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Abstract: For the first time, a novel germanium (Ge) bi-stable resistor (biristor) with a vertical pillar
structure was implemented on a bulk substrate. The basic structure of the Ge pillar-typed biristor is a
p-n-p bipolar junction transistor (BJT) with an open base (floating), which is equivalent to a gateless
p-channel metal oxide semiconductor field-effect transistor (MOSFET). In the pillar formation, we
adopted an amorphous carbon layer to protect the Ge surface from both physical and chemical
damage by subsequent processes. A hysteric current-voltage (I-V) characteristic, which results in a
sustainable binary state, i.e., high current and low current at the same voltage, can be utilized for a
memory device. A lower operating voltage with high current was achieved, compared to a Si biristor,
due to the low energy bandgap of pure Ge.

Keywords: Ge biristor; vertical memory; amorphous carbon layer; gateless structure; capacitorless
structure; DRAM

1. Introduction

As memory devices continue to be scaled down for high density integration, the
conventional 1-transistor and 1-capacitor dynamic random-access memory (1T/1C DRAM)
cell used for large storage capacity is facing process challenges. As the cell size shrinks,
the aspect ratio of the cell capacitor enormously increases and the junction leakage current
deteriorates [1,2]. Furthermore, reliability issues induced by off-state stress and bias-
temperature instability (BTI) impede cell functionality such as on-state current (ION) and
off-state leakage (IOFF) [3]. In order to solve these technological limitations, the floating
body-based dynamic random-access memory (DRAM) cell with a capacitorless structure
has been under active research and development to improve fabrication simplicity and
cell area scalability [4–6]. Such DRAM has at least three terminals: gate, source, and
drain. For further aggressive scaling with a more simplified structure, a bi-stable resistor
(biristor) composed of two terminals: source (emitter) and drain (collector) was reported
for a gateless volatile memory device. From a structural point of view, such a biristor
is categorized into two groups. One is a planar structure that was implemented on a
silicon-on-insulator (SOI) wafer [7,8] for a floating body and the other is a vertical structure
that was fabricated on a bulk-Si wafer [9,10]. In the vertical biristor, a p-type floating body
located at the middle of the pillar was inherently made by n-type junctions positioned at
a top and bottom of a pillar. Herein, the top electrode is a collector (drain), the bottom
electrode is an emitter (source), and the middle floating body is a base (channel). On the
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other hand, germanium (Ge) based transistors have been intensively investigated in efforts
to improve their electrical performance, because Ge provides both a lower energy bandgap
and smaller effective mass compared with silicon (Si) [11–15].

One of the major goals of the Si-based biristor is the reduction of latch-up voltage (VLU)
for low-voltage operation. It is difficult to reduce the driving voltage because the open-
based structure of a biristor requires high voltage to trigger a high impact ionization (I.I)
rate for the generation of excessive carriers. To enable low-voltage operation, an alternative
material with a low energy bandgap is indispensable to increase the I.I rate. One of the
candidates for the low energy bandgap material is Ge. Recently, a lower operating voltage
for the I-MOS was achieved using Ge [16] and a bandgap-engineered SiGe biristor for
low-voltage operation was investigated through numerical simulation [12]. Based on such
results, the development of a Ge-based DRAM can be expected to achieve a lower VLU.

In this work, a capacitorless and gateless Ge-based DRAM with a vertical pillar
structure comprised of p+ (top)-n (middle)-p+ (bottom) was demonstrated. In order to
make the heavily doped junctions, a p+ emitter and collector were used because of high
boron solubility in Ge. By employing pure Ge, a lower operating voltage and higher on-
state current were achieved, compared with a Si-based biristor. The non-uniform doping
profile along the vertical direction of the Ge pillar allows the unidirectional operation of the
two-terminal biristor in a cross-bar array, also resulting in the blocking of current leakage
via the sneaky path. Furthermore, the pillar-shaped vertical structure can be an optimized
structure to minimize the area of the biristor.

