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Podocyte apoptosis is the common pathological basis for the progression of various
kidney diseases. The overexpression of NOX4, a key enzyme involved in oxidative stress,
has been proved to participate in the occurrence of podocyte apoptosis. Autophagy is a
kind of adaptive response of cells under stress. However, as a “double-edged sword”, the
effect of autophagy on apoptosis in different cells and conditions is complex and variable,
which has not been fully explained yet. Morroniside, extracted from the traditional
medicinal plant Cornus officinalis, has remarkable antioxidant and anti-apoptosis
effects, and has been proven to inhibit the overexpression of NOX4 in kidney tissue.
Therefore, H2O2 was used in this study to explore the effects of autophagy on podocyte
NOX4 overexpression and apoptosis induced by oxidative stress, as well as the protection
mechanism of morroniside in podocytes. The results showed that the autophagy activator
rapamycin, as well as the autophagy inhibitor chloroquine, could induce podocyte
apoptosis cultured in normal condition, and chloroquine could also significantly increase
the NOX4 expression. The NOX4 expression and apoptosis rate of podocytes increased
after H2O2 treatment, the expression of LC3-II decreased, and the expressions of p62,
mTOR, and p-mTOR increased. The intervention of morroniside and rapamycin improved
autophagy activity and inhibited NOX4 overexpression and apoptosis induced by H2O2.
And chloroquine reversed the inhibitory effect of morroniside on NOX4 overexpression
and podocyte apoptosis. Taken together, our results suggest that the expression level of
NOX4 in podocytes is regulated by autophagy activity. Morroniside can reduce oxidative
stress induced podocyte apoptosis by restoring the damaged autophagy flux and inhibit
the overexpression of NOX4.
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INTRODUCTION

Podocytes, also known as glomerular visceral epithelial cells,
attach to the outside of the glomerular basement membrane
(GBM) and participate in the formation of the glomerular
filtration barrier. Podocyte injury is involved in the development
of almost all glomerulopathies, including focal segmental
glomerulosclerosis (FSGS), membranous nephropathy, and
diabetic nephropathy (DN) (Serrano-Perez et al., 2018; Sever
and Schiffer, 2018). Studies have shown that the degree of
podocyte injury is consistent with the severity of proteinuria,
glomerulosclerosis, and renal dysfunction (Brosius and RJ,
2014). The injury or loss of podocytes can directly cause
macroproteinuria and even death in experimental animals
(Trohatou et al., 2017), and more and more researches are
willing to take podocytes as potential therapeutic target for
kidney diseases (Lal and Patrakka, 2018).

Autophagy is a universal cell biology process involving
lysosomes that degrades aging or damaged organelles and
macromolecular proteins. It plays an important role in
maintaining cellular homeostasis in all major types of kidney
cells and is also an adaptive response of cells under stress (Feng
et al., 2015). Current research suggests that autophagy is an
effective self-protection mechanism against apoptosis (Zhao
et al., 2019). As different types of programmed cell death,
autophagy and apoptosis can be induced by similar factors and
inhibit each other through the activities of a series of terminal
molecules (Zhang et al., 2016). More interestingly, a time- and
concentration-dependent relationship between drug-induced
autophagy and apoptosis has been reported: autophagy
induced by short-time and low-dose triptolide inhibits
apoptosis, while autophagy induced by long-time and high-
dose triptolide promotes apoptosis (Zhou et al., 2015). The
results indicate that the regulation of autophagy on apoptosis
may be diverse and affected by the state of the cells. Therefore, an
in-depth study of the regulatory pathways of autophagy on
apoptosis is beneficial to better utilize the cytoprotective effect
of autophagy and avoid injury caused by excessive autophagy.

Oxidative stress is caused by increased production of reactive
oxygen species (ROS) and is a vital pathogenesis of various
kidney diseases (Miranda-Diaz et al., 2016; Zhang et al., 2018).
Nicotinamide adenine dinucleotide phosphate (NADPH)
oxidases (NOXs) are the main enzymes that catalyze the
production of ROS, and they transfer electrons from NADPH
to molecular oxygen to form O2

