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Radiation-induced fibrosis (RIF) develops months to years after initial radiation exposure. RIF occurs when normal fibroblasts
differentiate into myofibroblasts and lay down aberrant amounts of extracellular matrix proteins. One of the main drivers for
developing RIF is reactive oxygen species (ROS) generated immediately after radiation exposure. Generation of ROS is known to
induce epigenetic changes and cause differentiation of fibroblasts to myofibroblasts. Several antioxidant compounds have been
shown to prevent radiation-induced epigenetic changes and the development of RIF. Therefore, reviewing the ROS-linked
epigenetic changes in irradiated fibroblast cells is essential to understand the development and prevention of RIF.

1. Introduction

Fibrosis is characterized by an aberrant accumulation of extra-
cellular matrix (ECM) proteins that result in the loss of normal
tissue and organ function [1]. It is a significant cause of
morbidity and mortality worldwide [2–9]. Exposure to radi-
ation can trigger a condition known as radiation-induced
fibrosis (RIF). The cell type involved in developing fibrosis
is the myofibroblast, which primarily arises from fibroblasts
upon radiation. Myofibroblasts can also arise from other
cell types through the process of differentiation or by
epithelial/endothelial-mesenchymal transitions [1]. Under
normal conditions, myofibroblasts play a critical role in
normal wound closure after injury [10]. After wound heal-
ing and restoration of ECM to homeostatic levels, the myo-
fibroblasts undergo apoptosis [1]. However, wounds that
fail to heal correctly contain persistent myofibroblasts that
leave a keloidal or hypertrophic scar. These active myofi-
broblast cells do not undergo apoptosis after healing and
continue to damage the tissues and organs by producing
excessive amounts of ECM proteins. The persistent nature
of an activated myofibroblast is maintained through molec-
ular feedforward loops by autocrine and paracrine signaling

and the influx of inflammatory cells [11, 12]. Reactive oxy-
gen species (ROS) are one such signal that helps maintain
the myofibroblast phenotype [13].

Ionizing radiation used in cancer therapy includes
high-energy gamma rays and X-rays, which have sufficient
energy to displace electrons from atoms. Interaction of
these waves with water molecules leads to the excitation
and ionization of water to form free radicals and ROS that
include eaq

−, hydroxyl radicals (•OH), hydroperoxy radi-
cals (HOO•), hydrogen peroxide (H2O2), and superoxide
(O2

•−) [13]. Generation of ROS also leads to an acute
increase in oxidative stress within cells following radiation
[14]. ROS can increase the levels and activity of several
prooxidant enzymes, such as NADPH oxidases (NOXs),
cyclooxygenases (COXs), nitric oxide synthases (NOSs),
and lipoxygenases (LOXs) [15], which further promote
ROS generation and the development of RIF. In addition
to ROS, reactive nitrogen species (RNS), such as peroxyni-
trite (ONOO−), are also generated and result in changes to
signaling pathways, gene transcription, mitochondrial func-
tioning, metabolism, and the chromatin architecture.

RIF is often observed in patients that have undergone
radiation therapy for cancer treatment and persists long
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after the initial exposure to radiation [16]. RIF reduces the
quality of life of patients after treatment [2–8], and there
are no safe, approved therapies to mitigate this problem.
Hence, the focus on understanding the ROS-mediated
changes in chromatin-modifying proteins that lead to the
development of RIF is essential. We will review the differ-
ences in expression and posttranslational modifications of
chromatin regulators caused by ROS generated after radia-
tion exposure. These changes could serve as biomarkers to
estimate the severity and susceptibility of patients to
develop RIF after radiation therapy. In some cases, epige-
netic regulation has not been studied in the context of
RIF. Therefore, we will review the reported changes in
other fibrotic conditions. Lastly, we will discuss the poten-
tial of antioxidant drugs and epigenetic inhibitors used to
prevent the development of RIF.

2. ROS-Mediated Metabolic Changes in RIF

The mitochondria are essential cell organelle involved in
regulating both metabolism and ROS levels that impact
the epigenome. Under normal metabolic conditions, the
mitochondria produce low basal levels of superoxide via
the electron transport chain, which is required for normal
cellular signaling. Through normal metabolism, the mito-
chondria can also regulate the generation of epigenetic
metabolites such as nicotinamide adenine dinucleotide
(NAD), α-ketoglutarate (α-KG), S-adenosyl methionine
(SAM), and acetyl-CoA. These molecules serve as cofac-
tors for several epigenetic proteins and control epigenetic
modifications such as DNA or histone methylation, his-
tone acetylation, and ADP-ribosylation. Therefore, damage
to the mitochondria can increase both levels of ROS and
epigenetic metabolites, thereby promoting epigenetic alter-
ations in the nucleus.

