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Intrinsically disordered regions (IDRs) without stable structure are important for protein
structures and functions. Some IDRs can be combined with molecular fragments to make
itself completed the transition from disordered to ordered, which are called molecular
recognition features (MoRFs). There are five main functions of MoRFs: molecular recognition
assembler (MoR_assembler), molecular recognition chaperone (MoR_chaperone),
molecular recognition display sites (MoR_display_sites), molecular recognition effector
(MoR_effector), and molecular recognition scavenger (MoR_scavenger). Researches on
functions of molecular recognition features are important for pharmaceutical and disease
pathogenesis. However, the existing computational methods can only predict the MoRFs in
proteins, failing to distinguish their different functions. In this paper, we treat MoRF function
prediction as a multi-label learning task and solve it with the Binary Relevance (BR) strategy.
Finally, we use Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT),
and Random Forest (RF) as basic models to construct MoRF-FUNCpred through ensemble
learning. Experimental results show that MoRF-FUNCpred performs well for MoRF function
prediction. To the best knowledge of ours, MoRF-FUNCpred is the first predictor for
predicting the functions of MoRFs. Availability and Implementation: The stand alone
package of MoRF-FUNCpred can be accessed from https://github.com/LiangYu-Xidian/
MoRF-FUNCpred.

Keywords: intrinsically disordered regions, molecular recognition features, multi-label learning, binary relevance,
ensemble learning

INTRODUCTION

Intrinsically disordered regions (IDRs) and intrinsically disordered proteins (IDPs) are sequence regions
and proteins lack stable 3D structures (Deng et al., 2012; Deng et al., 2015). IDPs and IDRs are widely
distributed in organisms. Research on IDPs and IDRs contributes to biomedicine and biology, such as
drug discovery and protein structure prediction. Molecular recognition features (MoRFs) are regions that
canmake the IDR complete the transformation fromdisordered state to ordered state (Cheng et al., 2007).
With the studies of MoRFs, these functional sites may play a role as druggable disease targets, and some
drugs are discovered through these sites of action (Kumar et al., 2017; Li et al., 2020; Wang et al., 2020;
Zhang et al., 2020; Lv et al., 2021a; Joshi et al., 2021; Shaker et al., 2021; Yan et al., 2021).
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IDPs are widely found in eukaryotes, and traditional protein
annotations do not consider disordered regions. Recent studies
summarized the IDRs as seven functions: entropic chain, biological
condensation, molecular recognition assembler (MoR_assembler),
molecular recognition chaperone (MoR_chaperone), molecular
recognition display sites (MoR_display_sites), molecular
recognition effector (MoR_effector) and molecular recognition
scavenger (MoR_scavenger), 1) entropic chain carries out some
specific functions, these functions are generated by their
conformational disorder, 2) molecular recognition assembler brings
together multiple binding partners, promoting the formation of
higher-order protein complexes, 3) molecular recognition
scavenger can store and neutralizes some small ligands, 4)
molecular recognition effector interacts with other proteins and to
some extent influences their activity, 5) molecular recognition display
sites is beneficial to deposition of post-translational modification, 6)
molecular recognition chaperone can support RNA and protein to
achieve functionally folded states, 7) biological condensation causes
proteins to undergo transition from solution to condensed phase
(Mohan et al., 2006; Van Der Lee et al., 2014; Hwang Fu et al., 2019;
Canzhuang andYonge, 2021; Gao et al., 2021; Luo et al., 2021;QianD.
et al., 2021; Qian L. et al., 2021; Sharma and Srivastava, 2021; Suresh
et al., 2021; Wu et al., 2021). The MoR_assembler, MoR_chaperone,
MoR_display_sites, MoR_effector, andMoR_scavenger of the 7 IDRs
functions areMoRF functions (Mohan et al., 2006; Van Der Lee et al.,
2014; Hwang Fu et al., 2019; Lv et al., 2019; Lv et al., 2020a;
Kanathezath et al., 2021; Peng et al., 2021; Rives et al., 2021;
Szklarczyk et al., 2021; Villegas-Morcillo et al., 2021).

