al. (22) investigated the root-associated
microbiome in rice fields across California’s Sacramento Valley, suggesting that the
distribution of phyla in the root microbiome of rice may be generally applicable to
terrestrial plants. In the present study, we conducted a larger latitudinal-scale survey of
microbial communities and edaphic properties in soils sampled from adjacent pairs of
maize and rice fields, which allowed for a direct comparison between maize- and
rice-associated microbiomes. The core microbiota we identified in maize and rice soils
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accounted for almost 70% of all bacterial sequences, yet only ~5% of total taxa. There
were 814 core taxa present in both maize and rice fields, mainly belonging to Sphin-
gomonas, Bacillus, Lysobacter, Gaiella, and Ramlibacter. The core taxa assigned to
Granulicella, Acidobacterium, Sphingobium, and Lechevalieria were present only in maize
fields, while the anaerobic genera Anaerolinea, Sporacetigenium, and Syntrophorhabdus
were identified as the unique core taxa for rice soils. This result indicates the prefer-
ences of particular bacteria for a dry or waterlogged soil environment. Comparing our
findings with the global inventory of dominant soil bacteria (14), we found that some
of the core taxa in our agro-soils also occur in natural ecosystems, such as members of
Sphingomonas, Bacillus, Ramlibacter, Nocardioides, Flavisolibacter, and Bradyrhizobium.
Meanwhile, many core taxa identified in our agro-soils occur at low levels in natural
terrestrial ecosystems, such as Bryobacter, Lysobacter, Geobacter, Gaiella, and Thiobacil-
lus; these unique taxa may serve as indicator bacterial groups for agro-ecosystems.

In particular, we built a map for the spatial distributions of the core bacterial taxa at
the continental scale. There were predictable environmental preferences for the core
bacterial taxa in maize and rice soils, and their spatial distributions could be mapped
by the continental atlas. Moreover, we revealed that the core bacterial taxa tended to
cooccur with other taxa sharing a similar habitat preference. Habitat preferences of
bacterial taxa are associated with their ecological attributes (23, 24). For example, we
found the acid-tolerant Bradyrhizobium (25) preferred low-pH environments, whereas
Nocardioides, generally isolated from alkaline environments (26), was abundant in the
high-pH cluster. In addition, lamia, Lentzea, and Mesorhizobium in the high-pH cluster
and Rhodoplanes in the low-pH cluster were coincidentally observed in the previous
work that defined the ecological clusters of high pH and low pH (14). These consistent
lines of evidence strengthen the overall reliability of our predicted environmental
preferences for the core taxa of soil bacteria in agro-soils. In particular, we defined
high-MAT and low-MAT ecological clusters in agricultural fields for the first time.
Interesting results were observed: for example, Clostridium and Bacillus, which can
generate high-temperature-resistant endospores (27), were abundant in high-MAT
regions; in contrast, RB41, Sphingomonas, and Bryobacter preferred low-MAT environ-
ments. Temperature has proven to be an important factor affecting soil microbial
community structure and associated ecosystem functions (28-30). Our findings provide
useful information for predicting the preferred environmental conditions (e.g., low or
high pH and MAT) of specific bacterial taxa and enriching particular taxa in vitro and
therefore increase the probability of their successful cultivation.

