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ABSTRACT

The vast majority of microorganisms on Earth
reside in often-inseparable environment-specific
communities––microbiomes. Meta-genomic/-
transcriptomic sequencing could reveal the
otherwise inaccessible functionality of micro-
biomes. However, existing analytical approaches
focus on attributing sequencing reads to known
genes/genomes, often failing to make maximal
use of available data. We created faser (functional
annotation of sequencing reads), an algorithm that
is optimized to map reads to molecular functions
encoded by the read-correspondent genes. The mi-
faser microbiome analysis pipeline, combining faser
with our manually curated reference database of
protein functions, accurately annotates microbiome
molecular functionality. mi-faser’s minutes-per-
microbiome processing speed is significantly faster
than that of other methods, allowing for large scale
comparisons. Microbiome function vectors can be
compared between different conditions to high-
light environment-specific and/or time-dependent
changes in functionality. Here, we identified previ-
ously unseen oil degradation-specific functions in
BP oil-spill data, as well as functional signatures
of individual-specific gut microbiome responses to

a dietary intervention in children with Prader–Willi
syndrome. Our method also revealed variability in
Crohn’s Disease patient microbiomes and clearly
distinguished them from those of related healthy
individuals. Our analysis highlighted the microbiome
role in CD pathogenicity, demonstrating enrichment
of patient microbiomes in functions that promote
inflammation and that help bacteria survive it.

INTRODUCTION

Microorganisms inhabit every available niche of our planet,
and our bodies are no exception. Microbes that survive
and thrive in the environments at the extremes of temper-
ature, pH, and chemical or radiation contamination pos-
sess unique molecular functions of high industrial, clinical,
and bioremediation value. The human body microbiome
critically impacts our health. For example, Crohn’s disease
(CD) is a multifactorial disorder resulting from the inter-
play of individual genetic susceptibility, the gastrointestinal
(GI) microbiome and other environmental factors. Taxo-
nomic surveys of the GI microbiome have revealed micro-
bial community features that are unique to CD patients,
e.g. overall loss of microbial diversity (1,2), as well as deple-
tion and enrichment of certain bacterial taxa (3–6). Estab-
lishing whether these observed microbial community shifts
contribute to pathogenesis or, instead, correlate with or re-
sult from the disease onset, requires understanding not only
what are the microbes involved, but also what they do. Ear-
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lier studies indicate that in association with CD, the micro-
biome molecular function potential is more consistently dis-
turbed than taxonomic makeup (7). More thorough func-
tional analyses, e.g. based on deep metagenomic sequenc-
ing, are necessary to elucidate these findings.

Metagenome functional annotation can be performed
with or without genome assembly. If the reads can be as-
sembled into large contigs, existing annotation pipelines,
such as RAST (8) and IMG (9), can be applied. However,
assembly is difficult and often plagued by a large fraction
of unassembled reads or short length contigs, which be-
long to the minor microbiome members, and by chimeric
assemblies, which are especially common for complex and
highly diverse samples (see Sczyrba et al., 2017, doi: https:
//doi.org/10.1101/099127). Downstream gene finding algo-
rithms are further faced with incomplete and erroneously
assembled sequences, complicating statistical model con-
structions. Read-based annotation, e.g. using a platform
such as MG-RAST (10), can access molecular functional-
ity of the entire community. However, reads are usually an-
notated via function transfer by homology that, due to the
short read length, is lacking in precision. This inaccuracy is
additionally compounded by the erroneous computational
annotations of most genes in the reference databases (11).

Here, we compiled a gold standard set of reference pro-
teins (GS), with experimentally annotated molecular func-
tions. We further developed faser (functional annotation
of sequencing reads), an algorithm that uses alignments of
translated sequencing reads to full-length proteins to anno-
tate read-‘parent protein’ molecular functionality. faser an-
notates reads with higher precision at higher resolution, i.e.
more specific functionality, than BLAST or PSI-BLAST.
In a benchmark test, the functional annotations produced
by the combination of the faser algorithm with the GS
database were 12% more accurate than MG-RAST. Note
that this performance may be an overestimate because the
benchmark metagenome included the GS database. How-
ever, when GS was replaced with md5nr, MG-RAST’s ref-
erence database, faser annotated 20% more reads than MG-
RAST at a comparable precision level. These results illus-
trate that the GS and faser combination improves on MG-
RAST capabilities.

Our mi-faser pipeline implementation (Figure 1), com-
bining faser and GS, is highly parallelized, making use of
all available compute cores and processing a (∼10GB/70M
read) meta-genomic/-transcriptomic file in under half an
hour (using 400 compute cores, on average). Note that if
multiple microbiomes are submitted for annotation in par-
allel, the time scales favourably; in testing, 17 metagenomes
were processed within 66 minutes. mi-faser results for
all microbiomes analysed in this manuscript are available
at http://services.bromberglab.org/mifaser/results/example.
The standalone version of the pipeline, along with the
mi-faser source code, is available at https://bitbucket.org/
bromberglab/mifaser, as well as on the bromberglab web-
site.