Ionizing radiation can directly damage mitochondrial
DNA and nuclear DNA that codes for mitochondrial
proteins, which leads to several functional changes in the
mitochondrial structure, activity, and function [17–19].
Radiation exposure can result in excessive production of
mitochondrial ROS due to an increase in mitochondrial
abundance and loss in mitochondrial membrane integrity/-
potential [17, 20, 21]. Further, radiation-induced mito-
chondrial damage reduces production of the tricarboxylic
acid (TCA) metabolites and causes a slight increase in
fatty acid metabolism. Alteration of global metabolism
and changes in the production of epigenetic metabolites
or cofactors for chromatin-modifying proteins results in
the modification of the fibroblast epigenome [22]. Also,
antioxidant molecules, such as glutathione and NAD+,
are significantly reduced following radiation and remain
reduced for many hours following radiation exposure. As
reported, many of the depleted metabolites are associated
with oxidative stress and DNA repair pathways [23]. Thus,
epigenetic changes in fibroblast cells and the development
of RIF can be influenced by the changes in ROS and
metabolism affected by damaged mitochondria as shown
in Figure 1.

3. ROS-Mediated TGF-β Signaling
Changes in RIF

The impact of ROS on TGF-β signaling is the most studied
in the context of RIF [24–27]. An increase in ROS after radi-
ation exposure leads to the activation of the TGF-β signaling
pathway through the oxidation of cysteine residues of the
latency-associated peptide (LAP). Oxidation of LAP leads
to a conformational change in LAP, which allows the release
of TGF-β from the latent complex. An active TGF-β, upon
binding to TGF-β receptors, leads to the phosphorylation
and activation of transcription factors, such as Smad2 and
Smad3 [28]. As shown in Figure 1, it is known that ROS
and TGF-β are interlinked by both feedforward and feed-
back mechanisms [25, 29]. TGF-β stimulation increases
the basal level of ROS through several NADPH oxidases
(NOXs), including NOX4, via the canonical Smad2/3 signal-
ing factors [30] and activation of PI3K [28, 31]. Generation
of ROS through NOX4 upregulation can also lead to the
activation of the noncanonical Smad signaling pathway,
which includes the activation of c-Src and FAK kinases
[32]. These changes in the TGF-β signaling pathway can also
crosstalk with the PI3K/AKT signaling pathway that leads to
changes in the epigenome and the development of fibrosis.

4. ROS-Mediated DNA Methylation
Changes in RIF

The covalent addition of methyl (CH3) groups to DNA is
controlled by DNA methyltransferases (DNMTs). In gen-
eral, an increase in DNA methylation or hypermethylation
of CpG islands at gene promoters is responsible for suppres-
sion of gene transcription. DNMTs can transfer methyl
groups from SAM, and other methyl donors, to cytosines
in DNA. The three enzymes involved in DNA methylation
are DNMT1, DNMT3a, and DNMT3b. DNMT1 is a
maintenance enzyme that copies methylation patterns onto
an existing or new DNA strand following replication.
DNMT3a and DNMT3b are classified as de novo DNMTs
and are not dependent on preexisting methylation marks
on DNA strands.

Aberrant DNA methylation is responsible for myofibro-
blast activation and changes in expression of fibrotic genes
[32–34]. Changes in expression of DNMT1 [35, 36],
DNMT3a [36, 37], and DNMT3b [36] have been identified
in different models of fibrosis [38–40]. Upregulation of
DNMT1 can be detected in fibrotic skin, kidneys, lungs,
and liver tissues [32, 35, 41, 42]. Both DNMT1 and
DNMT3a protein expression were found to be upregulated
following 15Gy irradiation of lung fibroblast cells [35]. This
in vivo upregulation of DNMT1 and DNMT3a was observed
at six weeks postradiation and was maintained up to six
months following radiation exposure [35]. In contrast, frac-
tionated low-dose radiation exposure leads to a small
decrease in DNMT1 and DNMT3a expression, along with
a reduction in methyl-CpG-binding protein MeCP2 [43].
This change in DNMT levels causes hypermethylation of
antifibrotic genes: RASAL1 [44–50], PTCH1 [34, 51]
PPAR-γ [52], SOCS1/3 [53, 54], DKK1 [55], E-cadherin
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[56], p14 (ARF) [57, 58], FlI1 [59], Thy-1 [40], PTGER2 [60],
and hypomethylation of profibrotic gene promoters: TGF-β1
[44], Smad4/7 [61–63], TP53 [64–66], MMP7 [67], and SPP1
[68]. Therefore, the expression of DNMT with radiation
exposure is dependent on the cell type, radiation dose, tissue
type, and sex of the organism as reported by Raiche et al. [69].

