
Delayed intramuscular human neurotrophin-3
improves recovery in adult and elderly rats
after stroke
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There is an urgent need for a therapy that reverses disability after stroke when initiated in a time frame suitable for the majority of

new victims. We show here that intramuscular delivery of neurotrophin-3 (NT3, encoded by NTF3) can induce sensorimotor

recovery when treatment is initiated 24 h after stroke. Specifically, in two randomized, blinded preclinical trials, we show improved

sensory and locomotor function in adult (6 months) and elderly (18 months) rats treated 24 h following cortical ischaemic stroke

with human NT3 delivered using a clinically approved serotype of adeno-associated viral vector (AAV1). Importantly, AAV1-

hNT3 was given in a clinically-feasible timeframe using a straightforward, targeted route (injections into disabled forelimb

muscles). Magnetic resonance imaging and histology showed that recovery was not due to neuroprotection, as expected given

the delayed treatment. Rather, treatment caused corticospinal axons from the less affected hemisphere to sprout in the spinal cord.

This treatment is the first gene therapy that reverses disability after stroke when administered intramuscularly in an elderly body.

Importantly, phase I and II clinical trials by others show that repeated, peripherally administered high doses of recombinant NT3

are safe and well tolerated in humans with other conditions. This paves the way for NT3 as a therapy for stroke.
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Introduction
Stroke rapidly kills brain cells and is frequently disabling.

Globally, there are 31 million stroke survivors, with

another 9 million new strokes annually (WHO). The ma-

jority of stroke victims are not admitted to hospital and

diagnosed within 6 h (Evenson et al., 2009) yet clot-busting

therapies only work when treatment is initiated well within

4.5 h. New therapies are urgently needed (Carmichael,

2005; Donnan et al., 2008).

We are the first to study whether neurotrophin-3 (NT3,

encoded by NTF3) can improve recovery when given in a

clinically-feasible time frame after stroke. Others have

shown that NT3 plays a role in the development, function

and repair of locomotor circuits (Chen et al., 2002, 2006,

2008; Patel et al., 2003; Zhou et al., 2003) and reported

that intracranial delivery of NT3 immediately following

stroke or by intracranial gene therapy prior to stroke re-

duces infarct volume (Zhang et al., 1999a, b, 2012).

Moreover, NT3 restores sensorimotor function following

spinal cord injury in rats (Schnell et al., 1994; Grill et al.,

1997; Zhou et al., 2003; Fortun et al., 2009) by promoting

axon growth and synaptic plasticity in multiple locomotor

pathways including the corticospinal tract and propriocep-

tive pathways. All these systems express TRK and/or p75

receptors for NT3 in rodents and primates including

humans (Altar et al., 1993; Barrette et al., 2007; Brock

et al., 2010). We therefore examined the ability of NT3

to promote recovery in a model of stroke.

We chose to deliver NT3 by a peripheral route for trans-

lational relevance. First, peripheral doses of recombinant

NT3 are safe and well tolerated in phase I and II clinical

trials for other disorders (Chaudhry et al., 2000; Coulie

et al., 2000; Parkman et al., 2003; Sahenk, 2007).

Intramuscular injection is a clinically straightforward

route after ischaemic stroke in humans. We chose to use

a gene therapy system [adeno-associated virus (AAV) sero-

type 1], which causes effective transgene synthesis in mus-

cles, and is being used clinically in Europe (Ferreira et al.,

2014): AAVs cause no identified disease or symptoms in

humans and recombinant-deficient AAVs have low im-

munogenicity or toxicity. NT3 protein is retrogradely trans-

ported from muscle to dorsal root ganglion neurons and

motor neurons where it causes gene transcription, axon

growth of primary afferents, and synapse strengthening

within locomotor circuits (DiStefano et al., 1992; Yan

et al., 1993; Taylor et al., 2001; Chen et al., 2002; Patel

et al., 2003; Lee et al., 2012; Wang et al., 2012). Finally,

NT3 may be secreted in the spinal cord after transport in

sensory afferents and motor axons (Zhou and Rush, 1994;

von Bartheld et al., 1996; Wang et al., 2008). Thus, deliv-

ery of NT3 to the muscle could be a safe and effective way

to induce spinal neuroplasticity after stroke. Because

490% of strokes occur in people older than 65

(Truelsen et al., 2006), we evaluated the effectiveness of

NT3 in elderly rats as well as adult rats. We chose to de-

liver our therapy 24 h after cortical ischaemia, because the

median time to hospital admission and diagnosis is 6 h in

major cities (Harraf et al., 2002; Evenson et al., 2009);

therefore, this therapy might be applicable to a large

number of stroke patients.

We now show that intramuscular injection of AAV1

encoding human NT3 (hNT3) promotes sensory and loco-

motor recovery in adult rats, even when treatment is

initiated 24 h after stroke.

Materials and methods

Experimental design

Forty-five Lister hooded adult female rats were used for the
first experiment (6 months old; 200–300 g; outbred) and 40
elderly Long Evans (18 months; 300–600 g; outbred) female
rats were used in the second experiment (Charles River). We
used Long Evans rats for our second experiment because we
had previous experience with inducing stroke in elderly rats of
this strain (Soleman et al., 2012), which allowed us to perform
appropriate sample size calculations. The experimental designs
are presented in Fig. 1. All surgeries, behavioural testing and
analysis were performed using a randomized block design and
in a blinded fashion. Allocation concealment was performed
by having AAV1-hNT3 and AAV1-GFP stocks coded by a
person independent of the study. The blinded treatment code
for each rat was drawn at random from a hat without replace-
ment. Codes were only broken after the end of the study. All
procedures were in accordance with the UK Home Office
guidelines and Animals (Scientific Procedures) Act of 1986.
Animals were housed in groups of three to four in Plexiglas�

cages with tunnels and bedding, on a 12:12 h light/dark cycle
and had access to food and water ad libitum.

Stroke surgery

Animals were anaesthetized with isoflurane (4% in O2 for
induction) and then transferred to a stereotaxic frame
(Kopf). Anaesthesia was maintained at 1.5–2% in O2 delivered
via a facemask. Rectal temperature was maintained at �36�C
using a homeothermic system. Ischaemic stroke was induced
stereotactically as described previously (Soleman et al., 2010,
2012) in rats in the cortex representing the dominant forelimb
according to preoperative behavioural testing. In stroke rats, a
midline incision was made and the sensorimotor cortex was
exposed by rectangular craniotomy at the following mediolat-
eral (ML) and anterioposterior (AP) co-ordinates: ML 2 mm to
4 mm, AP 4 mm to �2 mm, relative to Bregma. The dura mater
was incised using a 25-gauge needle. For adult rats, three

260 | BRAIN 2016: 139; 259–275 D. A. Duricki et al.