-(Rajaram et al., 2018). NOX4 is
the major NOXs isoform in kidney, it is mainly expressed in the
renal tubular epithelial cells under physiological conditions,
while its expression level in podocytes is low (Nlandu Khodo
et al., 2012). Abnormally elevated NOX4 expression can induce
podocyte injury and loss via multiple pathways including
hypoxia-inducible factor 1a (HIF1a) and TGF-b (You et al.,
2016), and promote podocyte apoptosis (Das et al., 2014).
Although it is still unclear whether autophagy has a direct
regulatory effect on the expression of NOX4, some studies have
shown that the activation of mTOR, the main inhibitory factor of
autophagy, can lead to NOX4-induced podocyte loss (Eid et al.,
2013; Yang et al., 2018).
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Traditional Chinese medicine (TCM) has a natural advantage
in maintaining cell homeostasis. A variety of TCM compounds
or extracted components have been shown to have autophagy
regulation function (Gong et al., 2018; Xu et al., 2018a; Li et al.,
2019). Shan zhu yu (Cornus officinalis) is one of the most
important ingredients in the classic TCM patent prescription
“Liuwei DihuangWan”. The therapeutic benefit of C. officinalis is
to “nourish liver and kidney, and achieve astringent essence”. It
is one of the most frequently used core ingredients in the TCM
treatment of kidney disease. Morroniside is extracted from C.
officinalis and has remarkable antioxidant and anti-apoptosis
functions. Previous research has found that morroniside can
reduce kidney damage caused by diabetes and inhibit abnormal
increase of NOX4 expression in kidney tissues (Park et al., 2011).

H2O2 is the primary NOX4-derived ROS in the kidney tissue
(Ilatovskaya et al., 2018), so we used H2O2-treated podocytes in this
research to investigate the regulating role of autophagy in oxidative
stress-induced NOX4 overexpression and podocyte apoptosis, and
the podocyte protection mechanism of morroniside.
MATERIALS AND METHODS

Drugs and Reagents
Morroniside was purchased from Shanghai Yuanye Biotechnology
(Shanghai, China). RPMI 1640 medium, fetal bovine serum (FBS),
and penicillin-streptomycin were purchased from Thermo Fisher
(USA). NOX4 rabbit polyclonal antibody (14347-1), Beclin-1
rabbit polyclonal antibody (11306-1), LC3 rabbit polyclonal
antibody (14600-1), Caspase-3 rabbit polyclonal antibody
(19677-1), p62 rabbit polyclonal antibody (55274-1), BAX rabbit
polyclonal antibody (50599-2), and Bcl-2 rabbit polyclonal
antibody (26593-1) were purchased from Proteintech (USA).
p22phox antibody (ab191512) and donkey anti-rabbit IgG H&L
(Alexa Fluor 594) pre-adsorbed secondary antibody (ab150068)
were purchased from Abcam (UK). mTOR antibody (2972), p-
mTOR Ser2448 antibody (2971) were purchased from Cell Signal
Technology (CST, USA). LC3b immunofluorescence antibody (sc-
271625) were purchased from Santa Cruz (USA). ROS assay kit
(KGT010-1) was purchased from Nanjing Kaiji Bio-Technology
(Nanjing, China). Annexin V/FITC apoptosis assay kit was
purchased from BD (USA).

Cell Culture and Treatment
Conditional immortal mouse podocyte cell strain MPC-5 was
kindly provided by Professor Weijing Liu from Dongzhimen
Hospital, Beijing University of Chinese Medicine. Podocytes
were cultured in RPMI-1640 medium supplemented with 10%
FBS, 100 U/ml penicillin and streptomycin in an incubator
including 5% CO2 and 95% air. Cells were cultivated at 33°C
with 10 U/ml g-interferon for proliferation, and 37°C without g-
interferon for 10–14 days to be fully differentiated. Podocytes
prepared for experiments were serum deprived for 24 h prior to
intervention. In order to study the protective effect of
morroniside on H2O2-treated podocytes, the cells were pre-
treated with 5 mM or 2.5 mM morroniside for 2 h, and then
treated with 15 mM H2O2 for 24 h. In order to study the effect of
September 2020 | Volume 11 | Article 533809
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podocyte autophagy on NOX4 expression, the cells were pre-
treated with 5 mM rapamycin (RAP) or 5 mM chloroquine (CQ)
for 2 h in the relevant experiments.

MTT Assay
Matured podocytes were added into 96-well plates at a density of
4 × 103 cells per well. Cells were cultured for 24 h after
intervention, then 90 ml serum-free medium and 10 ml of MTT
were added into each well. After another 4 h culture, the optical
density (OD) was measured at 490 nm with an enzyme marker
and the cell proliferation rate was calculated.