Changes in the levels of DNA methyltransferases are
closely associated with the TGF-β signaling pathway [32,
40, 44, 70]. Alternatively, crosstalk of the TGF-β signaling
pathway with the PI3K/Akt pathway can also increase
DNMT expression via a transcription-independent mecha-
nism involving an increase in phosphorylation and inactiva-
tion of glycogen synthase kinase-3β, leading to a decrease in
ubiquitination of DNMT1 [32]. Increase in DNMT3a is
attributed to an increase in protein translation due to the
activation of the mammalian target of rapamycin complex
1 by Akt [32]. This reported mechanism has been studied
in the context of activation and differentiation of fibroblast
cells but not in the context of radiation exposure.

Inhibition of DNMTs using 5-aza-2′-deoxycytidine [37,
64, 71] or siRNA-mediated knockdown of DNMT1 expres-
sion prevents the activation of fibroblast cells and hepatic
stellate cells [16, 37] and protects against the development
of fibrosis. This reduction in activated fibroblast cells is also
associated with a reduction in ROS levels [72–74]. Moreover,
the addition of hydrogen peroxide to embryonic lung fibro-
blasts rapidly increases DNMT levels [35]. Conversely,
decreasing oxidative stress, using a superoxide scavenger
Mn (III) TBAP [35], N-acetylcysteine [75], or L-NAME
(NOS inhibitor) [75], resulted in decreased DNMT1 levels

and loss of global DNA methylation. Therefore, it is sus-
pected that superoxide and hydrogen peroxide are the ROS
intermediates involved in the regulation of DNMT in RIF.

In certain cell types, such as cardiac fibroblast cells, stim-
ulation with recombinant TGF-β leads to downregulation of
DNMT1 and DNMT3a expression and inhibition in global
DNMT activity [76]. This has been linked to a decrease in
DNA methylation at the promoter of COL1A1 and an
increase in the expression of COL1A1 mRNA [76]. There-
fore, changes in expression of DNMT proteins and changes
in DNA methylation by the direct activation of the TGF-β
signaling pathway or indirect activation through radiation
and ROS can be variable and dependent on the tissue and
organ under investigation.

Along with an increase in levels of DNMTs, an increase
in the methylated DNA-binding protein, MeCP2, is also
observed during fibrosis [77, 78]. Binding of MeCP2 to meth-
ylated CpG regions causes transcriptional repression. Similar
to DNMT1, expression levels of MeCP2 are sensitive to
changes in oxidative stress and redox balance [79–82]. It is
believed that MeCP2 levels increase to maintain DNA meth-
ylation by the formation of DNMT1-MeCP2 complexes in an
increasingly oxidative environment of fibrosis [83, 84]. Frac-
tionated low-dose radiation exposure has been reported to
cause an increase in MeCP2 in the brain [85] and downregu-
lation in the spleen [86] and thymus [43]. Upregulation of
MeCP2 was found to be associated with downregulation of
antifibrotic genes, such as PPAR-γ [87], RASAL1 [88], and
PTCH1 [34, 88], thereby promoting myofibroblast differenti-
ation and the development of fibrosis [87].
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Figure 1: Radiation induces reactive oxygen species (ROS) generation, which drives epigenetic changes in fibroblast cells. ROS can be directly
generated due to radiation exposure and through the damage of mitochondria. This leads to the activation of the TGF-β signaling pathway,
which sustains an increase in ROS levels by increasing NOX4 expression, thereby setting up a vicious cycle of high oxidative stress, which
drives epigenetic reprogramming of fibroblast cells to myofibroblasts. Further, damaged mitochondria have altered production of
redox-sensitive epigenetic metabolites that serve as cofactors for chromatin-modifying proteins. NOXs: NADPH oxidases; NAD+:
nicotinamide adenine dinucleotide; SAM: S-adenosylmethionine; α-KG: α-ketoglutarate; ECM: extracellular matrix.
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Some of the DNA methylation changes at specific gene
promoters may be independent of changes in the expression
of DNMTs. This is because it is suggested that superoxide is
a strong anion that can participate in nucleophilic substitu-
tions and free radical abstraction, leading to changes in
DNA methylation and histone modifications. Superoxide
neutralizes positive charges of methyl donors, SAM, and
acetyl-CoA, which can then deprotonate the cytosine mol-
ecule at the C-5 position and accelerate the reaction of
DNA with SAM; thereby, causing methylation of DNA
[89, 90]. However, this has not been tested in the context
of fibrosis.

In summary, increased oxidative stress after radiation is
intimately interconnected with increased DNMT levels,
activity, and DNA methylation. Activation of the TGF-β sig-
naling pathway by ROS mechanistically drives the sustained
high levels of DNMTs. Further, changes in interaction with
binding partners (MeCP2, HMTs, and HDACs) and
cofactors (SAM) can lead to changes in DNMT levels
and DNA methylation at specific gene promoters. Target-
ing DNMTs, the TGF-β signaling pathway, or oxidative
stress has been shown to modulate DNA methylation
and reduce fibrosis. However, large-scale genome-wide
DNA methylation studies are needed to delineate hypo-
methylation and hypermethylation status at different gene
promoters during RIF.