2. Device Fabrication

The process flow and relevant schematics of the vertical-type Ge biristor are shown in
Figure 1. Figure 1a summarizes the overall fabrication process of the vertical Ge biristor.
As shown in Figure 1b, a p-type (110) Ge bulk wafer was used as a starting material. First,
boron was implanted with an energy of 80 keV and a dose of 1 × 1015 cm−2 to form the
emitter (E) at the bottom of the Ge pillar. Afterwards, phosphorus was implanted with
an energy of 80 keV and a dose of 5 × 1015 cm−2 to define the base (B) at the middle of
the Ge pillar. Lastly, boron was again implanted with an energy of 5 keV and a dose of
5 × 1015 cm−2 to make the collector (C) at the top of the Ge pillar. Rapid thermal annealing
(RTA) at 650 ◦C for 20 sec was conducted to activate the dopants. For a wider sensing
window and a longer retention time, it is of importance to minimize the bulk defects [17].
Then, an amorphous carbon layer (ACL) of 200 nm and silicon nitride (SiN) of 20 nm were
sequentially deposited to protect the Ge pillar from physical damage by the subsequent
chemical mechanical polishing (CMP) process, and from chemical damage by the recess
process of the following interlayer dielectric (ILD) for the blanket etch-back, performed
with the aid of buffered oxide etchant (BOE). Then the Ge pillar was vertically patterned
by e-beam lithography and a dry-etching process. Tetraethyl-orthosilicate (TEOS) of 3 µm
was deposited by plasma-enhanced chemical vapor deposition (PECVD). The protruded
PE-TEOS layer on the vertical Ge pillar was planarized by the CMP process. Next, the
PE-TEOS was recessed by the BOE (6:1) until the ACL was revealed. Afterwards, the
sacrificial ACL was eliminated by O2 plasma ashing until the top of the Ge pillar was
exposed. Finally, a landing pad of Au with an area of 1 µm2 was patterned on both a
top of the Ge pillar and Ge substrate for electrical probing by in situ scanning electron
microscopy (SEM).

Figure 2 presents SEM images at each fabrication step. As shown in Figure 2a,b, the
Ge pillars were patterned via e-beam lithography and dry etching. The cross-sectional
profile of the PE-TEOS after the blanket etch-back by BOE is shown in Figure 2c. Figure 2d
shows the energy dispersive spectroscopy (EDS) data to confirm each component (Ge, Si,
O). The inset of Figure 2d is a SEM image after deposition of the PE-TEOS on the vertical
Ge pillar.
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Figure 2. SEM images of the as-fabricated vertical Ge biristor and analysis data of the elementary
components. (a) Top view SEM photograph. (b) Cross-sectional view SEM photograph. Diameter
(Dpillar), height (Hpillar), and open-base length (LB) of the Ge pillar are 280 nm, 330 nm, and 180 nm,
respectively. (c) Ge pillar after blanket etch-back of the PE-TEOS. (d) Energy dispersive spectroscopy
(EDS) of the Ge pillar and PE-TEOS layer. The inset shows an SEM image of the deposited PE-TEOS
on the Ge pillar.
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3. Experimental Results and Discussion

Figure 3 shows the hysteric current-voltage (I-V) curves of the fabricated vertical Ge
biristor. The distinctive and stable binary state arises from the abrupt increase in current
produced by the impact ionization. The generated electrons lower the channel barrier,
allowing more channel carriers to cross, leading to a positive-feedback process [7]. This
abrupt current (ION) change occurs at the latch-up voltage (VLU). Then, the generated
minority carriers (electrons in our device) disappear by the recombination process and
the diffusion into junction, which determines VLD. In the same bias condition, the latch-
up process only occurs in a forward mode via the impact ionization. In the reverse
mode, as shown in the inset of the Figure 3, the latch process is inhibited because of
the asymmetric doping profile (Figure 4). It is noteworthy that the above-mentioned
unidirectional property of the proposed two-terminal memory cell blocks off reverse
current (IREV) through the sneaky path among neighboring cells in the cross-bar array,
which enables low-power operation. This feature allows realization of a 4F2 memory
architecture because the proposed vertical biristor with the asymmetric doping does not
require an external switching element, such as a transistor or a diode.
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Figure 3. Hysteresis of the I-V characteristics ((a) linear scale, (b) semi-log scale) of the fabricated
vertical Ge biristor for different reading directions (forward mode: collector side and reverse mode:
emitter side). The bi-stable state is only observed for the forward mode. The counterclockwise loop
has a VLU of 4.3 V and VLD of 1.5 V.