Apoptosis Analysis
According to the Annexin V/FITC apoptosis assay kit (BD,
USA), podocytes were double stained with FITC-Annexin V
and propidium iodide (PI). The apoptotic rates were analyzed
using a flow cytometer (AN12060) and the CXP 2.3 software.

Western Blot Analysis
Podocytes were collected and lysed in lysis buffer with protease
inhibitor cocktail and phosphatase inhibitor for protein
extraction. Equal amount of protein lysates (30 mg) were
separated by 12.5% SDS-PAGE and electrotransferred onto
nitrocellulose membranes. After being blocked in TBST
containing 5% non-fat dry milk for 1 h, the membranes were
probed with the primary antibodies separately at 4°C overnight,
and then incubated with a horseradish peroxidase-conjugated
secondary antibody for 2 h at room temperature. Peroxidase-
labeled protein bands were detected by ECL reagents and the
protein intensity was quantified with the Image-Pro Plus 6.0
software (Media Cybernetics, Rockville, USA).

Immunofluorescence
Podocytes were washed with cold PBS three times, fixed in 4%
paraformaldehyde at room temperature for 20 min,
permeabilized using 0.3% Triton X-100/PBS for 20 min, then
blocked with 3% donkey serum at room temperature for 30 min,
and incubated with primary antibodies at 4°C overnight. The
cells were subsequently incubated with fluorescence-conjugated
secondary antibodies for 2 h in the dark at room temperature.
Finally, the cells were sealed with neutral resin containing DAPI,
and observed with a laser confocal microscope (Leica
Microsystems, Germany).

Transmission Electron Microscopy
Cells were fixed in 2.5% glutaraldehyde for 2 h. After
washingwith PBS for 4 times (15 min/each), cells were post-
fixed with 1% osmium tetroxide (OsO4) for 2 h, then they were
washed with PBS twice (5 min/each) and stained with 2% uranyl
acetate for 2 h, dehydrated with acetone, embedded in epoxy
resin. Ultrathin sections were observed by using a Transmission
Electron Microscopy.

Statistical Analysis
Data are presented as mean ± standard error (SE). Statistical
analysis was performed with GraphPad Prism 7 software
(GraphPad Software Inc., San Diego, CA, USA). Comparison
Frontiers in Pharmacology | www.frontiersin.org 3
among experimental groups was performed using Student’s t-test
or analysis of variance (ANOVA), with a value of P <0.05 being
considered as statistically significant.
RESULTS

Effect of Morroniside on Proliferation and
Apoptosis of Podocytes Subjected to
Oxidative Stress Induced by H2O2
We treated MPC-5 podocytes with different concentrations of
H2O2 for 24 h and determined the cell viability by MTT assay.
The results showed that from the lowest to the highest
concentration, H2O2 treatment significantly reduced the
podocyte viability to various degrees. Considering that the
podocyte viability was too low when the H2O2 concentration
was higher than 30 mM, 15 mM was selected as the dose to create
oxidative stress (Figure 1A).

We then observed the effects of different concentrations of
morroniside on the proliferation and apoptosis of H2O2-treated
podocytes. The results showed that morroniside increased the
viability (Figure 1B) and reduced the apoptosis (Figures 1C, D)
of H2O2-treated podocytes. Morroniside also reduced the
expression of apoptosis-related proteins bax and reduced the
ratio of bax/bcl-2 (Figures 1E, F).

Effect of Morroniside on Autophagy Flux of
Podocytes Subjected to Oxidative Stress
Induced by H2O2
p62 is an autophagy substrate that is degraded in
autophagolysosomes, and accumulates when autophagy flux is
impaired (Wang Y. et al., 2018). Therefore, we measured the
content of p62 by immunofluorescence and western blot. The
results showed that H2O2 treatment increased the number of
p62-positive dots (Figure 2A) and p62 protein expression
(Figures 2B, C) in podocytes.