Because of the potential biological significance of MoRFs,
MoRF prediction methods have attracted increasing attention,
such as OPAL (Sharma et al., 2018a), MoRFPred (Disfani et al.,
2012), MoRFPred-Plus (Sharma et al., 2018b), MFPSSMpred
(Fang et al., 2013), OPAL+ (Sharma et al., 2019), MoRFchibi
(Malhis et al., 2016), and spot-MORF(Hanson et al., 2020).
Although these methods can predict MoRFs in IDPs, they
cannot distinguish their functions.

Some biological analyses are used in the existing methods of
predictingMoRF functions; for example, through analysis of cellular
viability by flow cytometry, a target’s function can be recognized
(Johansson et al., 1998). Accurate prediction of the function of the
MoRF region is conducive to understanding the mechanism of
cancer and discovering targeted drugs. DisProt is a IDPs database.
Disprot not only contains IDPs but also supports IDPs functional
annotation (Piovesan et al., 2017). In our research, we found that
these five MoRF functions are not mutually exclusive. Therefore, the
prediction of MoRF function is a multi-label task. It is necessary to
propose automatic discovery methods to expand the MoRF
functional annotation.

In this study, we propose the first computational method for
predicting the functions of MoRFs in IDPs called MoRF-
FUNCpred. We introduce a method based on the residues of
IDPs to predict the possibility that the residues have five functions
of MoRFs. MoRF-FUNCpred uses an ensemble learning
(Dietterich, 2000) model to predict the possibility of five
functions of MoRFs. The individual classifiers are Support
Vector Machine (SVM) (Vapnik and Vapnik, 1998), Logistic
Regression (LR) (Cessie and Houwelingen, 1992), Decision Tree

(DT) (Safavian and Landgrebe, 1991) and Random Forest (RF)
(Breiman, 2001). The four models are integrated using a weighted
averaging strategy, and the weights of the models are obtained
through a genetic algorithm (Maulik and Bandyopadhyay, 2000).

The innovation of this work lies in the following: 1) we
construct a dataset of inherently disordered proteins with
MoRF functions annotation; 2) we take advantage of an
ensemble model to integrate the different advantages of
models; 3) we propose the first model, MoRF-FUNCpred, for
predicting the functions of molecular recognition features in
intrinsically disordered proteins.

MATERIALS AND METHODS

Datasets
The data were extracted from the DisProt database, which is a
database of IDPs and provides functional annotations of IDPs
(Piovesan et al., 2017). The data can be downloaded from the site:
https://disprot.org/api/search?release=2020_12&show_ambiguous=
true&show_obsol (Hatos et al., 2020). In this version of the data, 1590
intrinsically disordered proteins were provided, and 596 proteins of
them had functional annotations about disordered regions. The 7
functions of intrinsically disordered regions were divided into
functions of MoRFs (MoR_assembler, MoR_chaperone, MoR_
display_sites, MoR_effector and MoR_scavenger) and other
functions (entropic chain and biological condensation).

After further screening of the 596 protein sequences obtained
above, 3 proteins were deleted because of incorrect residue
expression. Proteins with residues that only have both other
functions and functions of MoRFs were deleted. To better
construct the training set and testing set, some protein
sequences with multi-MoRF functional residues were deleted,
and finally, we obtained 565 sequences.

To reduce the similarity between the training set and the testing
set, we ran BlastClust (Altschul et al., 1990) with length coverage
>70% and identity threshold = 25% for the 565 sequences.
Through this, we obtained 508 classes from 565 protein
sequences. Next, we randomly divided the training set and
the testing set according to the sequence number ratio of 1:1
based on the clustering result. Through this, we obtained a set
containing 243 categories and another set containing 265
categories, including 283 pieces, and 282 pieces of sequences.

In this study, residue data were used as training data and
testing data, and we selected residue data as follows: residues
without 7 functions of IDRs were dropped, residues with both
other functions and 5 functions of MoRFs were also dropped,
residues with only 5 functions of MoRFs were selected as positive
samples, and the other residues with only other functions were
selected as negative samples. See Table 1 for the number of
sequences with different functional residues and the number of
different functional residues in the training set and testing set.