Given their ubiquity in a given environment, discovering the ecological roles of the
core bacteria is critical to understanding the assembly and stability of bacterial com-
munities (12). In the network analysis, topological features provide indicators for
evaluating the roles of nodes (31, 32). High values of the topological features indicate
the core and central position of a node in the network, whereas low values indicate a
peripheral position (33, 34). In the present study, the higher values of topological
features we observed for the core taxa indicate that members of the core microbiota
were more often located in central ecological positions than other taxa. A more
connected and complex subnetwork was therefore generated for the core microbiota.
This may be related to the ubiquity of the core microbiota across different sites with
greater environmental variation, which results in their occupation of a wider variety of
ecological niches (33). Furthermore, we demonstrated the major contribution of the
core microbiota, rather than other noncore taxa, to predicting soil multinutrient cycling.
Thus, the core microbiota may play a vital ecological role in maintaining complex
connections between bacterial taxa while being associated with belowground multi-
nutrient cycling. In the present study, the potential involvement of the core taxa in
various soil processes also implies their diverse functions in agro-ecosystems. For
example, Sphingomonas and Geobacter have been reported to participate in herbicide
metabolism (35) and the Fe biogeochemical cycle (36), respectively. Clostridium has
been found to participate in C biogeochemical cycle processes such as organic matter
decomposition (37). Lysobacter, which was found to prefer high-pH regions, displays
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powerful antibiosis effects (38). Phyllobacterium (an N, fixer) and Bacillus (a P solubilizer)
are known as plant growth-promoting bacteria (39, 40), while Nocardioides has been
associated with S-triazine herbicide metabolism (41). The core microbiota are expected
to be critical indicators of key soil processes worldwide, given the strong links between
the distribution of bacterial phylotypes and their functional attributes across the globe
(14).

Bacterial B-diversity exhibits strong habitat-specific patterns (42). Microbial ecolog-
ical diversity patterns in rice and maize soils are likely not the same due to differences
in oxygenation, irrigation management, and agronomic practices. In the current study,
we observed distinct distributions of bacterial taxa that were significantly enriched in
maize and rice fields; these enriched taxa showed negative and positive correlations
with MAT, respectively, across the sampling sites. This suggests that soil bacteria in
agricultural fields can adapt to and/or prefer different climatic conditions under various
patterns of long-term crop cultivation or irrigation. Furthermore, cooccurrence network
analysis revealed closer relationships among soil bacteria enriched in rice fields, which
had a greater influence on other cooccurrences in the community, compared with
maize-enriched species. We propose two possible reasons for our observation in rice
fields: (i) the homogeneous conditions of waterlogged paddy soils increase niche
overlap for more complex interactions between species (43, 44) and (ii) the greater
diversity of aerobic and anaerobic taxa in rice fields is involved in various microbial
processes, including nutrient cycling, resulting in dominant and broad ecological niches
in the interaction network. These results provide a new perspective that distinct
assembly patterns could drive bacterial cooccurrence patterns in maize and rice fields,
resulting in different ecological positions in the network.

Conclusions. This study provides strong evidence to reveal the major ecological
roles of the core microbiota in maintaining complex connections between bacterial
taxa and their associations with belowground multinutrient cycling. The distinct bio-
geographic patterns of bacterial communities between maize and rice soils determine
their different associations with soil multinutrient cycling in these two human-
dominated agricultural ecosystems. Importantly, by identifying the habitat preferences
of the core microbiota, we built a continental atlas for mapping the spatial distribution
of soil bacteria, which helps predict the responses of agricultural ecosystems to
anthropogenic disturbance. Our findings make it possible to predict how soil bacterial
communities are likely to respond to current and future environmental changes and
narrow down the research focus to a few hundred core taxa in the community, thus
facilitating rapid and accurate forecasting of the ecological consequences of ongoing
global environmental change.

MATERIALS AND METHODS

Sample collection. The sampling regions of this study extend from 18.30°N to 48.35°N and from
87.61°E to 99.91°E (intervals of 18 to 3,689 km). We selected agricultural fields under long-term cultivation
with maize and rice as representative dryland and wetland soils, respectively. To ensure appropriate
spatial scale, sampling sites were selected from two adjacent maize and rice fields less than 5 km apart.
In total, 133 locations were selected, comprising 118 paired sites, eight maize-only sites, and seven
rice-only sites, giving 126 maize and 125 rice soil samples (see Fig. S1 in the supplemental material).
During the planting season (July to September 2017), we sampled three plots (area = 100 m?) at each
site and combined five soil cores per plot taken at a depth of 0 to 15 cm. Soil samples from the three plots
at each site were mixed thoroughly to generate the final soil samples. All soil samples were delivered to
the laboratory in sterile plastic bags on dry ice and sieved through a 2.0-mm mesh to remove plant debris
and rocks. A portion of each soil sample was stored at 4°C for the analysis of edaphic factors (pH, CEC,
OM, DOC, and T). AN, NO;-N, NH,-N, TP, AP, TK, AK, TS, AS, TFe, AFe, MBC, and MBN were measured using
standard soil testing procedures (45). Aliquots of soil samples were stored at —20°C for subsequent DNA
extraction. We obtained MAT and MAP values corresponding to the sampling site coordinates from the
WorldClim database (www.worldclim.org). The soil types of samples were obtained from the China Soil
Database (http://vdb3.soil.csdb.cn/), including black, brown, and red soil types from north to south (see
Fig. S1 in the supplemental material).