In the process of autophagy, ubiquitin-like protein LC3-I can
be conjugated to PE (and possibly to phosphatidylserine) to form
LC3-II, which has a relatively small molecular mass and locates
in autophagosome. Therefore, the expression level of LC3-II can
be used to evaluate the number of autophagosome and the level
of autophagy induction (Klionsky et al., 2012). The results
showed that, H2O2 treatment significantly decreased LC3-II
expression in podocytes, and the intervention of morroniside
significantly reduced the expression of p62 and increased the
expression of LC3-II (Figures 2A–C). These results suggest that
oxidative stress can induce the inhibition of autophagy in
podocytes, and morroniside can restore the damaged
autophagy flux.

Mammalian target of rapamycin (mTOR) is the main
inhibitory factor of autophagy (Eid et al., 2013). The results
showed that H2O2 treatment significantly increased the
expression of mTOR and p-mTOR in podocytes. The
intervention of morroniside significantly reversed the change
of mTOR, but had no significant effect on the expression of p-
mTOR (Figures 2D, E).
September 2020 | Volume 11 | Article 533809
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Effect of Altered Autophagy Activity on
Podocyte Apoptosis and NOX4 Expression
Rapamycin (RAP) is a commonly used autophagy activator and
can inhibit the activation of mTOR; chloroquine (CQ) is an
autophagy inhibitor, which can inhibit the fusion of
autophagosomes and lysosomes (Klionsky et al., 2012). To
investigate the role of podocyte autophagy in regulating the
expression of NOX4, we pre-treated the podocytes cultured in
normal complete medium for 2 h with rapamycin (NC + RAP) or
chloroquine (NC + CQ), then cultured for another 24 h. The
results showed that RAP significantly inhibited the expression of
mTOR, p-mTOR (Figures 3D, E), slightly up-regulated the
expression of LC3, but had no significant effect on p62
(Figures 3A–C), while CQ significantly up-regulated the
expression of LC3 and p62. Interestingly, chloroquine also
inhibited the expression of p-mTOR, although the effect was
weaker than that of rapamycin, and did not affect the expression
Frontiers in Pharmacology | www.frontiersin.org 4
level of total mTOR. Some researchers indicated that mTOR
signaling could be inhibited during autophagy initiation and be
reactivated by the degradation of autolysosomal products (Yu
et al., 2010). Therefore, the abnormal accumulation of
autophagosomes may be the reason for the decrease of p-
mTOR expression induced by CQ.

Subsequently, we found that both rapamycin and chloroquine
could reduce the proliferation rate of podocytes (Figure 4G) and
increase the apoptosis rate (Figures 4A, B). We detected the
expression of apoptosis-related proteins by western blot. As the
results shown in Figures 4C–F, RAP and CQ had no significant
effect on the expression of caspase-3 and bcl-2, and both of them
up-regulated the expression of cleaved caspase-3, bax in
podocytes to varying degrees, and reduced the bax/bcl-2 ratio,
which indicated that autophagy has a “double-edged sword”
effect in podocytes, high or low level of autophagy activity could
induce podocyte apoptosis.
A B

D

E F

C

FIGURE 1 | Effect of morroniside on proliferation and apoptosis of podocytes subjected to oxidative stress induced by H2O2. (A) MPC-5 podocytes were treated
with different concentrations of H2O2 for 24 h, and the cell proliferation rate was measured by MTT. (B) The H2O2 treated MPC-5 podocytes were then cultured in
complete medium added with different concentrations of morroniside, and the cell proliferation rate was measured by MTT. (C, D) Effects of high dose (5 mM) and
low dose (2.5 mM) morroniside on the apoptosis rate of MPC-5 podocytes treated with H2O2. (E, F) Effects of high-dose and low-dose morroniside on the
expression of bcl-2 and bax in podocytes treated with H2O2 measured by western blot. n = 3, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 compared to NC;
#p < 0.05, ##p < 0.01 compared to H2O2.
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We also detected the expression of NOX4 by western blot.
As the results shown in Figures 4H–J, after activating
podocyte autophagy, the expression of NOX4 did not show
obvious change (NC + RAP vs NC, p > 0.05); However,
when the autophagy flux was suppressed, the expression of
NOX4 increased significantly (NC + CQ vs NC, p < 0.00001).
The above results indicated that autophagy suppression
could cause NOX4 overexpression in podocytes, and further
promote apoptosis.
Frontiers in Pharmacology | www.frontiersin.org 5
Effect of Altered Autophagy Activity on the
Regulation of NOX4 Expression and
Apoptosis in H2O2-Treated Podocytes
by Morroniside
The previous results indicated that morroniside can reverse
autophagy inhibition and reduce podocyte apoptosis induced
by H2O2. In order to investigate the relationship between the
effects of anti-apoptosis and autophagy activity regulation,
A