0.5 ml volumes of endothelin-1 (ET-1, encoded by Edn1)
(400 pmol in sterile saline; 0.5 mg/ml; Calbiochem) was admin-

istered topically onto the cortical surface (ML 2.8 mm; AP

3.5 mm, 2 mm, �0.5 mm). There was a 2-min interval between

each application of ET-1. For aged rats, four 1-ml volumes of
ET-1 were administered topically and four 1-ml volumes were

microinjected intracortically at the following co-ordinates

(relative to Bregma, midline and brain surface, respectively):
(i) AP + 3.5 mm, ML 2.8 mm, DV �1.0 mm/0 mm; (ii) AP

+ 2 mm, ML 2.8 mm, DV �1.0 mm/0 mm; (iii) AP + 0.5 mm,

ML 2.8 mm, DV �1.0 mm/0 mm; and (iv) AP �1 mm, ML
2.8 mm, DV �1.0 mm/0 mm.

Prior to suturing, the animal was left undisturbed for 5 min
and the skull fragment was replaced. Sham rats received all

procedures up to but not including craniotomy as this minor

procedure can itself produce behavioural deficits (Adams et al.,
1994). Skin was sutured (Vicryl, 4/0, absorbable sutures,
Ethicon). Animals were kept in a heated recovery box

until fully conscious and analgesia (buprenorphine, 0.01 mg/

kg, subcutaneously) was given after suturing and recovery.

Figure 1 Design of Experiment 1. (A) Schematic, and timelines of the studies using (B) adult rats and (C) elderly rats. Rats were pre-trained

on the horizontal ladder. Rats then received either stroke or sham surgeries. Stroke was induced by application of endothelin-1 to the sen-

sorimotor cortex (A; red). One day after stroke either AAV1-hNT3 or AAV1-GFP was injected into the affected forelimb triceps brachii and

biceps brachii. Rats underwent (B) 6 weeks or (C) 8 weeks of behavioural testing. Anterograde tracer (BDA) was injected into the less affected

sensorimotor cortex (A; blue) 2 weeks prior to the end of each study. Rats were euthanized at the end of the study and tissues were analysed.

The experimenter was blinded to all treatments until the end of the study. All surgeries and treatments allocations were randomized.
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All of the adult rats and 93% of aged rats survived this
surgery.

Intramuscular injections of
AAV1-hNT3

The AAV transfer plasmid, pAAVsp, has a CMV promoter, a
synthetic intron flanked by splice donor/splice acceptor sites,
and a multiple cloning site terminated by a beta globin polyA
sequence. The transcript is flanked by AAV2 inverted terminal
repeats. pAAVsp-hNT3 was cloned using the human pre-pro-
neurotrophin-3 coding DNA sequence (CDS 8538.1, 774 bp)
corresponding to transcript variant 2 (NM_002527.4), which
encodes the isoform 2 precursor protein (257 amino acids)
including the secretory signal sequence. The hNT3 CDS was
restriction digested from a modified pBluescript� plasmid
(SKsp) using SfiI and PmeI sites and then cloned into
pAAVsp with these same sites. pAAV-EGFP was created
by cloning EGFP into the pAAVsp between AgeI and XhoI
sites. Plasmids were cloned in the laboratory of Prof. Fred
Gage (Salk Institute, CA). AAVs (serotype 1) were generated
using the pHelper plasmid and the capsid plasmid encoding
Rep/Cap1. Vectors were prepared and titred by PCR
(Virapur).

Twenty-four hours after surgery, rats were anaesthetized
with isoflurane and a small incision was made between
elbow and axilla. Stroke rats received AAV1-GFP or AAV1-
hNT3 into triceps brachii and biceps brachii. Injections were
spaced at regular intervals and made parallel to the long axis
of each muscle using an ultrafine, bevelled non-coring
32-gauge needle (Hamilton) with the intention of targeting
the neurovascular bundles and motor end plates that are
located in the proximal one-third to one-half of the muscles
(Tosolini and Morris, 2012). For triceps, 25 ml was injected
deeply into the long head (5 � 5 ml) and the lateral head
(5 � 5 ml) and 7.5 ml was injected superficially into the long
head (3 � 2.5 ml) and the lateral head (3 � 2.5ml). For
biceps, 15 ml (3 � 5 ml) was injected superficially and 10 ml
(2 � 5 ml) deeply. A total of 90 ml was injected into each rat.
In total, elderly rats received 7.0 � 1010 viral genomes (vg)
and adult rats received 3.0 � 1010 vg. Sham rats underwent
skin incision without AAV injection. Skin was sutured and
analgesic administered as above.

Behavioural assessment

Rats were trained (for 3 weeks) and evaluated (6 or 8 weeks)
on behavioural tasks. Preoperative baseline scores for the hori-
zontal ladder were collected 1 week before surgery.

Sensory impairments

The bilateral sticky patch test was used (Schallert et al., 1982,
2000). To identify the affected forelimb, an adhesive label
(13 mm diameter, Ryman) was attached to each forelimb
wrist surface and the order of label removal was recorded
over at least three trials until a 75% preference was observed.
A Sensory Impairment Score was determined using seven
stimulus pairs (Fig. 6A), starting with pair 3; the smaller stimu-
lus was placed on the less affected forelimb and the larger
stimulus was placed on the affected forelimb. If the rat

removed the stimulus from the less affected limb first, then

stimulus size was decreased on the less affected forepaw and
increased on the affected forepaw by an equal amount

(14.1 mm2). This was repeated until the rat finally removed

the stimulus on the affected forepaw before the less affected
forepaw. The Sensory Impairment Score is derived from the

mean of the stimulus pairs used before and after reversal.

Walking

The apparatus consisted of Plexiglas� side walls, 1.2-m long,

50-cm high and width adjusted to �2 cm wider than the

animal to try and prevent turning. Metal rungs were placed
at a height of 20 cm; they were spaced unequally (between

1 cm and 4 cm apart) and changed weekly to avoid improve-
ment through pattern learning. Rats were videotaped crossing

a 1-m length of the horizontal ladder weekly, three times per

session. Any slight paw slips, deep paw slips and complete
misses were scored as errors. The mean number of errors per

step was calculated for each limb for each week. Foot faults
are routinely normalized ‘per step’ after stroke (Metz and

Whishaw, 2002; Soleman et al., 2010): we also checked that
there were no differences between groups in the number of

steps taken after stroke (linear model P-values40.05).

Moreover, analysis of foot fault data with or without normal-
ization led to the same conclusions being drawn.

Corticospinal tract tracing

Anterograde tracer [biotinylated dextran amine (BDA)
10 000 kDa, 10% in phosphate-buffered saline (PBS)

Invitrogen] was injected into the contralesional sensorimotor

cortex 2 weeks before the end of each study [i.e. after 4 weeks
in adult rats and after 6 weeks in elderly rats (Fig. 1) after

behavioural testing for that day was completed]. Six holes
were drilled into the skull using a dental drill at the following

coordinates relative to Bregma: (i) AP: + 1.0 mm, ML: 1.5 mm;

(ii) AP: + 0.5 mm, ML: 2.5 mm; (iii) AP: + 1.5 mm, ML:
2.5 mm; (iv) AP: + 0.5 mm, ML: 3.5 mm; (v) AP: + 2.0 mm,

ML: 3.5 mm; and (vi) AP: �0.5 mm, ML: 3.5 mm. BDA was
injected using a Hamilton syringe and a glass micropipette.