Architecture of MoRF-FUNCpred
The flowchart of MoRF-FUNCpred is shown in Figure 1, which
includes protein sequences, PSFM representation and
training phase.
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PSFM Representation
In this study, protein evolutionary information was used as a protein
sequence representation. The position specific frequency matrix
(PSFM) is a kind of protein evolutionary information and
indicates the frequency of 20 amino acids at the sequence
corresponding position. PSFM has been used as a protein sequence
representation inmany studies (Wang et al., 2006; Liu et al., 2012; Zhu
et al., 2019). In our paper, the PSFM was generated by using PSI-
BLAST (Altschul et al., 1997) searching against the non-redundant
database NRDB90 (Holm and Sander, 1998) with default parameters
except that the iteration and e-value were as 10 and 0.001, respectively.

Protein sequence P of length L can be expressed as:

P � R1R2R3 . . .RL (1)
where Ri represents the amino acids of the protein sequence, and
the subscript represents the ith residue in this protein.

The PSFM profile of protein P is a matrix, whose dimensions
are L × 20:

PSFM � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
F1,1 / F1,20

..

.
1 ..

.

FL,1 / FL,20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

where 20 is the total number of standard amino acids. The
element Fi,j is the probability of amino acid j occurring at
position i of P.

Multi-Label Learning Strategy
The functions of MoRFs can be divided into five categories:
MoR_assembler, MoR_chaperone, MoR_display_sites,
MoR_effector and MoR_scavenger. According to the
DisProt database, the MoRF functional regions overlap,
leading to each residue carrying out multiple functions.

TABLE 1 | Different functional residues in the protein sequence, training set, and testing set.

Types Training set Testing set Sequences

Negative 6158 8108 167
MoR_assembler 8821 8537 160
MoR_chaperone 2006 1052 24
MoR_display_sites 1992 1503 58
MoR_effector 8431 7576 149
MoR_scavenger 1617 1500 20
MoR_assembler, MoR_ display_sites 301 294 9
MoR_assembler, MoR_effector 1134 434 17
MoR_display_sites, MoR_effector 1128 562 18
MoR_assembler, MoR_display_sites, MoR_effector 113 78 4

FIGURE 1 | The network architecture of MoRF-FUNCpred. MoRF-FUNCpred uses PSFM to express the protein. MoRF-FUNCpred extracts features and labels of
residues divided into training set and testing set. The SVM, LR, DT, and RF models are trained using the training set, and the four models are integrated to obtain better
performance through ensemble learning. Obtain the weights of ensemble learning through the genetic algorithm.
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Therefore, we treat MoRF functional prediction as a multi-
label learning problem.

In this study, we wanted to make full use of positive samples.
Therefore, the multi-label learning strategy “Binary Relevance”
(BR) (Boutell et al., 2004) was employed. Under the “BR” strategy,
the multi-label samples can be used as positive samples in each
predictor of the corresponding label. We called this advantage
“crossing training”.

In this paper, In order to explore the impact of different
machine learning models on this task, four machine learning
classifiers with the “BR” strategy were used to predict the
probability of each MoRF function. Therefore, as Figure 1
shows, for each machine learning model, five classifiers are
trained to predict different MoRF functions. We use the
features of residues and the label of a certain MoRF function
to train the classifier to obtain a classifier that can predict the
corresponding function. Finally, 20 classifiers are trained in
our model.

Ensemble Learning
Ensemble learning is used in many protein tasks and has good
performance, such as recognition of multiple lysine PTM sites
and the different types of these sites (Qiu et al., 2016a),
recognition of phosphorylation sites in proteins (Qiu et al.,
2016b) and recognition of protein folds (Liu et al., 2021). The
ensemble model usually has better performance than individual
predictors.

The flowchart of the ensemble strategy on different machine
learning methods is given in the training phase of Figure 1.

Basic Classifiers
The general structure of ensemble learning is (i) generate a set of
basic classifiers and (ii) select a combination strategy to ensemble
basic classifiers. From the general structure of ensemble learning,
we can find two common problems of ensemble learning. The
first one is which basic classifiers to choose? The other is which
combination strategies to select?