We applied our mi-faser to metagenomic data collected
from beach sands in different stages of oil contamination
(12). Here, mi-faser was able to identify oil degradation
functionality that was missed by MG-RAST. We further
performed large-scale analysis of 68 metagenomic datasets

Figure 1. mi-faser pipeline. mi-faser is parallelized and runs a load bal-
ancer to submit jobs to available [1–2000] compute cores. Under normal
functioning conditions (∼400 available cores, on average), it takes ∼30 min
to process a single (10G/70M read) meta-genome/-transcriptome.

from a study of dietary intervention in Prader-Willi syn-
drome (PWS) affected obese children. Each dataset was
processed in approximately 16 minutes, highlighting mi-
faser’s processing speed. We identified previously unseen
individual-specific patterns in microbiome changes induced
by the treatment. Finally, we also analyzed the GI tract
microbiome data from Crohn’s Disease (CD) patients and
their relatives. We found the microbiome functional pro-
files were similar between healthy individuals but differ-
ent across patients and between patients and their healthy
relatives. Particularly, our analysis revealed that CD pa-
tients’ microbiomes were enriched in functions that help
bacteria survive inflammation, i.e. glutathione metabolism
and RNA modification, and in functions that cause inflam-
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mation, i.e. lipopolysaccharide and acetaldehyde produc-
tion. These results suggest the microbiome’s role in CD-
associated pathogenicity.

MATERIALS AND METHODS

Datasets

To compile the PE1-set, we extracted from SwissProt (Oct.
2015) (13) proteins that are (i) bacterial, (ii) with evidence
of existence, i.e. SwissProt protein evidence is 1, and (iii)
explicitly assigned an E.C. (Enzyme Commission) number
(14); note that we excluded proteins with incomplete an-
notations, e.g. 1.1.1.-, as well as those with multiple an-
notations. From the PE1-set, we further extracted proteins
whose functions are experimentally verified (Evidence =
‘any experimental assertion’; EXP-set).

From the Catalytic Site Atlas database (CSA-set) (15)
we extracted all proteins that had literature-based annota-
tions. We identified the overlap between the PE1-set and
these proteins, and defined our gold-standard dataset (GS-
set; Supplementary Data 1) as the combination of CSA-set
and EXP-set, with 100% identical sequences removed.

For each protein of the PE1-set and GS-set, we extracted
the corresponding gene from ENA (European Nucleotide
Archive) (16) (including 5′ UTR and 3′ UTR) and randomly
generated 10 DNA reads (50–250 nucleotides) that overlap
by at least one nucleotide of the coding region. We further
performed 6-frame translations of the reads and excluded
peptides shorter than 11 amino acids. We defined the corre-
sponding peptide collection as rPE1-set and rGS-set.

We downloaded from MG-RAST the md5nr database
and defined its proteins as the md5nr-set.

We obtained six beach sand metagenomes from a pre-
vious study of the Deepwater Horizon oil spill (12). Here,
metagenomic DNA was sequenced using Illumina MiSeq
with paired-end strategy to produce 151 bp reads. The
samples reside in NCBI (BioProject PRJNA260285), in-
cluding (i) pre-oil phase samples, OS-S1 (SRX692936)
and OS-S2 (SRX695904), (ii) oil phase samples, OS-A
(SRX696142) and OS-B (SRX696240) and (iii) post-oil re-
covered phase samples, OS-I600 (SRX696250) and OS-I606
(SRX696254).

We also obtained 68 gut metagenomic sequencing
datasets (SRA (17) accession number SRP045211) from a
study of dietary intervention in Chinese children affected
by PWS (18). Fecal DNA samples before and after the treat-
ment (n = 17, at Day 0, 30, 60 and 90) were sequenced us-
ing Illumina HiSeq 2000 with paired-end strategy to pro-
duce 100 bp reads. The quality control was performed as
described in the previous study (18).

We additionally obtained 11 human gut (fecal) micro-
biome samples from a family affected by CD from the Pop-
Gen biobank (Schleswig-Holstein, Germany; accessible via
a Material Data Access Form. Information and application
procedures for data access can be found at http://www.uksh.
de/p2n/Information±for±Researchers.html). Of these, nine
members were self-reported as healthy and two were af-
fected. Metagenomic data were generated using the Illu-
mina Nextera DNA Library Prep Kit and sequenced 2
× 125 bp on an Illumina HiSeq2500. In total, 424.8 mil-
lion paired-end reads were generated with a median num-

ber of 38.9 million read pairs per sample. Adapter trim-
ming was performed using Trimmomatic (19) in paired-end
mode, discarding reads shorter than 60 bp. Quality filtering
was done using Sickle (20) run in paired-end mode, with
a quality threshold of 20 and a minimum length of 60 bp.
To remove contaminating host sequences from the dataset,
DeconSeq (v0.4.3) (21) was run with the human reference
genome (GRCh38) as database. Only read-pairs where both
sequences survived quality control were retained. On aver-
age 11.76% of raw reads were discarded, leaving 374.8 mil-
lion read pairs for downstream analysis.