The micropipette was slowly lowered 1.5 mm below the corti-
cal surface and BDA injected at a rate of 0.25 ml/10 s with a

pause of 1 min after each infusion. The scalp was then sutured

and analgesic given as described above. Two weeks after BDA
injection, rats were terminally anaesthetized with sodium

pentobarbital (Euthatal) and perfused transcardially with PBS
(NaCl, 137 mM; KCl, 2.7 mM; Na2HPO4, 4.3 mM; KH2PO4,

1.4 mM) for 2 min, followed by 500 ml of 4% paraformalde-

hyde (PFA) in PBS for 12 min. The brain, spinal cord and
muscles were dissected and stored in 4% PFA in PBS for

2 h, transferred to 30% sucrose in PBS and stored at 4�C.
The C1 and C7 spinal cord segment was embedded in gelatin

and then post-fixed for 24 h and then cryoprotected in 30%

sucrose in PBS. Forty micrometre transverse slices were cut
using a freezing stage microtome (Kryomat) and transferred

into Tris-buffered saline/azide (100 mM Tris, 15 mM NaCl,
0.5 mM NaN3, pH 7.4) in 24-well plates and stored at 4�C.

Ten series of sections were cut and placed in 10 wells.
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Histology

BDA staining was as follows: sections were incubated in 0.3%
H2O2 and 10% methanol (30 min). Sections were incubated in
ABC reagent (VectorLabs) (30 min) then amplified using bioti-
nyl tyramide (1:75, PerkinElmer), then left overnight at 4�C
with extra avidin FITC (1:500, Sigma). Sections were washed
between steps using PBS.

Series of 40-mm thick transverse sections of fixed spinal cord
were immunolabelled as previously described (Soleman et al.,
2010). Primary antibodies (overnight) were: rabbit anti-PKC�
(Santa Cruz Biotechnology, 1:500); rabbit anti-CGRP (1:4000,
Sigma); rabbit anti-serotonin (1:6000, Sigma). Secondary anti-
bodies (3 h) were: donkey anti-rabbit IgG Alexa 546 (1:1000,
Jackson Labs); goat anti-rabbit IgG Alexa 488 (1:1000,
Sigma); goat anti-rabbit IgG Alexa 546 (1:1000, Sigma), and
DAPI (1:50 000, Sigma). Sections were washed with PBS and
then mounted and cover slipped with Mowiol

�
.

Muscle histology and immunolabel-
ling for macrophages

Triceps brachii muscles were dissected from forelimbs of the
adult and elderly rats described above (6 and 8 weeks post-
injection, respectively). Triceps brachii muscles were also dis-
sected from forelimbs of additional naı̈ve adult (4 month) rats
(i.e. no intramuscular injections; n = 2) and from adult rats
injected with either AAV-NT3 or AAV-GFP at 48 h (n = 2,
2). For a positive control, two naive adult rats were injected
with lipopolysaccharide (LPS, 1 mg/ml, Sigma) and sacrificed
48 h later to ensure the antibody staining for macrophages was
working optimally. Muscles were cut in transverse sections at
30 mm using a cryostat in a series of five. One series from each
rat was stained for monocytes and macrophages, using the
pan-macrophage marker CD-68 (mouse anti-CD68, 1:200,
Abcam, Ab31630).

Immunofluorescence was visualized under a Zeiss Imager.Z1
microscope or a confocal Zeiss LSM 700 laser scanning micro-
scope. Photographs were taken using the AxioCam and
AxioVision LE (Rel. 4.2) and ImageJ was used for image
analysis.

Corticospinal axons were counted that crossed the midline,
and at two more lateral planes at C7 and at the midline of C1
(Fig. 4A). For each rat, the number of corticospinal axons per
cord segment were calculated by counting the number of cor-
ticospinal axons in all sections in a series and then multiplying
by the total number of sections in the whole C7 segment and
then divided by the number of sections counted.

Infarct measurements

Coronal sections were cut from + 3.0 mm to �2.5 mm relative
to Bregma. For each section, the total area of each hemisphere
or ventricle was obtained using ImageJ contour tracing soft-
ware. Infarct volume was calculated by subtracting the area of
the ipsilesional hemisphere from the area of the contralesional
hemisphere within a constant boxed area (Fig. 2A) in each
section. Ventricular volume was calculated by subtracting the
area of the contralesional lateral ventricle from the ipsilesional
lateral ventricle in each section. Volume of injury (mm3) was

calculated as the sum of the area from each section, multiplied
by the distance between sections.

Expression of human and rat mRNA
NTF3

Six weeks after intramuscular injections in the 6-month-old adult
rats, human NTF3 mRNA (hNT3) was measured in the biceps
brachii muscles and ipsilateral C7 spinal hemicords of the rats
using quantitative reverse transcriptase polymerase chain reaction
(qRT-PCR). Rats were terminally anaesthetized with sodium
pentobarbital (Euthatal) and biceps and C7 spinal cord tissues
were rapidly dissected and snap frozen in liquid nitrogen prior to
storage at �80�C. Total RNA was isolated from biceps brachii
and C7 spinal hemicords using TRIzol�. Five hundred nano-
grams of RNA was DNaseI treated and then cDNA was synthe-
sized using random primers (SuperScript� II, Invitrogen).
Quantitative PCR reactions (25ml) contained 25 ng of cDNA,
25 ng of each primer and 4ml 5� SYBR� Green PCR Master
Mix (Roche). PCR conditions (RotorGene-3000, Corbett Life
Science) were: hold (95�C for 10 min), 40 cycles (60�C for
10 s, 72�C for 20 s, 95�C 10 s), extend (72�C 11 s) and melt
(72�C to 95�C, 1�C/step, waiting 1 s at the first step and 5 s/
step thereafter). Melt curve analyses indicated product specificity.
Primers were as follows: hNT3 5’-GAA-ACG-CGA-TGT-AAG-
GAA-GC-3’ and 5’-CCA-GCC-CAC-GAG-TTT-ATT-GT-3’, rat
NT3 5’-CAG-AAT-TCC-AGC-CGA-TGA-TT-3’ and 5’-CTG-
GCC-TGG-CTT-CTT-TAC-AC-3’, GAPDH 5’-ATG-GGA-
AGC-TGG-TCA-TCA-AC-3’ and 5’-CCA-CAG-TCT-TCT-
GAG-TGG-CA-3’. Standard curves were obtained for each of
the target genes (human NTF3 and rat Ntf3) using 3-fold
serial dilutions of foetal human brain cDNA (Stratagene) or
embryonic Day 15 (E15) rat head cDNA and melt curve analysis
confirmed the specificity of the PCR primers.

Measurement of NT3 protein

We carried out an additional experiment to explore the bio-
distribution of NT3 protein using a separate cohort of sham
and stroke rats treated with either AAV-hNT3 or AAV-EGFP,
and euthanized at 4 days or 8 weeks after stroke (n = 5/group).
Endothelin-1 stroke was induced in anaesthetized adult (6
months old) rats on the right sensorimotor cortex (four topical
applications, four intracranial injections). Twenty-four hours
later left biceps and triceps were injected with AAV-hNT3 or
AAV-EGFP. Samples were recovered for ELISA 4 days or 8
weeks later, as well as from sham operated rats. Rats were
terminally anaesthetized with sodium pentobarbital
(Euthatal). Blood was taken from the heart and allowed to
clot overnight at 4�C prior to centrifugation at 14 000 rpm
for 15 min on a benchtop centrifuge. The serum was then
frozen at �80�C. Other tissues were rapidly dissected and
frozen on dry ice prior to storage at �80�C.