For the basic classifiers, we choose four common machine
learning models: Support Vector Machine (SVM), Logistic
Regression (LR), Decision Tree (DT) and Random Forest
(RF). The four models are chosen because SVM can use the
kernel trick to obtain nonlinear fitting ability, LR can solve the
problem of linear fitting, DT usually has good performance in
dealing with continuous features, and RF can balance errors when
dealing with unbalanced datasets. To illustrate the
complementarity of the four classifiers at the data level, we
define the distance function between the classifiers (Liu et al.,
2017):

Distance(C(i), C( j)) � 1 − 1
2m

∑m
k�1

dikΔdjk (3)

where m represents the number of samples in the data, dik
represents the misclassification probability of classifier C(i) on
the kth sample, and dikΔdjk can be calculated by (Liu et al., 2017):

dikΔdjk � { dik + djk, if C(i) and C( j) incorrectly predicts the kth sample
0, otherwise

(4)
The value of Distance [C(i),C(j)] ranges from 0 to 1, where 0

means that classifier C(i) and classifier C(j) are completely non-
complementary, and 1means that classifier C(i) and classifier C(j)
are completely complementary (Liu et al., 2017). The value of
Distance [C(i),C(i)] is between 0 and 1, Distance [C(i),C(i)] can
reflect the predictive ability of classifier C(i), 1 means that
classifier C(i) predicts all the data correctly, and 0 means that
classifier C(i) predicts all the data incorrectly.

For the combination strategy, to make different models play
the same role for each residue, the weighted averaging strategy
was used to ensemble the 4 basic machine learning methods. The
weighted averaging strategy can be represented as follows:

MoRF − FUNCpred � WSVMpSVM +WLRpLR +WDTpDT +WRFpRF

(5)
where WSVM, WLR, WDT and WRF represent the weight of each
model in the ensemble model, the sum of the four values is 1, and

TABLE 2 | Hyperparameter ranges for each model.

Model Hyperparameters Range

SVM C {2−5, 2−4, 2−3, 2−2, 2−1, 2−0, 21, 22, 23, 24, 25}
gamma {2−5, 2−4, 2−3, 2−2, 2−1, 2−0, 21, 22, 23, 24, 25}
kernel (liner, polynomial, rbf)

LR penalty {l1, l2}
c {2−5, 2−4, 2−3, 2−2, 2−1, 2−0, 21, 22, 23, 24, 25}

DT criterion {gini, entropy}
splitter {best, random}

RF n_estimators {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
max_features {sqrt, log2}

TABLE 3 | Different basic models in overall metric and accuracy of each function.

Metrics SVM LR DT RF

Macro_Accuracy 0.828 0.564 0.743 0.813
MoR_assembler_Accuracy 0.639 0.480 0.549 0.640
MoR_chaperone_Accuracy 0.962 0.620 0.877 0.930
MoR_display_sites_Accuracy 0.918 0.531 0.800 0.866
MoR_effector_Accuracy 0.684 0.580 0.598 0.686
MoR_scavenger_Accuracy 0.937 0.606 0.891 0.944

Bold values represent the best results for each metric.

TABLE 4 | Comparison of the ensemble model and best metric in the
single model.

Metrics SVM LR DT RF

sn_MoR_assembler 0.237 0.493 0.391 0.227
sp_MoR_assembler 0.824 0.474 0.622 0.830
sn_MoR_chaperone 0.003 0.393 0.099 0.029
sp_MoR_chaperone 0.997 0.629 0.906 0.963
sn_MoR_display_sites 0.000 0.392 0.287 0.213
sp_MoR_display_sites 1.000 0.544 0.846 0.925
sn_MoR_effector 0.150 0.562 0.291 0.109
sp_MoR_effector 0.902 0.587 0.725 0.923
sn_MoR_scavenger 0.047 0.547 0.109 0.022
sp_MoR_scavenger 0.984 0.609 0.932 0.993

Bold values represent the best results for each metric.
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SVM, LR, DT, and RF represent the 4 models that use the
corresponding machine learning methods.

Genetic Algorithm
To obtain an optimal set of WSVM, WLR, WDT and WRF to
maximize the Macro_Accuracy (see this metric in section
Performance Evaluation Strategy) of MoRF-FUNCpred in the
training set, we transform solving WSVM, WLR, WDT and WRF

into a constrained optimization problem. Since the search space
for this problem is large, the genetic algorithm is used to quickly
obtain the optimal solution.