faser curve optimization

We PSI-BLASTed the rGS-set against the GS-set (parame-
ters: evalue 1e−3; inclusion ethresh 1e−10; num iterations 3;
max target seqs 1 000 000), excluding self-hits, i.e. peptide
hits of their ‘parent’ proteins. For any peptide, functional
annotation (E.C. number) was inherited from the ‘parent’
protein; one nucleotide overlap required to transfer anno-
tation. A peptide-protein alignment is considered positive
if the functional annotations of the peptide and the aligned
protein match exactly at the selected number of E.C. digits,
and negative otherwise. Any given alignment can be plotted
in an L (alignment length) vs. Id (alignment sequence iden-
tity) two-dimensional space. Further, an exponential decay
curve (as for HSSP calculations, (22)) can be used to iden-
tify the alignments in this space as true positives (alignments
of peptides to proteins of identical function that fall above
or on the curve), false positives (different functions above
or on the curve), true negatives (different functions below
the curve) and false negatives (identical functions below the
curve). From these values, we calculated precision (positive
accuracy; Equation 1) and recall (positive coverage; Equa-
tion 2) for different curve parameters (a and b in Equation
4), optimizing the latter to fit a curve best separating pos-
itive from negative alignments in terms of the highest F-
measure (Equation 3).

Precision = True Positive
True Positive + False Positive

(1)

Recall = True Positive
True Positive + False Negative

(2)

F = 2 × Precision × Recall
Precision + Recall

(3)

b × L
−a×

(
1+e− L

1000

)
(4)

To avoid overestimating performance of faser, we clus-
tered the GS-set with CD-hit at 40% sequence identity and
split the clusters into ten subsets. We further optimized faser
curve parameters in 10-fold cross-validation, i.e. we itera-
tively optimized the curve on nine subsets and tested it on
the remaining one, repeating this process 10 times for a dif-
ferent subset as the test set. We evaluated the performance
reported here by summing the numbers of true and false
positives and negatives in each test set. As all ten curves were

http://www.uksh.de/p2n/Information%C2%B1for%C2%B1Researchers.html
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very similar in parameters, we took the average of these to
establish the final faser curve.

To summarise, the faser curve is meant to predict from a
peptide-protein alignment, whether the ‘parent’ protein of
the peptide and the aligned protein share the same function
(E.C. annotation). Additionally, the distance of the align-
ment point to the curve along the sequence identity (Id) axis
indicates the reliability of the prediction.

Evaluating faser using DIAMOND results

We extracted the proteins from the GS-set and md5nr-set
that had identical UniProt IDs. We performed searches
against the md5nr database using PSI-BLAST (parame-
ters: evalue 1e−3; inclusion ethresh 1e−10; num iterations 3;
max target seqs 1 000 000), BLASTP (parameters: evalue
1e−3; max target seqs 1 000 000), and DIAMOND (param-
eters: min-score 10; k 1 000 000). We further excluded from
the results the alignments to subject proteins that were not
in the overlap set. We compared the faser values calculated
from the results of different alignment algorithms by per-
forming a 100-fold bootstrap, sampling ∼20% of the results
at each iteration. Note that we used the bootstrap approach
to assess the consistency of the observed performance dif-
ferences.

Comparison to other methods

We submitted the artificial metagenome as well as the six
sand metagenomes for processing to MG-RAST via its
website and downloaded the resulting function annotations
via the MG-RAST API (23). We used the KEGG (24) anno-
tations from the md5nr database to establish the annotated
E.C.s. Note that although proteins can carry out multiple
functions, in this study we, conservatively, only included
proteins with unique and complete E.C. annotations; i.e. we
excluded proteins with incomplete or multiple E.C. annota-
tions.

We compared different database/algorithm combina-
tions for the annotation of the same sample (Supplemen-
tary Figure S2). The Venn diagrams of the numbers of E.C.s
annotated by different such combinations were generated
by Venny (25). When comparing across sand metagenome
samples from different phases, sample-specific E.C.s were
removed as uninformative (<1% of total E.C.s in both
cases). The correlation between samples was calculated with
Spearman’s rho, � , offered in the R package, Hmisc (26).

Two other tools, Fun4Me and ShotMAP, were installed
locally and run on the artificial metagenome with default
parameters; for both, we compared the precision of the
methods (Equation 1) as well as the number of correctly an-
notated reads.