B

D

E

C

FIGURE 2 | Effect of morroniside on autophagy flux of podocytes subjected to oxidative stress induced by H2O2. (A) P62 expression in podocytes under different
conditions was observed by immunofluorescence. (B, C) LC3-II and p62 expressions of podocytes under different conditions were detected by western blot.
(D, E) mTOR and p-mTOR expressions were detected by western blot. n = 3, *p < 0.05, **p < 0.01, ***p < 0.001 compared to NC; #p < 0.05, ##p < 0.01 compared
to H2O2.
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RAP or CQ was used separately or in combination with 5 mM
morroniside to treat the podocytes cultured in complete medium
containing 15 mM H2O2, and the effects on NOX4 expression
level was observed.

The expression of p62 and LC3-II was detected by
immunofluorescence and western blot, and the number of
autophagosome was observed by electron microscope to
evaluate the autophagy activity of podocytes. The results
showed that morroniside and RAP significantly reduced the
expression of p62 in podocyte stimulated by H2O2, increased
the expression of LC3- II (Figures 5A-C) and the number of
autophagosomes in podocytes (Figures 5A, D), and the
intervention of CQ reversed the effect of morroniside on p62.

Then we observed the effects of different interventions on
podocyte apoptosis and NOX4 expression induced by H2O2. The
results showed that both RAP and morroniside could reduce the
apoptosis rate and down-regulate the expression levels of
apoptosis related proteins caspase-3 and cleaved caspase-3
(Figures 6A–E), and inhibit the overexpression of NOX4
(Figures 6D–F). However, the intervention of CQ reversed the
effects of morroniside on podocyte apoptosis and NOX4
overexpression. The results confirmed that the inhibitory effect
of morroniside on NOX4 overexpression and podocyte apoptosis
is related to autophagy activity regulation.
Frontiers in Pharmacology | www.frontiersin.org 6
DISCUSSION

The injury of podocytes is an important feature of progressive
glomerular disease (Artelt et al., 2018), and oxidative stress is one of
the common pathogenesis of podocyte injury and podocyte loss in
kidney disease (Ye et al., 2019). Factors for podocyte injury, such as
high glucose, can induce the accumulation of ROS and the
occurrence of oxidative stress by promoting overexpression of
NOX4 (Fu et al., 2019; Lowe et al., 2019). At present, NOX4
overexpression is considered as one of the symbols of podocyte
oxidative stress (You et al., 2016; Xu et al., 2018b). Compared with
other NOXs subtypes, NOX4 plays a more influential role in the
pathogenesis of kidney disease. Studies have found that NOX4 gene
knockout can reverse kidney damage caused by pathogenic factors.
Jha (Jha et al., 2014) et al. found that albuminuria levels were
significantly reduced in NOX4-/-ApoE-/-mice compared with wild-
type diabetic mice, but this change was not observed in NOX1-/-

ApoE-/-mice. In another study, researchers found that, upon
induction of type 1 diabetes with streptozotocin, Nox4 knockout
rats exhibited significantly lower basal intracellular Ca(2+) levels in
podocytes and less DKD-associated damage than wild type rats did
(Ilatovskaya et al., 2018). The overexpression of NOX4 can activate
bax (Li et al., 2019) or caspase-3 (Eid et al., 2010) through tumor
suppressor transcription factor p53, and induce podocyte
A

B

D

EC

FIGURE 3 | Effects of rapamycin and chloroquine on autophagy flux in podocytes. (A) LC3 and p62 expressions of podocytes cultured in normal complete medium
with rapamycin (NC + RAP) or chloroquine (NC + CQ) intervention were detected by immunofluorescence. (B, C) LC3 and p62 expressions were detected by
western blot, n=3. (D, E) mTOR and p-mTOR expressions were detected by western blot, n = 3. *p < 0.05, **p < 0.01, ****p < 0.0001 compared to NC; &p < 0.05,
&&p < 0.01 compared to NC+RAP.
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apoptosis. The results in this study showed that H2O2 treatment
can also cause the overexpression of NOX4, suggesting that there
may be a mutually promoting cycle between NOX4 and ROS under
pathological conditions that constantly aggravates podocyte injury
and podocyte loss.
Frontiers in Pharmacology | www.frontiersin.org 7
Morroniside is an iridoid glycoside derived from C. officinalis,
and it has been found to have kidney protection function in
previous pharmacological studies (Yamabe et al., 2007a; Yamabe
et al., 2007b). It has been reported that morroniside could inhibit
the overexpression of NOX4 and p22phox; reduce the expression
A B