In our study, theMacro_Accuracy of the training set was used as
the fitness, and the fitness was used to select outstanding individuals
and eliminate individuals who were not adapted to the current
environment. The characteristics of the better individuals will be
passed on to the next generation. The genetic algorithm generates
new individuals through crossover and mutation. In this way, the
attributes that adapt to the environment are retained, and new
attributes are introduced. After hundreds of circulations, the optimal
weight can be obtained (Maulik and Bandyopadhyay, 2000).

The population size is set to 50, the constraint condition
is WSVM +WLR +WDT +WRF � 1, 0≤WSVM ≤ 1, 0≤WLR ≤ 1,
0≤WDT ≤ 1, 0≤WRF,

the mutation probability is 0.001, and the maximum number of
iterations is 800.

Performance Evaluation Strategy
In this paper, we use four metrics to measure the quality of a
classifier: (i) accuracy of each function, (ii) overall metric
Macro_accuracy to measure the performance of model, (iii)
sensitivity (sn) to calculate the model’s performance of positive
samples, (iv) specificity (sp) to represent the model’s quality of
negative samples (Guo et al., 2020; Tao et al., 2020; Zhai et al.,
2020; Wang et al., 2021; Yang et al., 2021).

The prediction of a residue by the model is a vector, and the
dimension of the vector is 5. Each column is a fraction from 0 to 1
and represents the probability of residues with the
MoR_assembler function, MoR_chaperone function, MoR_
display_sites function, MoR_effector function and

TABLE 5 | Comparison of the ensemble model and best metric in the single model.

Metrics MoRF-FUNCpred SVM LR DT RF

Macro_Accuracy 0.840 0.828 0.564 0.743 0.813
MoR_assembler_Accuracy 0.682 0.639 0.480 0.549 0.640
MoR_chaperone_Accuracy 0.960 0.962 0.620 0.877 0.930
MoR_display_sites_Accuracy 0.910 0.918 0.531 0.800 0.866
MoR_effector_Accuracy 0.703 0.684 0.580 0.598 0.686
MoR_scavenger_Accuracy 0.944 0.937 0.606 0.891 0.944

Bold values represent the best results for each metric.

FIGURE 3 | MoRF-FUNCpred prediction of the MoR_assembler function of DP01087.

FIGURE 2 | Distance between the two models in the training set under the five MoRF functions.
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MoR_scavenger function. The fraction can also be converted to a
value of 0 or 1 by setting the threshold value to 0.5.

The accuracy of each function can be calculated by (Zhang and
Zhou, 2013):

Accuracy � TP + TN

TP + FP + TN + FN
(6)

where TP, TN, FP, and FN is the number of “true” positive
examples, the number of “true” negative examples, the number of
“false” positive examples and the number of “false” negative
examples, respectively. For multi-label task, macro accuracy
(Macro_Accuracy) was selected to evaluate the overall
performance of our model. Macro_Accuracy was calculated by
Eq. 7:

Macro Accuracy �

MoR assembler Accuracy +MoR chaperone Accuracy+
MoR display sites Accuracy +MoR effector Accuracy+

MoR scavenger Accuracy
N

(7)

where MoR_assembler_Accuracy, MoR_chaperone_Accuracy,
MoR_display_sites_Accuracy, MoR_effector_Accuracy, and
MoR_scavenger_Accuracy represent the accuracy of each
function, and N represents the number of labels.

To calculate the prediction performance of the model for
positive and negative samples of each function in the testing set,
we calculated the sensitivity (sn) and specificity (sp) for each
MoRF function (Jiang et al., 2013; Zhang and Zhou, 2013; Lv
et al., 2020b; Tahir and Idris, 2020; Wan and Tan, 2020; Xie and
Zhao, 2020; Lv et al., 2021b; Gao et al., 2021):

sn � TP

TP + FN
(8)

sp � TN

FP + TN
(9)

where TP, TN, FP, and FN is the number of “true” positive
examples, the number of “true” negative examples, the number of
“false” positive examples and the number of “false” negative
examples, respectively.