5. ROS-Mediated Histone Modification
Changes in RIF

Histones can be modified through covalent posttransla-
tional modifications (PTMs) that control the open or
closed architecture of the chromatin for gene expression.
These modifications include methylation, acetylation,
phosphorylation, ubiquitylation, and sumoylation. Changes
in histone modifications have been associated with altered
expression of profibrotic and antifibrotic genes that lead to
fibrosis. Furthermore, changes in the expression of micro-
RNAs have also been associated with histone modifications
and fibrotic gene expression. PTMs such as histone acety-
lation and histone methylation marks are redox sensitive
and are inherited by daughter cells in RIF.

5.1. Role of Histone Acetylation in RIF. Histone acetylation
is regulated by histone acetyltransferases (HATs) and
histone deacetylases (HDACs). The balance between the
epigenetic marks added by HATs and removed by
HDACs helps to control gene transcription. In general,
acetylated histones are associated with transcriptionally
active chromatin and deacetylated histones with inactive
chromatin [87].

HATs are enzymes that catalyze the transfer of an acetyl
group from acetyl-CoA to the ε-amino group of histone
lysine residues. Out of the 30 known HAT enzymes, only
EP300 (p300) and CREBBP (CBP) have been reported to
play a role in RIF [91]. Levels of p300/CBP were found to
be significantly elevated in skin fibroblast cells 12 hours after
radiation exposure but not after 24 or 36 hours [91]. This
increase in p300/CBP also correlated with an increase in

alpha-smooth muscle actin (αSMA), which is a marker for
myofibroblast cells.

The mechanism of p300/CBP upregulation and/or
increased activity is also linked to an active TGF-β/ROS
signaling pathway [91–100]. p300 is a direct transcrip-
tional target of TGF-β signaling and is known to form a
feedforward loop with an active TGF-β signaling pathway
[101–103]. Interaction of p300 with Smad3 is essential for
the TGF-β-mediated synthesis of collagen [101]. Also,
inhibition of p300 expression or activity reduces fibrosis
[96, 100, 104–107]. The role of p300 in fibroblast biology
and fibrosis has been studied by Ghosh et al., and the tar-
geted disruption of p300-mediated histone acetylation has
been proposed as a viable antifibrotic strategy [101].

The redox environment can directly alter the activity of
p300 due to the oxidation of key cysteine residues. Specifi-
cally, the oxidation of these thiols results in reduced p300
activity. Redox-active compounds such as MnTE-2-PyP
and hydroxynaphthoquinones can downregulate p300 activ-
ity [108–111]. The use of alpha-lipoic acid, a dietary antiox-
idant supplement, has been shown to protect against RIF in
mice by downregulating expression and activity of
p300/CBP [112–115]. Similarly, inhibition of p300 activity
using curcumin also reduces cardiac fibrosis and hypertro-
phy [32, 94, 116]. However, thiol oxidation of p300 during
RIF has not been studied.

Both p300 and CBP have high sequence homology and
can act as transcriptional coactivators, which recruit basal
transcriptional machinery, including RNA polymerase II,
to gene promoters. p300 and CBP promote the transcrip-
tion of fibrotic genes, such as matrix metalloproteinase-2
(MMP2), matrix metalloproteinase-9 (MMP9), αSMA,
and plasminogen activator inhibitor-1 (PAI-1) [91] in this
manner. Moreover, increased histone acetylation at the
H3K9/14 and H3K18 marks has been associated with
an upregulation of TGF-β1, TGF-β3, and another potent
profibrotic factor, connective tissue growth factor
(CTGF) [117].

During fibrosis, an increase in histone acetylation can
also be mediated by an increase in activity of ATP citrate
lyase (ACL), an enzyme that converts citrate to acetyl--
CoA, which is a substrate for HATs [117]. Thus, histone
acetylation is affected by changes in glucose metabolism
and oxidative stress during fibrosis [118, 119]. Corre-
spondingly, high-glucose treatment can increase oxidative
stress and increase pan-H3 histone acetylation marks
[108, 120]. However, this process has not been studied in
the context of RIF.

In summary, histone acetylation in RIF is attributed to
an increase in the level of expression and activity of HAT
enzymes, p300 and CBP. HAT expression is further
upregulated by the TGF-β signaling pathway. Antioxidants
have been shown to inhibit HAT activity and prevent the
development of fibrosis. However, the mechanism of inhi-
bition of HAT activity by antioxidants has not been deter-
mined in the context of RIF. Other studies, unrelated to
fibrosis, point towards susceptibility of p300 to several
PTMs that are influenced by a change in the oxidative
environment [101, 108, 121, 122].
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5.2. Role of Histone Deacetylation in RIF. HDACs are a class
of enzymes that compress the chromatin by removing acetyl
groups, which results in a downregulation in gene expres-
sion. There are a total of 11 known HDACs that are depen-
dent on the cofactor, Zn2+, to deacetylate histones. Another
class of enzymes known as sirtuins (Sirt) contains seven
members that deacetylate histones and are dependent on
NAD+ as a cofactor.