D

E F G

IH

J

C

FIGURE 4 | Effect of altered autophagy activity on cell apoptosis and NOX4 of podocytes. (A, B) Apoptosis rate of podocytes cultured in normal complete medium
with rapamycin (NC + RAP) or chloroquine (NC + CQ) intervention were detected by flow cytometry, n=3. (C, D) The expressions of bcl-2 and bax in podocytes
cultured in normal complete medium with rapamycin (NC + RAP) or chloroquine (NC + CQ) intervention were detected by western blot, and bax/bcl-2 rate was
calculated, n = 3. (E, F) The expressions of caspase-3 and cleaved caspase-3 were detected by western blot, n=3. (G) The relative cell viability were detected by
MTT. (H) The expression of NOX4 was detected by immunofluorescence and western blot (I, J), n = 3. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
compared to NC; &p < 0.05, &&p < 0.01, &&&p < 0.001, &&&&p < 0.0001 compared to NC+RAP.
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of ROS and proteins related to lipid peroxidation and oxidative
stress, such as Nrf2, HO-1, NF-kB, COX-2, and iNOS; and
reduce the expression of apoptosis-related proteins, such as
bax and cytochrome C (Park et al., 2011). In vitro experiments
have confirmed that morroniside has a certain protective effect
on mesangial cells (Lv et al., 2016). However, there was still no
evidence to prove whether morroniside could prevent podocyte
injury. The results of our study showed the inhibitory effects of
morroniside on NOX4 overexpression and podocyte apoptosis
caused by H2O2.

As terminally differentiated cells, podocytes have limited
proliferative capacity, therefore, the mechanisms of self-
renewal and material circulation represented by autophagy are
crucial for homeostasis maintenance of podocytes (Wu et al.,
2018). The autophagy activity of podocytes has a bidirectional
change under different injury conditions. For example, in
patients with diabetes (Wu et al., 2018; Zhao et al., 2018; Li
et al., 2020) and IgA nephropathy (Liang et al., 2018), decreased
podocyte autophagy activity is observed; while in systemic lupus
erythematosus (SLE) (Jin et al., 2018) or adriamycin-induced
Frontiers in Pharmacology | www.frontiersin.org 8
models of nephrotic syndrome (Yu et al., 2018), podocyte
autophagy activity is found to be increased. Yu et al. (2019)
observed an increase in the number of autophagosomes and the
expression of autophagy-related proteins such as LC3B-II and
Beclin-1 in podocytes stimulated by lupus autoantibodies. In the
present study, the expression of LC3-II and the number of
autophagosomes decreased after H2O2 treatment, suggesting
that the formation of autophagosomes was blocked. We also
found that H2O2 treatment caused p62 accumulation in
podocytes, suggesting that autophagy flux was impaired.
However, the intervention of morroniside reversed the above
changes in autophagy activity. In addition, we used rapamycin
(an autophagy activator) and chloroquine (an autophagy
inhibitor) to interfere with podocytes cultured in normal
conditions. The results showed that both chloroquine and
rapamycin could up-regulated the LC3 expressions in
podocytes, and chloroquine had a stronger elevating effect on
LC3 than rapamycin and could inhibit the degradation of p62 at
the same time. Overall, our findings suggested that the evaluation
of autophagy activity requires multiple perspectives. mTOR is
A

B DC

FIGURE 5 | Effects of rapamycin and chloroquine on autophagy flux in morroniside treated podocytes subjected to oxidative stress induced by H2O2. (A) P62
expression in podocytes under different conditions was observed by immunofluorescence. Autophagic vesicles (yellow arrows) in podocytes under different
conditions was observed by transmission electron microscopy, bar = 500 nm. (B, C) LC3 and p62 expressions were detected by western blot, n = 3.
(D) Quantification of the autophagic vesicles in 10 randomly selected cells. *p < 0.05, **p < 0.01, ***p < 0.001 compared to NC; #p < 0.05, ##p < 0.01, ###p < 0.001,
####p < 0.0001 compared to H2O2;