After washing with ice-cold PBS, tissue was mechanically
homogenized (GentleMACS; Miltenyi Biotech) in RIPA
buffer [50 mM Tris HCl pH 7.4, 150 mM NaCl, 1 mM
EDTA, 1% Triton

TM

X-100, 0.1% sodium dodecyl sulphate,
containing one tablet of complete mini protease inhibitor cock-
tail (Roche) per 10 ml] using 10 ml per 1 mg of tissue. Lysates
were centrifuged at 13 000 rpm on a benchtop centrifuge, 4�C
for 15 min. Supernatants were stored at �20�C. ELISA was
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performed in duplicates according to the manufacture’s proto-
col with slight modifications (DuoSet ELISA, R&D Systems).
Ninety-six-well plates were coated with the capture antibody
at room temperature overnight. Plates were washed three times
and blocked for 1 h with Reagent Diluent before 100ml of
sample or blood serum per well was added. Plates were
shaken for 5 h at room temperature. After three washes, the
secondary antibody was applied overnight, 4�C. The plate was
washed, incubated for 20 min with streptavidin-horseradish
peroxidase, and developed with substrate solution for 20 min
before adding stop solution. The plate was read at 450 nm and
540 nm (SpectraMax 340PC; Molecular Devices). After sub-
tracting the 540 nm readings from the 450 nm readings, NT3
concentration was calculated based on a linear standard curve
ranging from 600 pg/ml to 0 pg/ml. Values were normalized to
total protein concentration, measured with the Bicinchoninic
Acid Assay (Novagen).

Magnetic resonance imaging

Structural MRI was conducted 1 day following stroke before
the treatment was initiated and then at the 8 week end of
study time point using a 7 T horizontal bore VMRIS scanner
(Varian). Animals were anaesthetized using 2% isoflurane, in
0.8 l/min medical air and 0.2 l/min medical O2 in an induction

chamber. Once anaesthetized they were secured in a stereo-
taxic head frame inside the quadrature birdcage magnetic res-
onance coil (43 mm internal diameter) and placed into the
scanner. Rectal temperature was maintained at 37 � 1�C.
Physiology was monitored using pulse oximetry (Nonin) and
a respiration monitor (BIOPAC). The T2-weighted MRIs were
acquired using a fast spin-echo sequence: effective echo time
60 ms, repetition time 4000 ms, field of view 40 � 40 mm, ac-
quisition matrix 128 � 128, acquiring 20 � 1-mm thick slices
in �8 min. Data were analysed using a semi-automatic contour
method in Jim software (Xinapse). MRI data were not pro-
vided or analysed until the end of the study (D.C.) and did not
influence randomization.

Functional magnetic resonance
imaging

Alpha chloralose anaesthesia was prepared by mixing equal
amounts of borax decahydrate and alpha chloralose (Sigma,
UK; 520% beta isoform, catalogue number C0128) in physio-
logical saline to a concentration of 50 mg/ml. The mix was
dissolved in a glass beaker under 52�C and then was filtered
using a 0.22 mm filter. Animals were anaesthetized using 4–5%
isoflurane for induction and 2.5% for maintenance, in 0.8
l/min medical air and 0.2 l/min medical O2 in an induction

Figure 2 AAV1-hNT3 does not cause neuroprotection following stroke in adult rats. (A) Six weeks after stroke, the infarct volume

was assessed by quantifying loss of cortical tissue in a defined region (white dashed box). (B) There was a significant decrease in cortical tissue on

the stroke injury side compared to sham (Kruskal-Wallis P5 0.001; Mann Whitney P-values5 0.05). There was no difference in the loss of

cortical tissue between the AAV1-hNT3 and AAV1-GFP groups (Mann Whitney P4 0.05). (C) Six weeks after stroke there was a significant

increase in the volume of the ventricles on the ipsilateral side between the stroke groups and the sham group (Kruskal-Wallis P5 0.001; Mann

Whitney P-values5 0.05); however, there was no difference in volume of the ventricles between the two stroke groups AAV1-hNT3 and

AAV1-GFP (Mann Whitney P4 0.05). n = 10 per group. (D) The cross-sectional area of the corticospinal tract was assessed using PKC�

immunolabelling. This was decreased at 6 weeks in the stroke groups by similar amounts (AAV1-hNT3, 17.2 � 2.5%; AAV1-GFP, 17.8 � 3.1%,

n = 9/group) compared to the sham rats (n = 8) (Kruskal Wallis, P = 0.001; Mann Whitney P-values5 0.001; NT3 versus GFP P = 0.93). Results

displayed as mean � SEM.
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chamber. Tail cannulation was performed and the animal was

transferred to the MRI scanner. A bolus of 65 mg/kg alpha
chloralose was injected intravenously and then the isoflurane
was switched off after 5 min. An infusion line for continuous
application of alpha chloralose was then attached to the can-

nula which provided 30 mg/kg/h over the experimental time.
Medical air (0.8 l/min) and oxygen (0.2 l/min) were continu-
ously delivered throughout the scanning period.

Functional MRI was performed in a subset of elderly rats

(n = 10/group) at 8 weeks after stroke. Blood oxygen level-
dependent functional MRIs were acquired during stimulation
of the affected or less affected wrist at non-noxious mechano-
receptor intensity using methods previously established by our
neuroimaging team (Lowe et al., 2007). These rats did not

receive intracortical injections of BDA tracer. Functional
MRI scans were acquired using a 7 T scanner as above and
a gradient echo-multi-echo sequence with repetition
time = 360 ms, echo times = 5, 10, 15 ms, voxel size

0.5 mm � 0.5 mm � 1 mm, resolution 64 � 64 � 20, scan
time 23 s, mean echo time images were analysed. One block
of 100 volumes were acquired per wrist with a pseudorandom
on-off stimulation of the wrist at 3 Hz (400 ms, 2 mA pulse)

using a platinum subdermal needle electrode and a TENS
(transcutaneous electrical nerve stimulation) pad. The order
of wrist stimulation was also randomized. Rats were termin-
ally anaesthetized using Euthatal and perfused for histology as

described above.
Scans with obvious imaging artefacts were discarded, leaving

final group numbers of n = 5 in the aged AAV-GFP group and
n = 7 in aged AAV-NT3. Individual masks for each rat brain at

each time-point were generated from a fast spin echo (FSE)
structural scan using a 3D Pulse-Coupled Neural Network
(Chou et al., 2011). The resulting images were analysed with
SPM-8 (Statistical Parametric Mapping, FIL, UCL). The scans

were mirrored about the sagittal mid-plane, if necessary, so that
the lesioned hemisphere always appeared on the left. The first
volume of the functional scan was spatially registered to the
structural image, which was, in turn, linearly warped to a tem-

plate brain. Linear warping was used in this step in order to
avoid deforming the lesion region. After movement correction
of the functional time-series, warping parameters obtained
during registration of structural image to template were applied

to the functional time-series, resulting in structural and func-
tional images that are all in a standard space. Finally, func-
tional images were smoothed using a Gaussian kernel with
full-width at half-maximum of 1.25 � 1.25 � 2 mm. Because
of the relatively long effective repetition time of the functional

images, a PET basic model (one-sample t-test) was used for
first-level analyses with covariates consisting of the pseudo-
random stimulation pattern, and the estimated movement par-
ameters of each individual rat. The mask created from the

structural image (also registered to the template) was used as
an explicit mask for the first-level statistical analysis and a
global scaling was applied. Contrast images from the first-
level analysis were then carried onto a second-level (random

effects) group analysis. Effects of group (i.e. NT3- or GFP-trea-
ted) and stimulated wrist (i.e. affected or less-affected) were
used to create statistical comparisons. This looked to compare
the group average response of AAV-NT3 and AAV-GFP to

each other during stimulation of the affected or less-affected
wrist.