Illumina sequencing of 16S rRNA genes. Total genomic DNA was extracted from soil samples using
the MP FastDNA Spin kit for soil (MP Biomedicals, Solon, OH, USA) per the manufacturer’s instructions.
Bacterial 16S rRNA gene V4-V5 hypervariable regions were PCR amplified using primers 515F (5'-GTG
CCA GCM GCC GCG GTA A-3’) and 907R (5'-CCG TCA ATT CCT TTG AGT TT-3’) combined with adapter
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sequences and barcode sequences. Purified amplicons were sequenced by Novogene (Beijing, China) on
a HiSeq2500 platform (lllumina Inc., San Diego, CA). Chimera detection and removal were accomplished
using the Gold Chimera-Free reference database via the USEARCH option in the UCHIME algorithm.
Sequences were split into groups according to taxonomy and assigned to OTUs at a 3% dissimilarity level
using the UPARSE pipeline. OTUs with fewer than two sequences were removed, and representative
sequence of each OTU was assigned to a taxonomic lineage by RDP classifier against the SILVA database.

Quantifying the soil multinutrient cycling index. Ecosystems perform multiple simultaneous
functions and services (multifunctionality), rather than a single measurable process. Multiple-nutrient
cycling is therefore the most important terrestrial ecosystem process for supporting human welfare (15).
To quantify this vital provision, we selected eight measured available nutrient properties (DOC, AN, NO,,
NH,, AP, AK, AS, and AFe) to construct a soil multinutrient cycling index analogous to the widely used
multifunctionality index (9, 10, 46). These nutrient properties deliver some of the fundamental support-
ing and regulating ecosystem services (7, 9, 10), especially those essential for crop growth. For example,
N and P are the nutrients that most frequently limit primary production in terrestrial ecosystems (47). NO,
is an important N source for both microorganisms and plants (47). AP is the main P source for plants and
microorganisms, and it is linked to organic matter decomposition (47). K is the third essential macro-
nutrient required by plants; it participates in a multitude of biological activities that maintain or improve
crop growth, such as protein synthesis, enzyme activation, and photosynthesis (48). S and F are
important mediators involved in biological electron transfer (49). To derive a quantitative soil multinu-
trient cycling index value for each site, we normalized (log-transformed as needed) and standardized
each of the eight nutrient properties using the Z-score transformation. These standardized ecosystem
functions were then averaged to obtain this index (10). We used this method to quantify soil multinu-
trient cycling because it is a straightforward and interpretable measure of a community’s ability to
sustain multiple functions simultaneously (7, 9, 10).

Statistical analyses. To correct for sampling effort (number of analyzed sequences per sample),
samples were rarefied at 27,812 sequences per sample for subsequent bacterial community analysis.
Bacterial a-diversity (OTU richness and Shannon index) was calculated using QIIME (http://giime.org/
index.html). Bacterial B-diversity was estimated according to the Bray-Curtis distance between samples.
An ANOSIM test was performed to determine significant differences in bacterial B-diversity between
maize and rice fields and among soil types.