&p < 0.05, &&p < 0.01, &&&p < 0.001 compared to H2O2+MOR.
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the main inhibitor of autophagy. mTOR complex 1 (mTORC1)
can prevent the formation of ULK1 complex by phosphorylating
ULK1, thus inhibiting the formation of autophagosomes (Bork
et al., 2019). In the present study, the expression levels of mTOR
and p-mTOR were significantly increased by H2O2, suggesting
that H2O2-induced autophagy inhibition may be related to the
excessive activation of mTOR. Further, the intervention of
morroniside reduced total mTOR expression but had no
obvious effect on mTOR phosphorylation.

Most studies suggest that autophagy plays a protective role in
podocytes (Ye et al., 2019), but some scientists hold different
views. Su et al. (2020) have demonstrated that autophagy is
involved in podocyte apoptosis caused by tumor necrosis factor-
a (TNF-a), and some IncRNAs can exert anti-apoptotic effects
via inhibiting autophagy. It is remarkable that podocyte
apoptosis and autophagy activation often appear together.
Wang et al. (2018) found that when the NUP160 gene was
knocked out, podocyte apoptosis increased, and autophagy was
activated simultaneously. However, these findings did not
confirm that autophagy is necessarily a factor of podocyte
injury, or that excessive autophagy occurs during podocyte
injury. In the present study, both autophagy suppression and
overactivation promoted apoptosis of podocytes, although
overactivation of autophagy did not cause NOX4 expression
Frontiers in Pharmacology | www.frontiersin.org 9
fluctuation, suggesting that NOX4 was partially involved in
autophagy regulation of apoptosis. The results also confirmed
the “bidirectional regulation” of autophagy on apoptosis.
Rubinstein (Rubinstein and Kimchi, 2012) et al. proposed that
activation of autophagy might reflect a crosstalk between the two
processes. Autophagy would not restore to the baseline levels if
the stress persists, and no longer support cell survival, cells
autophagy might respond by activating apoptosis in order to
ensure efficient elimination of damaged cells, without triggering
local inflammation.

As mentioned above, autophagy is an adaptive response of
cells under stress (Feng et al., 2015), therefore, autophagy may be
activated as a protection to injury. Matsuda et al. (2018) found
that glomeruli of 4-week-old atg5 conditional knockout mice
exhibited slightly distended capillary loops accompanied by an
accumulation of ROS, and that the administration of N-acetyl-l-
cysteine, a ROS scavenger, could rescue the glomerular
phenotypes. In the present study, rapamycin-activated
autophagy (presented as an increase in LC3 expression) did
not up-regulated the level of NOX4 expression in podocytes
cultured in normal medium; while in contrast, inhibition of
autophagy by chloroquine resulted in NOX4 overexpression. In
addition, the effect of rapamycin also reversed the overexpression
of NOX4 induced by H2O2.
A

B D E

F

C

FIGURE 6 | Effect of altered autophagy activity on the regulation of cell apoptosis and NOX4 expression in H2O2-treated podocytes by morroniside. (A, B) Flow
cytometry was used to detect the apoptosis rate of podocytes cultured in different conditions. (C–E) Caspase-3, cleaved caspase-3 and NOX4 were detected by
western blot, n = 3. (F) The expression of NOX4 was detected by immunofluorescence. **p < 0.01 compared to NC; #p < 0.05, ##p < 0.01, ###p < 0.001 compared
to H2O2;

&p < 0.05, &&p < 0.01 compared to H2O2+MOR.
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The results above indicate that autophagy is involved in the
regulation of oxidative stress. When co-administered with
chloroquine, the inhibitory effect of morroniside on NOX4
overexpression and cell apoptosis induced by H2O2 was
reversed. These results suggested that morroniside inhibited
NOX4 overexpression and ROS accumulation by restoring
blocked podocyte autophagy flux, and reduced podocyte
apoptosis in sequence.
CONCLUSION

In summary, our study demonstrated that oxidative stress
inhibited podocyte autophagy activity, caused NOX4
overexpression and podocyte apoptosis. Morroniside prevented
podocyte apoptosis by restoring the blocked autophagy flux and
inhibiting the overexpression of NOX4 induced by H2O2.
Frontiers in Pharmacology | www.frontiersin.org 10
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