Statistical analysis

Graphs show means � standard error of the mean (SEM) and
‘n’ denotes number of rats. Threshold for significance was 0.05.
Two-sided tests were used throughout although one-sided tests
were used for ELISAs, given that we predicted an increase in
NT3 with NT3 treatment. Asterisks indicate *P4 0.05,
**P4 0.01 and ***P4 0.001. Histology, MRI lesion volumes
and molecular biology data were assessed using the non-paramet-
ric Kruskal-Wallis and Mann-Whitney tests. Behavioural data
from the first study were analysed using repeated measures ana-
lysis of covariance and Bonferroni t-tests for group differences as
the study was balanced and there were no missing values.
Behavioural data from the second study were analysed using
linear models and Restricted Maximum Likelihood estimation
to accommodate data from elderly rats with occasional missing
values (Gueorguieva and Krystal, 2004; Krueger and Tian,
2004). Akaike’s Information Criterion showed that the model
with best fit for the horizontal ladder data had a compound
symmetric covariance matrix, whereas for the sensory test data
an unstructured covariance matrix was used (Heck et al., 2010).
Where measured, baseline scores were used as covariate.
Normality was checked using histograms. Homogeneity of vari-
ances was checked using Levene’s test. If sphericity was violated
(Mauchly’s test) the Greenhouse-Geisser correction was applied.
Degrees of freedom are reported to the nearest integer. Sample
size calculations were presented previously (Soleman et al., 2010).
SPSS (version 22) was used.

Results
Ischaemic stroke was induced in the sensorimotor cortex

representing each rat’s dominant forearm (Fig. 1), using

standard methods to induce focal vasoconstriction using

endothelin-1 (Soleman et al., 2010, 2012). Twenty-four

hours later, rats were randomized to treatment with treat-

ment allocations concealed using coded vials. Disabled

biceps brachii and triceps brachii were injected with

either AAV1 encoding human NT3 or AAV1 encoding

green fluorescent protein (GFP) (Fig. 1). We strove to

inject the belly of these muscles where the neurovascular

bundles containing sensory afferents, motor axons and

blood supply is found (Tosolini and Morris, 2012).

Recovery of sensory and locomotor performance was as-

sessed weekly for 6 weeks in adult rats and 8 weeks in

elderly rats. Anterograde tracer was injected into the less-

affected sensorimotor cortex 2 weeks before the end of

each study. All surgeries and treatments were performed

using a randomized block design and the experimenter

was fully blinded to treatment allocation until all analyses

were completed. The rats were euthanized at the end for

either histology or molecular biology.

In the first study, 6 weeks after stroke, histology showed

focal infarcts involving motor cortex and somatosensory

cortex of both the forelimb and hindlimb regions (Fig. 2A).

There were no differences between stroke groups in lesion

volumes (Fig. 2B). The ventricles were increased in volume

on the affected side (Fig. 2C) and there were no differences
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between stroke groups. The two stroke groups also showed a

comparable loss of corticospinal tract axons as assessed in

the upper cervical dorsal columns using protein kinase C

gamma (PKC�) immunofluorescence (Fig. 2D). Therefore,

as expected from our previous work, stroke causes a focal

infarct in sensorimotor cortex and loss of cortical efferents to

the cervical spinal cord, and delayed treatment with NT3

does not cause neuroprotection (consistent with the delayed

time frame of administration).

AAV1-hNT3 treatment improved
arm locomotor function in rats after
stroke

The horizontal ladder task was used to measure forelimb

recovery following stroke injury (Fig. 3A). The rungs were

spaced at 1–4-cm intervals and changed weekly to avoid

pattern learning. This task evaluates sensory-guided paw

placements and corticospinal-dependent motor control

(Metz and Whishaw, 2002). One week after stroke, these

two groups made a similar number of errors with their

affected forelimbs when crossing a horizontal ladder

(Fig. 3B). The AAV1-hNT3 group progressively recovered

compared to the AAV1-GFP group. Thus, delayed intra-

muscular treatment with AAV1-hNT3 improved locomotor

function after ischaemic stroke in rats. Rats showed some

session-to-session variability in performance. For example,

both stroke groups transiently declined at Week 5 on the

ladder test: this might be due to injection of anterograde

tracer into the less affected cortex (6 days previously).

Treatment promoted sprouting of
cortical efferents into the affected
spinal hemicord

Anterograde tracer (biotinylated dextran amine, BDA) was

injected into the less affected sensorimotor cortex 2 weeks

before the end of the study (Fig. 1). Immunolabelling for

BDA was used to assess axonal sprouting of the intact

corticospinal tract into the partially denervated side of the

spinal cord grey matter following AAV1-hNT3 treatment.

We chose to evaluate the corticospinal tract in cervical

segments 7 and 1 because the triceps brachii and biceps

brachii are supplied by dorsal root ganglia and motor neu-

rons between C3 and T1 (McKenna et al., 2000; Tosolini

and Morris, 2012); accordingly, we hypothesized that NT3

would either directly or indirectly induce corticospinal

sprouting at C7 but not C1.

Corticospinal axonal sprouting was measured at three

parasagittal planes of the spinal cord at cervical levels C7

and C1 (Fig. 4A). Figure 4B shows representative pictures

of corticospinal axons in the dorsal columns and at the

two lateral planes. Statistical analysis revealed that there

was a significant difference between the three groups at C7

(Fig. 4C) with significantly more corticospinal collateral

sprouting in the AAV1-hNT3 treated group at the midline

and two more lateral planes compared to the sham and con-

trol AAV1-GFP groups. As predicted, this increase in sprout-

ing was not evident in the cervical C1 segment (Fig. 4D).

This shows a level-specific effect of NT3 on corticospinal

axonal sprouting.

Human NTF3 mRNA was synthesized
in affected biceps and triceps but not
in the spinal cord

Six weeks after intramuscular injection, human NTF3

mRNA was measured in the biceps brachii of five randomly

Figure 3 Following stroke, delayed AAV1-hNT3 improves

walking on a horizontal ladder with irregularly spaced

rungs. (A) A horizontal ladder with irregularly spaced rungs was

used to evaluate locomotion. (B) One week after stroke, these two

groups made a similar number of errors with their affected forelimb

(t-test P = 0.78). The AAV1-hNT3 group recovered compared to

the AAV1-GFP group [group F(2,41) = 29.7, P5 0.001; post hoc

P = 0.024]. By Week 4 the AAV1-hNT3 group made no more errors

than shams, whereas the AAV1-GFP group remained impaired

relative to shams at Week 6 [group � time F(7,149) = 2.7,

P = 0.011; post hoc P-values = 0.93 and5 0.001, respectively].