Functional analysis of PWS dietary intervention
metagenomes

We performed NMDS (Non-metric multidimensional scal-
ing) (27) analysis and the subsequent permanova test using
the Vegan R package (28) and calculated the Euclidean dis-
tance between samples in the NMDS graph. Within the un-
treated Day0 group of samples, we identified outliers (indi-
viduals with inter-sample distance two standard deviations

away from the average distance; 3% of all distances). All
time-point samples of these individuals were removed from
subsequent analysis. For remaining individuals, we com-
pared the distances within each time-point group, as well
as the distances of all the time points from Day0 for every
individual separately.

Functional analysis of CD metagenomes

As described above, NMDS analysis (Shepard plot in Sup-
plementary Figure S10), along with the subsequent per-
manova test was carried out using the Vegan R package
(28). From the distributions of E.C.s in the microbiomes
of healthy individuals, we calculated the ‘confidence range’
for each E.C. as Q1 – 3*IQR (three interquartile ranges be-
low the first quartile) to Q3 + 3*IQR (three interquartile
ranges above the third quartile). Patient E.C.s that fell out-
side this range were identified as significantly depleted or
enriched, respectively. Pathway analysis was performed with
the KEGG Mapper tool (24). Jaccard Index was calculated
as the size of intersection divided by the size of union of the
two sample sets.

RESULTS AND DISCUSSION

Few proteins have experimentally verified function annotation

Among the 332 193 bacterial proteins in SwissProt (Oct.
2015) (13,29), only 18 240 (∼5%) are annotated as existing
with evidence at protein level. Of these, we extracted 5 965
that have unique (one per protein) and explicit (all four dig-
its) Enzyme Commission (E.C.) annotations (PE1-set; Ma-
terials and Methods). From our PE1-set, we further selected
proteins whose functions were experimentally verified, as
noted in the Catalytic Site Atlas (CSA-set) (15) or Swis-
sProt (EXP-set) (13,29). After filtering, our set contained
2 848 (2 810 non-redundant at 100% sequence identity; GS-
set) bacterial proteins of experimentally verified function.
Note that analysis of available mass-spectrometry databases
(30,31) is likely to retrieve a much larger set of verified ex-
isting proteins; however, these are not yet experimentally
annotated for molecular functionality. Thus, our collection
is the cleanest available dataset of functional annotations;
i.e. functional annotations in public databases are usually
based on (many rounds of) function transfer by homology
and are, as such, often questionable.

faser is more accurate for function transfer by homology than
PSI-BLAST

We created artificial reads from the gene nucleotide se-
quences corresponding to the proteins in GS-set and PE1-
set (6-frame translated to peptides, rGS-set and rPE1-set,
Materials and Methods). We further PSI-BLASTed (32) the
rGS-set against GS-set, excluding self-hits, to determine the
equation of the curve (Equation 5) separating the correct
alignments (same function) from the incorrect ones (dif-
ferent functions) in the L (alignment length) versus Id (se-
quence identity) space. Our approach was modeled after
the HSSP metric for function transfer between full-length
proteins (22,33). We optimized the curve parameters to
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Figure 2. faser outperforms PSI-BLAST in annotating read functions. At
most cutoffs, faser (filled circles) is more precise than PSI-BLAST (empty
circles). For example, for nearly half the reads, it provides as much as 90%
annotation accuracy as compared to 57% attained by PSI-BLAST (arrows
at faser score = 20 and e-value = e−18). At the default cutoff of 0, faser
attains similar accuracy as PSI-BLAST at e-value = e−18, but for ∼35%
more reads.

maximize the F measure (Materials and Methods), repre-
sentative of best separation of peptide–protein alignments
of the same function (E.C. annotation) from those of dif-
ferent functions (Methods). Thus, if a given alignment is
above the curve, the ‘parent protein’ of the peptide and the
aligned reference protein are predicted to share function.
The faser score (the distance from the curve along the Id
axis) indicates the reliability of such predictions. This mea-
sure clearly outperforms PSI-BLAST e-value in annotat-
ing function (Fmax of 0.76 versus 0.63, respectively; Equa-
tion (3), the highest F measure as in (34); recall in Figure
2 was calculated with the background of all PSI-BLAST
results at e-value = 10−3). For example, at recall levels of
∼50%, the faser score (=20) is nearly 90% accurate, which
is >30% more than e-value (=10−18; Figure 2). E-value
reaches ∼90% precision at cut-offs <10−36, which corre-
sponds to recall of <7% (Figure 2).