Upregulation of several HDAC enzymes is known to
be in involved in the development of fibrosis [123–131].
Profibrotic stimulation, using TGF-β or the platelet-
derived growth factor (PDGF), upregulates the expression
of HDAC1, HDAC2, and HDAC4, which results in fibro-
sis of a variety of tissues [124, 125, 132]. Also, all three
HDAC proteins involved in fibrosis are redox sensitive.
Upregulation of certain HDACs can lead to the deacetyla-
tion of histones associated with antifibrotic genes and
downregulation of genes that prevent the development of
fibrosis. Hence, HDAC proteins are reported to be poten-
tial targets for fibrotic disorders [133]. However, the role
of HDAC proteins and HDAC inhibitors in RIF has not
been studied.

HDAC1, a well-known epigenetic and cell cycle regula-
tor, is redox sensitive and plays a crucial role in normal devel-
opment and tumor progression [134, 135]. During fibrosis,
HDAC1 upregulation causes epithelial-mesenchymal tran-
sition by suppressing the transcription of ZO-1 and
E-cadherin [124]. In addition, HDAC1 promotes fibrosis
by inhibiting the expression of the antifibrotic Smad7 pro-
tein in renal fibrosis [95]. In agreement with this finding,
the HDAC inhibitor, suberoylanilide hydroxamic acid,
was successful in stabilizing Smad7 levels, thereby prevent-
ing fibroblast differentiation and collagen expression in a
lung fibrosis model in rats [123].

Similarly, HDAC4 upregulation enhances the expression
of profibrotic genes in lung fibrosis [136, 137] and causes
transdifferentiation of hepatic stellate cells to myofibroblast
cells [138]. Knockdown of HDAC4 inhibits fibrosis by
reversing the TGF-β-stimulated transformation of fibro-
blasts to myofibroblasts [139]. HDAC4 is a redox-sensitive
protein, where oxidation of Cys667 and Cys669 affects its
activity and is independent of other phosphorylation modi-
fications [140, 141]. Specifically, reduction of these two
cysteine residues has also been shown to prevent its nuclear
export [141].

In liver fibrosis, HDAC2 was found to be upregulated,
which activates hepatic stellate cells through the suppression
of the antifibrotic protein, Smad7 [142]. Moreover, HDAC2
and DNMT1 have been suggested to cooperate in adding
repressive chromatin marks at gene promoters to suppress
the expression of antifibrotic genes, such as RASAL1 [46,
143]. Oxidative stress causes tyrosine nitration of HDAC2,
thereby reducing its activity [144]. These PTMs are pre-
vented with the use of antioxidants, such as glutathione
monoethyl ester or polyphenol-curcumin [145, 146]. Over-
expression of SOD2 decreases HDAC2 expression due to
an increase in ubiquitination of HDAC2 molecules [147].
Therefore, a change in expression and activity of HDAC2
is highly regulated by the redox environment [148–151].

Reduction in HDAC1/2 expression using gallic acid or
valproic acid sodium (VPA) attenuates hypertension, car-
diac remodeling, and fibrosis in mice [152]. RNS, such
as nitric oxide, has an inhibitory effect on HDAC activity
resulting in the hyperacetylation of specific genes [153].
The inhibitory effects of RNS on HDAC proteins are
associated with nitrosylation of tyrosine residues and
aldehyde-adduct formation on HDAC1, HDAC2, and
HDAC3 proteins [145]. As mentioned previously, PTMs
of HDACs due to oxidative modification of conserved cys-
teine residues have also been linked to nuclear export
[154]. However, these changes mediated by RNS have
not been studied extensively in the context of RIF.

HDAC inhibitor (HDACi) drugs, romidepsin [155], tri-
chostatin A [156, 157], suberoylanilide hydroxamic acid
[123, 158], sodium valproate [159], panobinostat [160,
161], and valproic acid [162, 163], have all been shown to
suppress fibrosis. In a standard animal model of cutaneous
radiation syndrome, application of topical formulations of
phenylbutyrate, an HDACi [164] and oxidative stress inhib-
itor [165–167], reduced acute skin damage and protected
from late radiation-induced effects, such as fibrosis and
tumor formation [168]. This reduction in RIF after HDAC
inhibition further correlated with suppression of TGF-β
and TNF-α signaling [168]. Therefore, HDAC inhibitors
have been used and are proposed as radioprotectors for
treating RIF [168]. However, the potential nonspecificity
of these broad inhibitors may produce many unwanted
side effects, making these drugs potentially unsuitable for
therapeutic use.