Repeated measures ANCOVA and post hoc Bonferroni tests.

Mean � SEM. n = 15/group.
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selected rats per group using quantitative reverse transcript-

ase PCR. Although the human and rat mature NT3 pro-

teins are identical, the mRNAs for human and rat NT3

differ and can be distinguished using quantitative reverse

transcriptase PCR. As expected, rats injected with AAV1-

hNT3 had high levels of human NTF3 mRNA in their

biceps brachii muscles (Fig. 5A) whereas this was undetect-

able in rats injected with AAV-GFP or in shams. We also

measured the level of endogenous rat Ntf3 mRNA in the

muscle to see whether intramuscular AAV1-hNT3 had

boosted host synthesis of Ntf3 mRNA. There was no sig-

nificant difference in the level of endogenous rat Ntf3

mRNA in the injected muscle of the AAV1-hNT3 treated

rats compared to sham or AAV1-GFP treated rats (Fig. 5B).

Thus, as expected, human NTF3 mRNA was highly ex-

pressed in the injected muscle of AAV1-hNT3 treated rats.

NT3 protein was elevated in
ipsilateral cervical dorsal root
ganglion and in serum

We explored the biodistribution of NT3 protein using a

second cohort of sham and stroke rats treated with either

AAV1-hNT3 or AAV1-EGFP, and killed at 4 days or 8

weeks after stroke. Stroke was induced in anaesthetized

adult rats in the right sensorimotor cortex. Twenty-four

hours later, the left biceps brachii and triceps brachii were

injected with AAV1-hNT3 or AAV1-EGFP. Samples were re-

covered for quantitative reverse transcriptase PCR and ELISA

4 days or 8 weeks later, as well as from sham operated rats.

In treated triceps (Fig. 5C), NT3 protein was present in

sham rats and in stroke rats at 4 days and 8 weeks after

AAV-EGFP administration. NT3 protein was significantly

elevated in treated triceps in stroke rats at 8 weeks after

AAV1-hNT3 administration. In treated biceps (Fig. 5D),

modest levels of NT3 protein were detectable in sham rats

and in stroke rats at 4 days and 8 weeks after AAV-EGFP

administration. NT3 protein was elevated in treated biceps

in stroke rats at 8 weeks after AAV1-hNT3 administration.

In serum (Fig. 5E), basal levels of NT3 protein were low but

detectable in sham rats and in stroke rats at 4 days and 8

weeks after AAV1-EGFP administration. NT3 protein was

elevated in serum in stroke rats at 4 days and 8 weeks after

AAV1-hNT3 administration. ELISA of pooled homogenates

of left C2 to C6 dorsal root ganglion (Fig. 5F) showed that

NT3 was increased on the treated side in stroke rats at 4

days and 8 weeks after administration of AAV1-NT3 into

triceps and biceps. In conclusion, our experiments show that

NT3 was synthesized in the biceps brachii and triceps bra-

chii and then transported to ipsilateral cervical dorsal root

ganglions as well as being secreted into serum.

Figure 4 Delayed AAV1-hNT3 increases sprouting of spared corticospinal axons in the spinal cord. (A) Schematic of C7 spinal

cord showing the planes (ipsilateral to treatment) at which axonal crossing was measured, defined as Midline (M), Distance 1 (D1) and Distance 2

(D2). (B) Photomicrographs of corticospinal axons from an AAV1-hNT3 treated rat in the (b) dorsal columns, and at (b’) Distance 1 and (b’’)

Distance 2. (C) Increased corticospinal sprouting in AAV1-hNT3 rats at C7 at M, D1 and D2 (Kruskal-Wallis P-values4 0.001, 0.02 and 0.023,

respectively; Mann-Whitney P-values all5 0.011; n = 7 to 10/group). (D) There was no difference in corticospinal crossing at C1 midline (Kruskal-

Wallis P = 0.73, n = 8 to 10/group). Mean � SEM.
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NT3 improved sensory and motor
function in elderly rats

Next, we assessed whether AAV1-hNT3 could improve re-

covery in elderly rats when treatment was initiated 24 h

after stroke (Fig. 1C). We extended the length of the

study to see whether more recovery would be obtained.

We used the bilateral ‘adhesive patches’ test to assess tactile

extinction (hereafter ‘neglect’) (Schallert et al., 1982;

Schallert and Whishaw, 1984), which is a phenomenon

Figure 5 Intramuscular AAV1-hNT3 caused an elevation of NT3 protein in injected muscles, serum, and ipsilateral cervical

dorsal root ganglion cells. (A) Quantitative reverse transcriptase PCR showed high levels of human NTF3 mRNA (hNT3) in injected biceps

brachii compared to AAV1-GFP rats or shams (Kruskal-Wallis, P = 0.009; Mann-Whitney P = 0.008 and 0.008, respectively, n = 5/group). (B)

There was no difference between treatment groups in the level of endogenous rat Ntf3 mRNA (Rat NT3) level in the injected muscle (Kruskal-

Wallis P-value4 0.05, n = 5/group). (C) NT3 protein was significantly elevated in treated triceps brachii in stroke rats at 8 weeks after AAV1-

hNT3 administration (P = 0.018) but not detectably at 4 days (P = 0.21). (D) NT3 was elevated in treated biceps brachii in stroke rats at 8 weeks

after AAV-hNT3 administration (P5 0.001) but not detectably at 4 days (P = 0.33). (E) NT3 increased in the serum at 4 days (P = 0.039) and 8

weeks after AAV1-hNT3 administration (P5 0.001). (F) NT3 was increased in C2–C6 dorsal root ganglia on the treated side in stroke rats at 4

days (P = 0.019) and 8 weeks after administration of AAV1-NT3 (P = 0.031). Mean � SEM, n = 5/group, t-test versus time-matched GFP control;

*P5 0.05, **P5 0.01, ***P5 0.001.
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manifested in many stroke patients who may fail to detect a

touch stimulus on their affected hand if stimuli are applied

simultaneously on both hands (Doyle et al., 2010). This test

involves systematic application of seven pairs of adhesive

labels to the rat’s wrists (Fig. 6A and B). A Sensory

Impairment score of 6 denoted that a rat neglected a very

large stimulus on its affected paw and preferentially

removed the smaller stimulus from its less affected paw.

After 1 week, the two groups of stroke-injured elderly

rats had similar, large Sensory Impairment scores indicating

that both groups neglected the larger stimulus on their af-

fected forepaw and preferentially removed the smaller

stimulus from their less affected forepaw. Treatment with

AAV1-hNT3 caused a progressive recovery from this neg-

lect relative to controls (Fig. 6C). Walking on the horizon-

tal ladder was assessed as before. One week after stroke,

the two groups made a similar number of errors with their

affected forelimb. Treatment with AAV1-hNT3 caused a

progressive recovery of their affected forelimb relative to

controls (Fig. 6D).