The number of matching E.C. digits reflects the level of
resolution of function annotation; i.e. proteins that share
only the first three E.C. digits have similar functions with
slight differences. For example, both 1.1.1.1 and 1.1.1.2 are
alcohol dehydrogenases, but with different electron accep-
tors: NAD+ and NADP+, respectively. PSI-BLAST ex-
hibits comparable performance to faser when matching the
first three E.C. digits (Supplementary Figure S1A), but fails
to differentiate functions at the fourth digit resolution level,
producing a large number of false positives (Figure 2). faser
resolves the fourth E.C. digit at >90% precision with >40%
recall. At all cut-offs, when compared to PSI-BLAST, faser

Table 1. Artificial metagenome (rPE1-set) annotation by FG, FM and MM

FG FM MM

Annotated reads 34 851 48 481 30 800
Multi-E.C. readsa 1004 11 373 200
Erroneously annotated reads 416 5705 4237
Correctly annotated reads 33 431 31 103 26 363
Precision 99% 85% 86%

aReads with multiple E.C. annotations were excluded from the analysis.

consistently offers as much as ∼50% higher recall at same
precision level and up to ∼25% higher precision at same re-
call level (Figure 2).

faser score =
{ −100, L < 11

Id − 352.3L
−0.302×

(
1+e− L

1000

)
, L ≥ 11

(5)

Note that a previous study has shown that PSI-BLAST
is not necessarily the best alignment method for function
transfer, e.g. it was inferior to BLAST (34). Although faser
was developed using PSI-BLAST, it can also be calculated
via other alignment mechanisms. To alleviate the long align-
ment runtimes, we exhaustively tested our options (includ-
ing comparing BLAST performance to PSI-BLAST) and
ended up switching to DIAMOND (35) (Supplementary
Text S1).

faser outperforms MG-RAST

We compared faser performance to that of MG-RAST
(10), one of the most popular public metagenome an-
notation platforms. We considered both algorithm and
database levels using the: (i) faser algorithm with the GS-
set database (FG, the mi-faser pipeline); (ii) faser algo-
rithm with the md5nr database (36) (FM; faser-md5nr);
(iii) MG-RAST algorithm with md5nr database (MM, the
MG-RAST pipeline) (Supplementary Figure S2; Methods).
Note that we could not run the MG-RAST algorithm with
the GS-set database because the MG-RAST developers ad-
vised against it, citing complicated installation.

When the rPE1-set is used as the artificial metagenome,
the FG and MM annotations are significantly different (Ta-
ble 1), although both pipelines annotate a similar number of
reads (Figure 3A). This variation in performance is not bi-
ased toward any specific E.C. class (Supplementary Figure
S3). Note that the rPE1-set is a superset of GS-set, which
likely contributes to the improved performance of the FG
pipeline. The differences between FG and MM annotations
(Figure 3B, first column) stem from the differences between
the databases (GS-set vs. md5nr) and/or algorithms (faser
versus MG-RAST). The divergence between FG and FM
annotations (Figure 3B, second column) indicates that the
database differences contribute significantly to the FG/MM
variation. Note that this difference is not surprising as the
GS-set and md5nr share only 779 E.C.s (62% and 29%, re-
spectively).

The comparison between FM and MM results is more in-
teresting (Figure 3B, third column), as it highlights the dif-
ferences between the faser and MG-RAST algorithms. Us-
ing the same md5nr database, faser (FM) annotated ∼20%
more reads than MG-RAST (MM, Figure 3A) with compa-
rable precision (Table 1). Note that the precision reported in
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Figure 3. The faser algorithm in combination with the GS database annotates the artificial metagenome functions in a manner complementary to MG-
RAST. (A) The number of reads annotated by each combination of algorithms and databases; (B) the read abundance by E.C. annotated via each combi-
nation of algorithm/database; (C) the total E.C. count annotated via each combination of algorithm/database.

these comparisons is affected by the misannotation (∼14%),
i.e. UniProt proteins in both the GS-set and md5nr anno-
tated with different E.C. numbers – a finding, which is in line
with a previous study (11). FM and MM identified 923 E.C.s
in common, while 175 and 40 E.C.s were uniquely identi-
fied by faser and MG-RAST, respectively (Figure 3C). In
other words, for the same artificial metagenome, faser an-
notates ∼14% more functions (E.C.s) than MG-RAST al-
gorithms. After exclusion of the database-specific E.C.s, the
database impact was reduced (FG/FM, Supplementary Fig-
ure S4), yet we still observed substantial FG/MM differences
largely due to the faser vs. MG-RAST algorithms. Notably,
FM still annotates ∼8% more functions than MM (Supple-
mentary Figure S4).

To summarize, the faser method comprises an exponen-
tial decay curve separating the two-dimensional space of
alignment length versus sequence identity into ‘same func-
tion’ and ‘different functions’ peptide–protein alignments.
The distance from a given alignment to the curve along the
sequence identity axis is the final faser score. Implicitly, faser
tries to capture homology of the peptide’s ‘parent’ protein
to the subject protein of the alignment. In faser develop-
ment we used the database of experimentally described pro-
teins (GS-set) to optimize and evaluate performance. We
continue to use the GS database in the mi-faser implemen-
tation. However, faser alignment scoring can be applied to
any other database as well. Note that we set the default cut-
off of faser score at 20 for high precision (90%).