Figure 4 shows the asymmetric doping profile of the fabricated vertical Ge biristor.
Figure 4a shows the secondary ion mass spectroscopy (SIMS) data, providing a junction
profile along the vertical Ge pillar. As aforementioned, this inherently non-uniform and
asymmetric doping profile along the vertical direction of the Ge pillar allows the unidi-
rectional operation of the two-terminal BJT in a cross-bar array, resulting in suppression
of IREV via the sneaky paths. This asymmetric doping profile was also verified by SIL-
VACO simulation, as shown in Figure 4b. It can be seen that the actual doping profile
obtained from SIMS and the profile obtained from simulation generally match well. High
dose of ion implantation adversely induced defects thus dopant diffusion led by thermal
post-annealing is affected by the process-induced defects. It is speculated that a difference
between the SIMS and the simulation data is attributed to the defects. Since the doping
concentration near the upper side of the pillar is higher than that near the bottom side of
the pillar, the common-emitter gain (β) and the multiplication factor (M) of the forward
read (FWD) are higher than those of the reverse read (REV) [8]. The latch-up action of the
biristor is based on a positive-feedback process, which originates from the iterative impact
ionization. The positive-feedback process can be activated by the magnitude of the electron
current generated in the base region (IB) and in the collector region (IC) [7,8].
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Figure 4. The asymmetric doping profile of the vertical Ge biristor from (a) measured SIMS data and
(b) SILVACO simulation data.

Figure 5 shows an energy band diagram along the vertical direction of the proposed
Ge biristor. As shown in Figure 5, holes from the collector generate electron-hole (e-h) pairs
through I.I near the emitter. The generated holes are flown to the emitter and the created
electrons are remained in the base. Thus, the electric potential of the base is lowered. With
this reduced potential, more holes are injected from the collector, the I.I rate is further
increased again. As a consequence, positive feedback that can lead a latch-up phenomenon
is enabled. Due to the positive feedback, current is abruptly increased at VLU, which
allows binary memory operation. Because the common-emitter gain (β) is affected by the
increased I.I rate due to the lower bandgap energy of Ge (Eg−Ge ≈ 0.67 eV) compared with
that of Si (Eg−Si ≈ 1.12 eV) [13], the Ge-based biristor can operate with lower voltage and
higher current.
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2-D SILVACO device simulation data showing electric field (e-field) near the collector
region of the Si and Ge biristor is shown in Figure 6. When the same bias is applied
(VC = 4.5 V), Ge has a higher e-field than Si. Thus, it is more useful for positive feedback
mechanisms and leads to lower VLU.
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4. Conclusions

A vertical Ge biristor with a gateless p-n-p structure (base open pnp BJT), which
can be applied in the gateless and capacitorless DRAM, was demonstrated for the first
time. By adopting a vertical structure and pure Ge material, this memory device has the
advantages of an inherently small cell size (<4F2) and low-voltage operation. Due to the
asymmetric doping profile inside the vertical pillar, bi-stable operation is only observed
for the forward mode. Thus, such unidirectional characteristic cuts off a sneaky path
among the neighbored devices. Furthermore, the proposed Ge biristor showed higher
ION and lower VLU compared to the Si biristor. This proposed Ge biristor-based memory
architecture can be used for various applications including embedded and stand-alone
memory, and provide extremely long endurance, due to the intrinsic gateless structure,
without a gate and gate dielectric. Therefore, the proposed Ge biristor can provide a guide
as a next-generation memory device.
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