In summary, HDACs are upregulated during radiation
and are associated with fibrosis but vary with the tissue type
and radiation dose. The majority of upregulated HDAC pro-
teins during fibrosis can be countered with the use of either
HDACi or antioxidants. Some changes in PTMs of HDAC
proteins due to oxidative stress have been associated with
changes in HDAC activity but have not been studied in the
context of RIF.

5.3. Role of Sirtuin Deacetylases in RIF. Sirtuin proteins are
deacetylase enzymes that are redox sensitive because they
require NAD+ as a cofactor to be active. As mentioned
above, radiation-associated damage to the mitochondria
can alter levels of NAD+, which can change the activity of
sirtuin proteins. These enzymes are involved in the deacety-
lation of both histone and nonhistone proteins depending
on their localization. Sirt1, Sirt6, and Sirt7 localize to and
exert distinct deacetylation functions in the nucleus [169],
while Sirt3, Sirt4, and Sirt5 localize to the mitochondria
[170] and are indirectly involved in epigenetic reprogram-
ming during fibrosis and are involved in the modulation of
oxidative stress by regulating mitochondrial antioxidant
proteins and cellular metabolism.

In contrast to HDACs, Sirt1 overexpression or upregula-
tion protects against fibrosis by attenuating the TGF-β and
NF-κB signaling pathways [32, 92, 171–180]. Moreover,
Sirt1 is a negative regulator of p300 expression [92, 181].
Ionizing radiation, cigarette smoke extract, and carbon tetra-
chloride increase oxidative stress and downregulate Sirt1
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gene expression [32, 182, 183]. Nonionizing radiation, such
as UV irradiation, also decreases Sirt1 activity [184], which
may result in fibrosis. This change in Sirt1 activity needs to
be further investigated in relation to the cellular NAD+ levels
[184] and oxidative stress-dependent NAD+ metabolism
[185] during fibrosis. The decrease in Sirt1 expression, activ-
ity, and changes in its subcellular localization can be linked
to changes in Sirt1-catalyzed PTMs influenced by oxidative
stress [32, 148, 186–189]. Treatment of fibroblast cells with
H2O2 downregulates Sirt1 levels [190], while the use of anti-
oxidants such as resveratrol [191–197], curcumin [198],
phenylephrine [182], and vitamin D [199, 200] has been
shown to upregulate Sirt1 expression after radiation.

To combat and repair the cell from radiation-induced
oxidative damage, fibroblast cells upregulate and/or increase
the activity of Sirt1 [171, 172, 192, 201–203]. Sirt1 knock-
down and overexpression have been shown to alter ROS
levels within a variety of cell types [203–207]. Sirt1 is
involved in deacetylation of histones, specifically the removal
of H3K9Ac, H3K14Ac, H4K16Ac, and H1K26Ac marks,
which leads to an upregulation of antioxidant genes such
as superoxide dismutase (SOD) [148]. Further, deacetyla-
tion of transcriptional factors such as the nuclear factor
erythroid-related factor (Nrf), Nrf1 or Nrf2 [208, 209],
and peroxisome proliferator-activated receptor gamma
coactivator-1 alpha (PGC1-α) [174, 176, 178, 210–212] is
also involved in controlling the expression of SOD. The
Nrf2 transcription factor is a crucial regulator of the
antioxidant defense pathway and has been reported to
inhibit the TGF-β signaling pathway [208]. Therefore, Sirt1
is a redox sensor that acts as an antifibrotic protein via
deacetylation of both histones and nonhistone proteins.

Similarly, Sirt3, Sirt6, and Sirt7 are all redox-sensitive pro-
teins and modulate oxidative stress in fibrotic tissues. Sirt3
upregulation has a protective effect against radiation-induced
lung injury by exerting anti-inflammatory and antioxidative
properties [213–215]. Further, Sirt3 is responsible for pre-
venting epithelial-mesenchymal transition (EMT) by elevat-
ing the levels of Nrf2 and PGC1-α expression [216, 217]. In
parallel to this, Sirt3 deficiency has been shown to promote
lung fibrosis [214] and its activity is required to deacetylate
and activate MnSOD. An active MnSOD enzyme is necessary
to detoxify mitochondrial ROS and prevent mtDNA damage
[214]. Sirt6 overexpression prevents hepatic fibrosis by curb-
ing inflammation and oxidative stress [218], and Sirt6 defi-
ciency results in progressive renal inflammation and fibrosis
[219]. Moreover, it is known that Sirt6 exhibits an inhibitory
effect on the activity of TGF-β [220] and NF-κB signaling
[221] that are activated in RIF. In addition, a decrease in
expression of Sirt7 is associated with the development of
lung fibrosis [222, 223] and fibroblast differentiation in
cardiac tissue [216].