We further extended the comparison of the annotation
methods to six metagenomic samples from the Deepwater
Horizon oil spill beach sand study (12) (Methods). Note
that in this real-life case, there was no ‘correct’ annotation

to use for comparing annotation results. However, it ap-
pears that FM and MM results are orthogonal. For example,
for OS-A (oil phase) FM annotated >50% more reads than
MM (Supplementary Figure S5A); moreover, there were 220
E.C.s unique to FM and 42 E.C.s unique to MM (Sup-
plementary Figure S5C). Annotation of other samples fol-
lowed a similar pattern. Database differences resulted in a
significant disparity between the number of reads annotated
in each sample by FG and MM (e.g. Supplementary Fig-
ure S5B). However, both pipelines agreed that: (i) samples
taken in the same phase were highly functionally correlated
(Supplementary Tables S1 and S2), (ii) samples in oil phase
were functionally more correlated with samples in recovered
phase than pre-oil phase (Supplementary Tables S1 and S2,
which may indicate that the environment has not fully re-
covered from the contamination) and (iii) ∼20% of reads
in all samples mapped to housekeeping functions (house-
keeping E.C.s complied from (37)). This agreement across
methods suggests that FG reflects true variation in function-
ality between samples from a perspective complementary to
MM.

We further searched for functions enriched in oil phase
metagenomes as compared to either pre-oil or recovered
phases. FG returned 909 E.C.s (65%, 588 E.C.s, are GS-set
specific), while MM returned 1 627 E.C.s (65%, 1 062 E.C.s,
are md5nr specific). Note that even for the E.C.s present
in both databases, FG and MM revealed considerable dis-
crepancies in abundance fold-changes across phases; � =
0.46 (Spearman’s rho) for oil-to-recovered phase and only �
= 0.09 for oil-to-pre-oil phase (Supplementary Figure S6).
We explored E.C.s annotated by FG as highly enriched (≥5
times) in the oil phase as compared to other phases, yet un-
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changed or even decreased by MM. There are nine of these
E.C.s in oil-to-pre-oil comparison and ten in oil-to-recovered
comparison, with three E.C.s overlapping across compar-
isons; i.e. enriched in the oil phase as compared to either
pre-oil or recovered phases (Supplementary Tables S3 and
S4). Of the three overlapping E.C.s, two are particularly no-
table: 1.3.11.1 (catechol 1,2-dioxygenase) directly associates
with BTEX (benzene, toluene, ethylbenzene and xylenes)
degradation, while 1.8.99.1 (assimilatory sulfite reductase)
is essential for sulfur reducing bacteria, known to degrade
BTEX. Note that there were also three E.C.s annotated only
by MM that were enriched in the oil phase; however, we
were not able to identify them as being directly related to
oil degradation (Supplementary Tables S5 and S6).

We also compared our pipeline to two recently published
metagenome annotation tools, Fun4Me (38) and ShotMAP
(39), using the above-described artificial metagenome. Note
that Fun4Me includes its own reference database, which
cannot be changed on demand. ShotMAP allowed using
our GS-set as reference. FG correctly annotated 4 900 (17%)
more reads than Fun4Me. Additionally, when the multi-
EC-annotated reads were excluded, FG attained 7% higher
precision than Fun4Me (99% versus 92%, respectively; Sup-
plementary Table S7). While results were not as striking,
faser still outperformed ShotMAP (using our GS database)
with 1 160 (4%) more correctly annotated reads and 2%
higher precision (99% to 97%, respectively; Supplementary
Table S7). Notably, the entire run took mi-faser (standalone
version) 42 seconds, while Fun4Me required more than 25
minutes. The speed evaluation for ShotMAP was not pos-
sible via command-line due to installation issues, but the
virtual machine implementation was able to finish in 3 min-
utes.

mi-faser facilitates novel functional discovery, while acceler-
ating large-scale metagenomic analysis

The online service of mi-faser uses clubber (Cluster Load
Balancer for Bioinformatics e-Resources (40)) for faster
processing. To demonstrate our method’s performance we
obtained and analysed with mi-faser, 68 gut metagenomic
datasets from a study of Chinese children affected by the
PWS and treated via dietary intervention (Methods) (18).
The analysis was automatically distributed to three clus-
ters (640, 800, and 3400 cores with load-dependent ac-
cess) by clubber via the mi-faser interface, for an aver-
age of 16 minutes of user-wait time (11.8 CPU hours) per
metagenome.

Note that after NMDS Euclidean distance analysis of mi-
crobiomes of untreated individuals (Day0), four individuals
(GD12, GD39, GD41 and GD50) were identified as out-
liers and removed (Methods). While we do not expect that
all PWS-affected children share the same microbiome fea-
tures, we felt that treatment effect and progression could be
better evaluated from a narrow starting point.