We use sn_MoR_assembler, sn_MoR_chaperone,
sn_MoR_display_sites, sn_MoR_effector, and
sn_MoR_scavenger to represent the sensitivity for identifying
the functions MoR_assembler, MoR_chaperone,
MoR_display_sites, MoR_effector and MoR_scavenger,
respectively. We use sp_MoR_assembler, sp_MoR_chaperone,
sp_MoR_display_sites, sp_MoR_effector and sp_MoR_scavenger
to represent the specificity for identifying the functions
MoR_assembler, MoR_chaperone, MoR_display_sites,
MoR_effector and MoR_scavenger, respectively.

RESULTS AND DISCUSSION

Performance Comparison
We adjust the parameters of the four models in the training set
based on the grid search strategy, and the parameters adopted to
generate SVM were C = 16, gamma = 32, and kernel = rbf. The

parameters adopted to generate LR were penalty = l2 and c =
0.03125. The parameters adopted to generate DT were criterion =
gini and splitter = best. The parameters for generating RF were
n_estimators = 80 and max_features = sqrt. See Table 2 for the
value range of hyperparameters.

We evaluate the overall metricsMacro_Accuracy and accuracy
of each function (using MoR_assembler_Accuracy,
MoR_chaperone_Accuracy, MoR_display_sites_Accuracy,
MoR_effector_Accuracy and MoR_scavenger_Accuracy to
represent the accuracy of different functions) of four basic
models in the testing set. We can see the metrics of the four
models in the testing set in Table 3.

From this table, we can find the following:

(i) A common phenomenon is that the prediction ability of
different models in the MoR_assembler and MoR_effector
functions is lower than that of the other three functions. The
extremely important reason for this result is that for the
MoR_assembler and MoR_effector functions, there are
more positive samples in our dataset, and all models try
to learn more information of positive samples. Although
Accuracy is reduced, more positive samples are predicted
correctly.

(ii) The difference between basic models is huge. SVM and RF
have better performance than LR and DT not only in overall
metric (Macro_Accuracy) but also in accuracy of each
function. This is because different models try to predict
different aspects; for example, some try to predict positive
samples as much as possible, but others try to predict all
negative samples.

(iii) The LR model in every metric is the worst of the four basic
models, and in the MoR_assembler function prediction, the
accuracy of the LR model is lower than 0.5. The huge gap
between the SVMmodel and LR model probably shows that
the PSFM feature is not strictly linearly separable in the task
of MoRF function classification, and LR tries to predict more
positive samples and causes low accuracy. However, LR
model still have its’ advantage. To find more specific
differences between each model, we use metrics sn and sp
to see the extent to which positive and negative samples can
be predicted for each function. Result are provided in
Table 4.

As we can see in Table 4, regardless of the proportion of
positive and negative samples in the training data, the LR model’s
result in the testing data changed less than that of the other
models. In fact, the greatest advantage of LR is that its prediction
ability is much better than that of the other three models in the
positive samples. However, the LR model has poor performance
in predicting negative samples. In contrast, SVM, DT, and RF are
similar; these models have good results in negative samples, and
in positive samples, the MoR_assembler and MoR_effector
functions are better than the other models. Therefore, the
differences between these models make it possible for us to
ensemble learning.

sn of SVM, DT, RFmodel is low and sp of these models is high.
When the positive samples of the MoRFs function are large, such
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as MoR_assembler and MoR_effector, sn will be higher than the
other MoRF functions with less positive sample data, and sp will
be lower than the other MoRF functions with less positive
sample data.

Complementarity of the Four Basic
Classifiers
We calculate the distance between the two models in the training
set under the five MoRF functions. The experimental results are
shown in Figure 2. As seen from Figure 2,

(i) For each MoRF function, the distance between the same
models is greater than 0.75, which shows that the four
models themselves have good predictive capabilities.

(ii) The distance between different models of 5 MoRF functions
is greater than 0.95, which shows that the two models are
highly complementary.

(iii) DT and RF have similar distances to the four models. The
main reason for this phenomenon is that the RF itself is a
model formed by integrating many decision trees.

Performance of Ensemble Model
We adopt the weighted average method in ensemble learning;
that is, four weights for four models were set, and the sum of the
weights was 1. The weight of each model represents the
importance of each model. Through the genetic algorithm, we
calculated that the weight of SVM was 0.31455477, the weight of
LR was 0.32997175, the weight of DT was 0.28779645 and the
weight of RF was 0.06767703.