We respectively identified the core microbiota present in soil bacterial communities across maize and
rice fields according to two criteria: (i) we selected highly abundant OTUs that were in the top 10% in
terms of relative abundance across all samples and (ii) we retained ubiquitous OTUs that were present
in more than 80% of all soil samples. These two criteria considered OTUs that were abundant and
ubiquitous across different soil samples (14, 50). To limit colinearity effects between variables, variable
clustering was used to assess the redundancy of environmental variables. The analysis was performed
and plotted using the varclus procedure in the “Hmisc” R package. To test the significance and importance
of the environmental variables for B-diversity, we used a distance-based linear model and forward selection
procedure based on the Bray-Curtis distance matrix by estimating the proportion of variance explained (R?).
These results were displayed by CAP analysis. To test the potential roles of soil pH and MAT in bacterial
community assemblage, we clustered the core bacterial taxa into different ecological preferences based on
these two environmental variables. We conducted Spearman correlations to identify groups of core taxa with
shared habitat preferences. Since some taxa were simultaneously correlated with both pH and MAT, we
selected the correlations with higher coefficients as the preferred ecological attributes for the particular taxa.
We used a heat map to visualize our ecological clusters.

To build predictive maps of the spatial distributions of the core bacterial taxa, we used a kriging
interpolation method to estimate the relative abundance of each ecological cluster in maize and rice
fields, respectively. This analysis was performed using the “automap” package in R, which automates the
interpolation process by automatically estimating a semivariogram and performing kriging. We cross-
validated our maps using autoKrige.cv in the “automap” package. We extracted the predicted relative
abundances of each cluster for the selected soil samples and correlated them with the observed values
at the corresponding sites based on Pearson correlation analysis. The Pearson correlation coefficient and
P value were shown in the map. We did not apply co-kriging interpolation that takes account of the
influence of environmental variables, because (i) we wished only to display the general spatial distribu-
tion patterns of the microbial variables and (ii) high-resolution information on most of the soil variables
was unavailable in agricultural fields at the continental scale (34).

The associations between microbial contributors and soil multinutrient cycling were evaluated by an
RF analysis (10, 51). Bacterial B-diversity indices were quantified using the two axes of an NMDS analysis
(52), including NMDS1 and NMDS2. In the RF models, bacterial a-diversity indices (OTU richness and
Shannon index) and B-diversity indices (NMDS1 and NMDS2) served as predictors for the soil multinu-
trient cycling index. We then used a combined multiple regression model and variance decomposition
analysis to validate the observations of RF analysis. In addition, bacterial diversity indices of the core and
other subcommunities served as predictors for the soil multinutrient cycling index to estimate the
contributions of the core microbiota to ecosystem functions. We also applied the multiple regression
model with variance decomposition analysis to estimate the importance of the core microbiota at the
class level for explaining each soil nutrient property. Class-level information was used in these analyses
because information on microbial functional traits has become increasingly available at this taxonomic
level and class-level taxa allowed us to infer general patterns in the role of microbial community
composition in predicting soil nutrient properties (53).
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To identify significantly enriched bacterial taxa in maize and rice soils, we applied a paired t test of
the relative abundance of each OTU between different sample groups. OTUs of significantly higher
abundance in maize samples were grouped as maize-enriched OTUs, whereas those with a significantly
higher abundance in rice samples were categorized as rice-enriched OTUs, and those with no significant
differences in relative abundance were categorized as “Others.” The differences obtained from paired t
test results were verified to be significant by the Kruskal-Wallis test. Cooccurrence networks were
constructed for bacterial communities among all soil samples. To reduce rare OTUs in the data set,
we removed OTUs with a relative abundance of <0.01%. The Spearman correlation between each
two OTUs was estimated. Robust correlations with Spearman correlation coefficients of >0.6 and
false-discovery-rate-corrected P values of <0.01 were identified to construct networks in which each
node represents one OTU and each edge represents a strong and significant correlation between
two nodes. Six network-level topological features of the different networks were estimated for a set
of metrics: average path length, average degree, graph density, clustering coefficient, diameter, and
modularity. In addition, four node-level topological features were calculated for each node: degree,
betweenness, closeness, and eigenvector centrality. Networks were visualized using the interactive
Gephi platform.

Data availability. The soil bacterial data set is deposited in the Genome Sequence Archive (54) at
the BIG Data Center (55), Beijing Institute of Genomics, Chinese Academy of Sciences, under the
accession number PRICA001121 and is publicly accessible at http://bigd.big.ac.cn/gsa.
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