For the remaining individuals (n = 13), it was clear
that the dietary intervention significantly altered gut micro-
biome functionality (Supplementary Figure S7; Day 0 ver-
sus Day>0, P-value = 0.001, permanova test). More pre-
cisely, the intervention gradually increased the functional
beta-diversity among the patients’ gut microbiomes (Figure

Figure 4. Functional capabilities of microbiomes of PWS patients shift in
the course of dietary intervention. (A) The boxplot of Euclidean distance
between samples of the same group (in-group distances), i.e. Day 0, 30, 60
or 90, on the NMDS diagram (Supplementary Figure S7). The in-group
diversity increases significantly with time; * indicates P-value <1e−4; **
indicates P-value <1e−14; there is no significance between Day 60 and
Day 90; t-test. (B) Two types of long term diet intervention effect on PWS
patients: type1 individuals (GD02, GD03, GD15, GD40, GD42, GD43,
GD47, GD51 and GD58) with gut microbiome functional capacity fur-
thest removed from Day 0 at Day 90; type 2 individuals (GD04, GD18,
GD52 and GD59) with gut microbiome functional capacity reversed at
Day 90 toward their Day 0.

4A; Supplementary Figure S7), which was in line with the
results of the original study (18).

We further investigated the treatment progress of each pa-
tient using the Euclidean distance of the Day 30, 60 and
90 samples from the Day 0 sample of the same individual.
Overall, the distances increased with the treatment progress
(Day 30, 0.09 ± 0.02; Day 60, 0.16 ± 0.02; Day 90, 0.2 ±
0.03; Supplementary Figure S7), indicating the progressive
changes of gut microbial functional potentials correlated
with the diet time-line. Although Day 90 samples showed
the highest dissimilarity from Day 0 samples in most cases,
four patients (GD04, GD18, GD52 and GD59) reached the
highest dissimilarity at Day 60, showing reversal of diet ef-
fects at Day 90 (Figure 4B). Follow-up studies on these dif-
ferential trajectories could contribute to a more thorough
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Figure 5. Functional capabilities of microbiomes of CD-affected individ-
uals differ from healthy individuals and from each other. (A) The pedi-
gree of the family in our study. Filled markers indicate CD affected indi-
viduals and empty markers are healthy individuals; dashed outline mark-
ers indicate individuals not included in this study. Individuals grouped by
circles live in the same household. (B) The non-metric multidimensional
scaling (NMDS) graph represents the distribution of individual micro-
biome functional profiles. Samples are labeled with identifiers (S1-S11)
and household numbers (H1, H2, or H3, in parenthesis). Legend marker
numbers (G1––grandparents, G2––parents, G3––children) represent gen-
erations, while marker shapes relate generations and CD status. Sick indi-
viduals (filled markers) localize separately from each other and from the
cluster of healthy individuals (empty markers).

understanding of the effectiveness of the dietary interven-
tion in PWS children.

mi-faser reveals microbial functions associated with Crohn’s
disease (CD)

We used our mi-faser pipeline (Figure 1) to analyse
11 microbiomes from individuals of the same extended
family––two CD affected patients and nine first-degree rel-
atives (Figure 5A). The members of this family live in three
households that are no more than 32km apart from each
other, with the CD affected individuals living in households
17 km away. No statistically significant distinction between
functional profiles of individuals in the study was observed

on the basis of generational or household differences (Fig-
ure 5B; P-value = 0.55 and 0.60 respectively, permanova test
(41)). The nine healthy individuals shared highly similar mi-
crobiome functional profiles (rho, � = 0.93 ± 0.03; Figure
5B; Supplementary Table S8). This finding is in line with
previous studies that show that microbiome functional pro-
files across healthy individuals are more consistently main-
tained than bacterial species profiles (7). On the other hand,
the microbiome functional profiles of the two CD patients
are not only distinct from those of their healthy relatives
(Figure 5B; � = 0.75±0.11; P-value = 0.02, permanova
test), but also between themselves (� = 0.72; Figure 5B;
Supplementary Table S8). Note that the former holds true
even within the same household. In concert, these findings
indicate that either there are different microbiome patho-
genesis mechanisms of CD or that CD has a diverse impact
on microbiome functionality.