Paradoxically, Sirt2 and Sirt4 downregulation prevents
fibrosis and is also modulated by treatment of antioxidant
molecules [224, 225]. Sirt2 potentiates radiation-induced
damage in fibroblast cells by interacting with β-catenin
and, thereby, inhibiting Wnt signaling [226]. Inhibiting Sirt2
activity prevents transformation and preserves the integrity
of aging fibroblast cells against ROS [226]. However, in the

brain, Sirt2 has been shown to be essential in preventing
neurotoxicity and cognitive dysfunction after whole brain
radiation [227] and plays a role in preventing neuroinflam-
mation and brain injury [228]. Sirt4 is involved in the devel-
opment of cardiac fibrosis after angiotensin II treatment and
is involved in the regulation of oxidative stress [229]. Treat-
ment with a SOD mimetic, 5, 10, 15, and 20-tetrakis-(4-ben-
zoic acid) porphyrin, inhibited ROS accumulation and
Sirt4-mediated development of cardiac fibrosis [229].

In contrast to the upregulation of HDAC proteins,
upregulation of most sirtuins protects from RIF develop-
ment. The upregulation and increase in activity of sirtuins
combat radiation-induced oxidative stress and counterbal-
ance the increase in expression of HAT enzymes and
radiation-induced epigenetic modifications. Like HATs,
increase in sirtuin protein levels or activity occurs through
acute changes in signaling pathways, redox environment,
and metabolite production after radiation. The protective
effects of sirtuin proteins are thought to be mediated, in
part, by deacetylating histones and key transcription
factors involved in the antioxidant pathway, such as
Nrf2 and PGC1-α.

5.4. Role of Histone Methylation in RIF. Histone methylation
can either increase or decrease transcription of genes
depending on the amino acid methylated (lysine or argi-
nine), position on the histone tail, and the number of methyl
groups added. This dynamic process is regulated by more
than 40 histone methyltransferases (HMTs) and demethy-
lases, which are involved in the establishment of a histone
methylome. For these reasons, specific histone methylation
alterations have not been studied in the context of radiation.
However, reports indicate that histone methylation plays a
critical role in fibrotic gene expression and fibrosis [230].

TGF-β stimulation increases the expression of EZH2,
SET7 [231], SET9 [231], and G9a [232]. Furthermore, an
active TGF-β pathway has been linked to an increase in
H3K4Me1, H3K4Me2, and H3K4Me3 (active chromatin
marks) and a decrease in H3K9Me2 and H3K9Me3 (repres-
sive chromatin marks) at profibrotic gene promoters [230,
231, 233, 234]. Among the several HMTs, EZH2 was shown
to be upregulated during the differentiation of fibroblasts to
myofibroblasts in the lungs of patients with idiopathic pul-
monary fibrosis [235]. Induction of EZH2 expression after
TGF-β stimulation can lead to an increase in H3K27Me3
(repressive marks) at COX-2 gene promoters (antifibrotic
gene), which promotes fibrosis [236, 237]. This increase in
EZH2 expression also correlates with an increase in the
expression of ECM proteins, such as COL3A1 [233]. Impor-
tantly, antifibrotic genes, such as Caveolin-1 [238], are
exclusively regulated by histone methylation [239] and not
by DNA methylation. Further, EZH2 forms repression com-
plexes with MeCP2 and SIN3A, transcriptional repressors,
which can suppress the expression of antifibrotic genes [87,
240]. Treatment of epithelial cells with H2O2 causes the
translocation of EZH2 from the nucleus to the cytoplasm
by regulating its phosphorylation status [241]. Inhibition of
HMTs, using 3-deazaneplanocin A (DZNep), suppressed
the progression of renal and pulmonary fibrosis [242, 243].
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Further, inhibition of the TGF-β and TNF-α signaling path-
ways using a novel indole compound, MA-35, resulted in the
attenuation of renal inflammation and fibrosis by decreasing
H3K4me1 histone modification at the COL1A1 and PAI-1
fibrotic gene promoters [244]. Inhibition of H3K9me1 using
BIX01294, an inhibitor of G9a methyltransferase, prevented
the development of renal fibrosis by maintaining expression
of the antifibrotic gene, Klotho [232]. Therefore, an active
TGF-β pathway, due to the generation of ROS after radia-
tion, can lead to an upregulation of these HMTs leading to
the development of RIF [232].