The final ensemble learning results are shown in Table 5. We
can see that in terms of overall indicators Macro_Accuracy, the
ensemble learning results are better than the best results of a
single model. However, we can also find that
MoR_chaperone_Accuracy and MoR_scavenger_Accuracy are
slightly worse than the best result in a single model; that is,
because the ensemble model can obtain the best overall metric, it
improves only some metrics. For example, it may enhance the
accuracy of positive samples in some functions, and the price
reduces the accuracy of negative samples in some functions.
Because of the imbalanced dataset, improving the ability to
predict positive samples cannot always improve the sn and sp.

Performance in Entire protein Sequence
MoRF-FUNCpred is trained using the PSFM features and the
corresponding labels of the residues and screening the residues in
the protein sequence. When providing an interface for other
researchers to predict the MoRF functions of a protein, it is to
input the entire protein sequence and predict theMoRF functions
of the protein. MoRFs usually appear as sequence segments with
5–70 residues. Therefore, our MoRF function prediction should
also appear as sequence segments with lengths of 5–70. To verify
whether our prediction model also has this property, we
randomly extract a sequence from the testing set and input it
to the web server. As shown in Figure 3, we input the protein
sequence signed DP01087. Three long sequence fragments were
predicted as MoR_assembler functions, which is very similar to

the MoR_assembler function of the real annotation results 1–101
in the disprot database, but there are still many discrete residue
fragments predicted as MoR_assembler functions.

Therefore, although MoRF-FUNCpred inputs features and
labels of residues, it still has the original sequence properties of
MoRFs at the sequence level. From Figure 3, we can also find that
there will still be several discrete residue prediction results that have
the function of MoR_assembler. The reason for this phenomenon
is mainly due to the input of our models and PSFM features.

The input of the model is features and labels of residues.
Features of residues cannot completely reflect sequence
properties. PSFM features are only used in MoRF-FUNCpred,
and the ability of the PSFM features to capture sequence properties
is limited, so MoRF-FUNCpred still has room for improvement.

CONCLUSION

The existing methods for predicting the functions of MoRFs in
IDP are mainly through analysis of cellular viability by flow
cytometry. The problem with these methods is that the
experimental period is long and the experimental cost is
expensive. Predicting the functions of MoRFs by calculation
methods can not only save time but also reduce experimental
costs. We can use calculation methods to initially screen IDPs and
further accurately measure the functions of MoRFs in
cooperation with biological experiments.

In this study, the first MoRF function predictor is proposed called
MoRF-FUNCpred, which predicts the functions of MoRFs regarding
residues. MoRF-FUNCpred regards the residue MoRF function
prediction task as a multi-label learning task. MoRF-FUNCpred
uses PSFM features as the feature representation of residues and
uses SVM, LR, DT, and RF combined with “BR” strategies to
efficiently prepare for the completion of MoRF function prediction
tasks. To utilize the complementarity between the models, the SVM,
LR, DT, and RF are integrated through the weightmethod of ensemble
learning, and the weight of each model is obtained through the genetic
algorithm. Under the grid search for the best parameters for each
model, in the single machine learning model (SVM, LR, DT, and RF),
the overallmetricMacro_Accuracy is greater than 0.5 for the prediction
performance of MoRFs. Compared with single machine learning
models, the ensemble model MoRF-FUNCpred shows better
performance. In addition, although MoRF-FUNCpred is trained
using residue data, the prediction results of MoRF-FUNCpred
retain part of the sequence of MoRFs nature. At the same time,
this paper constructs the first dataset on the function of MoRFs, which
will provide help for further research on this task.

The main dilemma facing MoRF function prediction is that
the existing IDPs containing MoRF functions are few, and it is
difficult to complete the training tasks at the protein level. MoRF-
FUNCpredmainly has the following problems. The use of a single
feature of PSFM to represent residues may result in insufficient
expression of residues. Using the “BR” strategy to complete the
multi-label learning task may cause the model to ignore the
correlation between the labels. In future work, we can explore the
following aspects. 1) Use more complex features to represent
residues, such as fusing multiple features to represent residues.
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This may enhance the expression ability of residues. 2) Using the
high-order strategy in the multi-label learning problem
transformation method, the model can learn the high-order
correlation between the labels.
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