We identified those E.C.s in our microbiomes whose
abundance significantly changed in each patient compared
to healthy individuals (Methods). S01 and S09 both have a
large fraction of such E.C.s (45% and 31% respectively, sum
of enriched and depleted, Supplementary Table S9). For ex-
ample, nine E.C.s enriched in both S01 and S09 are an-
notated as rRNA methyltransferases (Supplementary Ta-
ble S10), which are known to be essential for microbial re-
sponse to environmental stresses (42). Another three E.C.s
enriched in both patients are annotated as RNA pseudouri-
dine synthase. RNAs with modified nucleotides, such as
pseudouridine, have been shown to suppress host innate im-
mune system (43). Thus, RNA modification may be an im-
portant bacterial strategy of surviving the CD-associated
inflammation. We further explored these E.C.s to identify
pathways uniquely altered in each patient; e.g. more than
half of Biotin metabolism pathway E.C.s are altered in S01,
while Xylene degradation is enriched only in S09 (Figure
6). There are also pathways that are similarly changed in
both patients, i.e. they are enriched in the same E.C.s; for
example, glutathione metabolism and lipopolysaccharide
biosynthesis (Figure 6, Supplementary Figure S8). Given
the distant microbiome functional profiles between S01 and
S09 (Figure 5B), these similarities are unlikely to occur by
chance. Glutathione is known to help bacteria survive ox-
idative stress, thus the enriched glutathione pathway could
be a response to inflammation (44); a previous study has
reported enrichment in abundance of genes associated with
glutathione transportation in CD patients (7). However, the
latter study (7) also suggested a decrease in propanoate and
butanoate metabolism, both of which showed overall en-
richment in S01 and S09 (Figure 6). Finally, to the best
of our knowledge, the role of the lipopolysaccharide (LPS)
biosynthesis pathway in CD patient microbiomes has not
yet been reported. However, bacterial LPS is previously re-
ported to increase intestinal tight junction permeability in
mouse modules (45). Tight junctions normally form a se-
lective seal between adjacent intestinal epithelial cells. Its
increased permeability induces luminal pro-inflammatory
molecules, resulting in sustained inflammation and tissue
damage (46). Additionally, we also observed differences
within individual pathway changes between patients. For
example in the glycolysis/gluconeogenesis pathway, S01 is
depleted in proteins necessary to convert glucose to pyru-
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Figure 6. Enriched or depleted molecular pathways in microbiomes of CD-affected individuals. Changes in molecular pathways were obtained by counting
the numbers of enriched or depleted E.C.s as compared to microbiome functional profiles of the healthy family members.

Figure 7. Microbial function shift in CD patients is involved in inflammation. Functions that are associated with inflammation inducers (acetaldehyde
and lipopolysaccharide) are enriched in CD patient microbiomes, as are the functions that help bacteria survive inflammation conditions (glutathione
metabolism, rRNA methytransferase and RNA pseudouridine synthase). Note that pathways above are toy examples for illustration purposes only; light
gray nodes indicate enriched functions and white nodes indicate unchanged or undetected functions. Products are: ACE = acetaldehyde, LPS = lipopolysac-
charide, G-SH = glutathione, RNA = RNAs with methylation or pseudouridine.
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vate, while the pyruvate metabolism pathways are enriched
(Supplementary Figure S9A). S09 shows a similar pattern,
while enriching an alternative route from glyceraldehyde-
3P to glycerate-3P (Supplementary Figure S9B). Interest-
ingly, in both patients, most enriched E.C.s in pyruvate
metabolism lead to acetaldehyde production (Supplemen-
tary Figure S9), a metabolite also known to induce tight
junction disruption in intestinal epithelial cells (47). Thus,
our result indicates the microbiome function shift in CD pa-
tients contributes to pathogenicity, while helps the bacteria
survive host inflammation (Figure 7).

CONCLUSION

In this study, we compiled a ‘clean’ protein dataset with ex-
perimentally confirmed E.C. annotations (gold standard,
GS-set), and trained the faser algorithm to optimise trans-
fer of function annotation from reference proteins to short
peptides translated from sequencing reads. The faser al-
gorithm significantly outperforms PSI-BLAST in differ-
entiating functions at high-resolution levels. It also of-
fers ∼20% more annotations at comparable precision lev-
els than the function annotation algorithm of MG-RAST.
The (highly-parallelized and fast) mi-faser pipeline (faser
in combination with GS) was able to identify, in BP oil
spill data, unique candidate functions associated with oil-
degradation, which were missed by the MG-RAST pipeline.
Analysis of 68 metagenomic datasets from a dietary inter-
vention study in PWS patients highlighted previously un-
seen individual-specific trajectories of functional changes in
the gut microbiomes. Our pipeline also revealed that gas-
trointestinal microbiomes of related CD patients are func-
tionally very different. We observed two types of functions
enriched in CD patients: those that cause inflammation and
those that help bacteria survive inflammatory stress; these
may highlight the possible role of the microbiome in CD
pathogenicity. Note that all mi-faser annotations, although
highly informative, are based on the proteins making up the,
currently limited, GS-set. On the other hand, faser itself is
a robust read annotation algorithm that can be used with
any reference database supplied. We also expect the growth
in the number of proteins with experimentally verified func-
tions to make our approach even more powerful in the near
future.

AVAILABILITY

mi-faser is available online at http://services.bromberglab.
org/mifaser/.

The standalone version of the pipeline, along with the
mi-faser source code, is available at https://bitbucket.org/
bromberglab/mifaser. The DOI for the source code used in
this manuscript is https://doi.org/10.5281/zenodo.1045582,
and the DOI for the current GS database is https://doi.org/
10.5281/zenodo.1048268.

The fasta file for GS-set is available at http://bromberglab.
org/sites/default/files/SOM Data1 gold standard.fasta.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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