MRI showed that 24 h after stroke, infarcts consisted of

lesion plus surrounding oedema whereas by 8 weeks the

oedema had resolved from the lesion surround (Fig. 7A).

Infarct volumes did not differ between groups either 24 h

after stroke (immediately prior to treatment) or at 8 weeks

(Fig. 7A and B). Stroke caused a unilateral loss of �20% of

corticospinal axons with no differences between groups,

assessed in the upper cervical dorsal columns using PKC�

immunofluorescent labelling (data not shown). These data

show that delayed AAV1-hNT3 treatment did not neuro-

protect the elderly brain, as expected. Anterograde tracing

showed that corticospinal axons from the less affected

hemisphere sprouted in the C7 cervical spinal cord ipsilat-

eral to the AAV1-hNT3 injections (Figs 1 and 7C).

To see whether any recovery of somatosensory cortex

activation might explain the modest somatosensory recov-

ery (shown in sticky patch testing) after AAV-NT3 treat-

ment, we performed functional brain imaging (blood

oxygen level-dependent functional MRI) during stimulation

of the affected wrist 8 weeks after stroke (Lowe et al.,

2007). We found no differences between groups in perile-

sional reactivation (Supplementary Fig. 1). Indeed, after

correction for testing of multiple voxels, there was no

evidence for changes in any of the brain’s voxels after

AAV-NT3 treatment relative to AAV-GFP during stimula-

tion of the affected wrist or the less affected wrist (data not

shown as heat maps were black). We discuss these results

below in more detail.

Intramuscular injections evoked only
a transient, minor inflammatory
response

Rats exhibited some session-to-session variability in perform-

ance that might indicate deterioration (e.g. due to inflamma-

tion in the muscle evoked by injection). To explore whether

there was any ongoing inflammation in the muscle evoked by

AAV injection, we immunolabelled muscles for CD68, which

is a pan-macrophage and monocyte marker. As expected,

sham adult rats that had no intramuscular injection exhibited

Figure 6 Delayed treatment of disabled arm muscles with

AAV1 expressing human NTF3 reversed neglect and im-

proved walking after stroke in elderly rats. (A) Schematic of

the seven pairs of stimuli that were used to evaluate tactile im-

pairment. Each test started at level 3 (boxed). (B) A photograph

showing the position that the sticky labels were adhered to on each

rat’s forelimbs. (C) After 1 week, the two groups of stroke-injured

rats had similar, large sensory scores (P = 0.48). Treatment with

AAV1-hNT3 caused a progressive recovery from this neglect relative

to controls [treatment F(1,30) = 5.2, P = 0.030]. (D) One week after

stroke, the two groups made a similar number of errors with their

affected forelimbs (t-test P = 0.50). Treatment with AAV1-hNT3

caused a progressive recovery of their affected forelimbs relative to

controls [interaction of treatment � time F(7,225) = 2.15, P = 0.040].
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few if any macrophages or monocytes (Fig. 8A). Adult rats

that had injections of AAV-NT3 or AAV-GFP unilaterally

into triceps brachii had a modest infiltration of macro-

phages/monocytes at 48 h (Fig. 8A–C). As a positive control,

adult rats that had injections of lipopolysaccharide unilaterally

into triceps brachii had a massive infiltration of macrophages/

monocytes at 48 h (Fig. 8D). In contrast, 6 weeks after injec-

tion of AAV-NT3 or AAV-GFP into adult rats, few or no

inflammatory cells could be detected in the muscles (Fig. 8E).

Immunolabelling of triceps of elderly rats revealed few or no

inflammatory cells 8 weeks after intramuscular injection of

AAV-NT3 or AAV-GFP (Fig. 8F). Thus there was no ongoing

inflammation in either AAV group that could explain any

apparent deterioration in the AAV-GFP group.

We suggest that the session-to-session variability reflects

performance variability of rodents with small to medium

sized strokes (rather than deterioration), as has been seen

by other investigators [Figs 3 and 4 in Tennant et al.

(2015)]. In ongoing work we have improved consistency

in precision of estimates of performance by using larger

numbers of rats per group. Importantly, we have shown

that NT3 improves recovery of function in two additional

studies with no evidence for any decline of function in the

control groups (Duricki et al., in preparation) so we predict

that the benefits of NT3 that we describe in this current

manuscript will be reproducible by others.

In summary, the data from these studies showed, consist-

ently, that adult and elderly rats recover some sensory and

locomotor function after stroke when treatment using NT3

is initiated starting 24 h after stroke.

Discussion
These studies show that 24 h delayed intramuscular injec-

tion of an AAV1 encoding human NT3 improves sensori-

motor recovery in adult and elderly rats after focal cortical

stroke. Human NTF3 mRNA was abundant in injected

muscles and NT3 protein was elevated in injected muscles,

in serum and in ipsilateral cervical dorsal root ganglion.

In both studies, NT3 induced neuroplasticity in the less

affected corticospinal tract.

Figure 7 In elderly rats, recovery was not due to neuroprotection; instead, delayed treatment of disabled arm muscles with

AAV1-hNT3 induced neuroplasticity in corticospinal axons. (A) T2-weighted MRIs from the same rat at 24 h and at 8 weeks after stroke

showing oedema at 24 h, which resolves by 8 weeks leaving a lesion core. (B) MRI confirmed there were no differences between groups in infarct

size either at 24 h or 8 weeks after stroke (Mann Whitney tests P = 0.56 and 0.23, respectively). Light bars represent lesion core whereas dark

bars represent oedema. (C) Inset shows planes (ipsilateral to treatment) where corticospinal axons were counted. AAV1-hNT3 caused increased

corticospinal sprouting at C7 at distances 1 and 2 and from the ipsilateral (IP) ventral corticospinal but not at the midline (Mann-Whitney

P-values = 0.027, 0.043, 0.010 and 0.32, respectively; n = 8–10/group).
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Figure 8 Intramuscular AAV injections caused only a transient inflammatory response that resolved completely with time.

(A) Sham adult rats were given no intramuscular injections whereas other adult rats were given injections of AAV-NT3 or AAV-GFP unilaterally

into triceps brachii. Forty-eight hours later, immunolabelling for a pan-macrophage and monocyte marker (CD68) showed no cells of the

macrophage or monocyte lineage in triceps of sham rats whereas AAV-NT3 and AAV-GFP injected rats had a modest infiltrate. (B and C) Regions

in dotted boxes are shown at higher magnification. (D) As a positive control, other adult rats were injected with LPS. Forty-eight hours later,

CD68 immunolabelling showed strong, widespread influx of inflammatory cells. (E) Few or no CD68 positive inflammatory cells were detected in

triceps of sham adult rats or adult rats injected 6 weeks previously with AAV-NT3 or AAV-GFP. (F) Few or no CD68 positive inflammatory cells

were detected in triceps of elderly rats injected 8 weeks previously with AAV-NT3 or AAV-GFP. Red shows CD68; blue shows DAPI. Scale bars:

A = 200 mm, B and C = 50 mm; D and E = 200 mm.
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NT3 induced sensorimotor recovery
via neuroplasticity and not
neuroprotection

MRI and histology showed that lesion volumes were similar

between stroke groups, ventricular expansion was similar

between stroke groups, and the extent of corticospinal loss

was similar between stroke groups. This lack of neuropro-

tection is consistent with the fact that AAV1-hNT3 was not

administered until 24 h after onset of stroke (i.e. most cell

death has already occurred).

Anterograde tracer was injected into the intact (contrale-

sional) sensorimotor cortex to label the spared corticospinal

tract. Treatment with AAV1-hNT3 resulted in increased

corticospinal axonal sprouting from the intact side to the

affected side across the midline and at two further lateral

planes. This neuroplasticity of corticospinal fibres was seen

in the cervical C7 region, which is innervated by sensory

and motor axons that innervate the treated muscle

(McKenna et al., 2000; Tosolini and Morris, 2012). We

and others have shown that NT3 is retrogradely trans-

ported from muscles in sensory afferents and motor

axons (DiStefano et al., 1992; Zhou and Rush, 1994;

Curtis et al., 1998; Petruska et al., 2007, 2010; Wang

et al., 2008) and this is consistent with their expression

of receptors for NT3 including trkC (McMahon et al.,

1994; Sheard et al., 2002).

We are continuing to evaluate how NT3 enhances recov-

ery of cutaneous sensory function (i.e. responsiveness to

sticky patches on the wrists). Here, we performed func-

tional brain imaging during stimulation of the affected

wrist in elderly rats 8 weeks after AAV-NT3 or AAV-

GFP. We found no differences between groups in blood

oxygen level-dependent functional MRI maps. This is also

consistent with another study from our laboratory (Duricki

et al., in preparation). Accordingly, we now hypothesize

that changes outside of the brain are responsible for the

recovery of cutaneous sensation. In other work, we are

now testing the hypothesis that NT3 enhances recovery

of sensory function by causing corticospinal axons to in-

crease connectivity with dorsal horn interneurons on the

affected side, where corticospinal axons are known to

modulate cutaneous and proprioceptive afferent input to

the cord (Seki et al., 2003; Abraira and Ginty, 2013;

Levine et al., 2014; Bourane et al., 2015). In other work

from our lab (Duricki et al., in preparation), NT3 has been

found to enhance sprouting of corticospinal axons into the

dorsal horn (laminae I to IV) on the affected side including

amongst PKC� positive interneurons in lamina II. These

neurons receive cutaneous inputs from hairy skin, which

enables mammals to ‘detect the presence of foreign objects

on their skin’ (Abraira and Ginty, 2013), among other

things. PKC�-positive interneurons normally receive corti-

cospinal input, so this plasticity is plausible. Moreover, cu-

taneous afferent activity can be modified by muscle afferent

fibre activity (Seki et al., 2003). Specifically, cutaneous

input to the CNS can be inhibited presynaptically by

muscle spindle and tendon organ afferents as well as by

supraspinal pathways. Thus NT3 might modify cutaneous

input via muscle afferent activity and corticospinal activity

at the level of the spinal cord.

NT3 is distributed from muscle via axonal transport and

the bloodstream. The vasculature at the dorsal root gan-

glion is highly fenestrated and molecules as large as NT3

can enter and bind (Jimenez-Andrade et al., 2008). We

show that NT3 accumulates in the dorsal root ganglion

and others have shown that it can enter the brain and

spinal cord (Poduslo and Curran, 1996; Pan et al., 1998).

Accordingly NT3 might bind its receptors that are ex-

pressed by many neurons in the sensory pathway from per-

iphery to brain, including cutaneous and proprioceptive

afferents (McMahon et al., 1994), dorsal column projec-

tions to the brainstem nuclei, and neurons within the thal-

amus and somatosensory cortices. In ongoing work we are

continuing to explore how NT3 modifies spinal cord pro-

cessing of cutaneous and proprioceptive input.

In future experiments we will determine whether NT3

induces corticospinal sprouting directly or indirectly.

Corticospinal axons express both trkC and the p75NTR

receptors (Brock et al., 2010) so it is plausible that if

NT3 is secreted after transport to the cervical cord (von

Bartheld et al., 1996; Altar and DiStefano, 1998) it may

serve as a chemoattractant and cause spared corticospinal

axons to form new connections or strengthen existing ones.

We and others have already shown that direct application

of NT3 to the CNS encourages growth of spared corticosp-

inal fibres following injury (Schnell et al., 1994; von

Meyenburg et al., 1998; Zhou et al., 2003; Chen et al.,

2006). Others have shown that radiolabelled NT3 can

cross the intact mouse blood–brain barrier to enter the

brain and cervical spinal cord (Poduslo and Curran,

1996; Pan et al., 1998; Pan and Kastin, 1999). We predict

that higher levels of NT3 enter the brain and spinal cord

after stroke when the blood–brain barrier is disrupted.

NT3 might also induce corticospinal sprouting indirectly,

perhaps by causing the synthesis and secretion of other mol-

ecules by dorsal root ganglion neurons or by motor neurons.

Dorsal root ganglion neurons make and secrete BDNF and

in turn, and BDNF can cause corticospinal sprouting in

rodent models of CNS injury (Ueno et al., 2012).

Moreover, NT3 can cause proprioceptive dorsal root gan-

glion neurons to synthesize and secrete IGF1 (Lee et al.,

2012) and antibodies against IGF1 can disrupt corticospinal

sprouting in development (Ozdinler and Macklis, 2006). It is

likely that NT3 also improved sensorimotor function via

spinal locomotor reflex circuits between proprioceptors and

motor neurons (Taylor et al., 2001; Chen et al., 2002; Patel

et al., 2003; Arvanian et al., 2006; Petruska et al., 2010;

Takeoka et al., 2014): indeed, one of us has previously

shown that intramuscular injection of AAV1-hNT3 can im-

prove locomotor function after spinal cord transection (i.e.

in the absence of supraspinal input) by modifying proprio-

ceptive circuits) (Petruska et al., 2007). In the present study
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we confirm that NT3 protein levels are elevated in the dorsal

root ganglia ipsilateral to the muscles injected with AAV1-

hNT3; in future experiments we will determine whether

NT3 modifies proprioceptive locomotor reflexes. Finally,

other descending tracts including the serotonergic raphe-

spinal tract express NT3 receptors (Arvidsson et al.,

1994); sprouting in multiple descending pathways may con-

tribute to the observed functional recovery.

In conclusion, our study has shown that AAV1-hNT3

therapy enhances functional recovery in rats when initiated

24 h after stroke. This is clinically feasible because the

median time to hospital admission and diagnosis is 46 h

in major capital cities (Evenson et al., 2009). Furthermore,

the therapy involves the human NTF3 transgene, which

works when administered in a clinically straightforward

route to disabled muscles. It has already been shown in

humans that AAV1 is safe and leads to muscle expression

(of another transgene) for at least 1 year and high periph-

eral doses of recombinant NT3 have been shown to be safe

in phase I and II clinical trials (Chaudhry et al., 2000;

Coulie et al., 2000; Parkman et al., 2003; Sahenk, 2007).

Thus, NT3 joins rehabilitation and antibodies against

Nogo-A as a therapy that can restore motor function

after stroke in an elderly nervous system when treatment

is delayed by more than a few hours.
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