Activation of hepatic stellate cells (HSC), by bile duct
ligation procedure, leads to transdifferentiation of HSC to a
myofibroblast-like phenotype [245]. This transdifferentiation
is associated with an increase in HMTs such as KMT2H (aka
ASH1), KMT1A (aka SUV39H1), KMT1B (aka SUV39H2),
KMT1D (aka GLP), KMT6 (aka EZH2), KMT3C (aka
Smyd2), KMT2A (aka MLL1), KMT2E (aka MLL5), and
KMT2F (aka SET1A) and a compensatory increase in histone
demethylases (HDMs) such as KDM1 (aka LSD1), KDM5B
(aka JARID1b), KDM4A (aka JMJD2a), and KDM4B (aka
JMJD2b) [245]. This is also associated with the upregulation
of profibrotic genes, such as αSMA, TIMP-1, collagen I, and
TGF-β. Several of these methylase enzymes are activated and
inhibited by metabolic cofactors that are considered redox
intermediates such as NAD+, SAM, flavin adenine dinu-
cleotide (FAD), and 2-oxoglutarate. Further, the jumonji
domain-containing (jmjC) family of proteins, which is
involved in histone demethylation, is highly redox sensitive
due to the presence of a transition metal, iron (Fe), at the
enzyme active site. Fe (II) is used as a cofactor for the histone
demethylation reaction and can interact with H2O2 to pro-
duce ·OH, leading to an increase in oxidative damage and
histone methylation [246, 247]. Changes in the redox envi-
ronment have also been reported to increase the activity of
LSD1, which is involved in DNA repair after oxidative dam-
age [248]. HDMs, such as KDM6B, can be induced by the
TGF-β pathway and promote EMT transition during fibrosis
[249], which can also have implications in the context of RIF.
However, the role of these histone methylation-regulating
proteins has not been extensively studied in the context of
changing oxidative stress and fibrosis.

6. ROS-Mediated Noncoding RNA
Changes in RIF

Noncoding RNAs that regulate epigenetic processes in RIF
include, micro-RNAs (miRs), long noncoding RNA
(lncRNA), and circular RNA (circRNA). miRs are consid-
ered to play an essential role in regulating the epigenome
and are modulated by changes in oxidative stress during
radiation exposure [26, 250]. Further, expression of miRs is
interconnected with the TGF-β signaling pathway [16, 36,
132, 250–259]. DROSHA and DICER regulate the biogenesis
of the majority of miRs in healthy cells and are involved in
radiation damage responses due, in part, to the production
of ROS [260]. Increase in ROS inactivates DROSHA and
DICER, which impairs DNA damage responses in human
fibroblasts after radiation [261]. TGF-β signaling pathway

proteins, p-Smad-2 and p-Smad-3, have been shown to
interact with DROSHA and DICER to regulate the process-
ing of miR-21 in cardiac fibroblasts [262, 263]. Mature
miR-21 has been implicated in the development of RIF in
several tissues [264–267]. In endothelial cells, H2O2 treat-
ment downregulates the expression of DICER [268–270].
However, in hepatic stellate cells (HSC), inhibition of
DICER suppresses HSC activation as well as ECM expres-
sion [271]. It is unknown if ROS are directly involved in
PTMs of DROSHA and DICER activity. However, downreg-
ulation of DICER prevents the generation of ROS by lower-
ing expression of the p47phox protein, which is a part of the
NOX2 complex that generates ROS [272]. Therefore, there
exists a close relationship between the miR-processing pro-
teins, an active TGF-β signaling pathway, and ROS that
needs to be further investigated in the context of RIF.

Following radiation, ten miR species have been found to
be upregulated: let-7d, let-7g, let-7i, miR-26b, miR-663,
let-7e, miR-15b, miR-21, miR-768-3p, and miR-768-5p.
Seven miRs were found to be downregulated: miR-24, let-7a,
miR-100, miR-125b, miR-222, let-7b, and miR-638 in nor-
mal human fibroblasts [250]. Out of these 17 miRs, changes
in intracellular levels of hydrogen peroxide have been associ-
ated with altered expression of let-7d, let-7b, let-7e,
miR-15b, miR-768-3p, miR-768-5p, miR-24, miR-21, and
miR-638. Some miRs such as the miR-29 family members
are not directly regulated by changes in ROS and are depen-
dent on the TGF-β signaling pathway. MiR-29 family mem-
bers are downregulated after radiation, which leads to an
increase in expression of type I collagen genes that contrib-
ute to the development of RIF [273]. Further, loss of radio-
protective miR-140 is observed in human lung fibroblasts,
which is known to regulate the TGF-β signaling pathway
and expression of fibronectin [274]. These miRs could
potentially drive acute and chronic changes in molecular
connections to combat oxidative stress during fibrosis [275].

Treatment with a thiol antioxidant, cysteine, prevents
changes in the expression of some of the above miRs initi-
ated by ionizing radiation [250]. The potential to regulate
miR expression using locked nucleic acid- (LNA-) modified
anti-miR inhibitors in combination with antioxidants is an
attractive avenue for prevention of RIF [264]. Moreover,
these miRs can be used as potential biomarkers for patients
at risk of developing RIF [276–279].

Apart from miRs, other noncoding RNAs such as
lncRNA, which are >200 nucleotides [280], and circRNA
[281, 282] have also been shown to be dysregulated in RIF.
lncRNAs play a role in epigenetic regulation by forming
complexes with chromatin-modifying proteins. However,
these RNA molecules have not been extensively studied in
the context of changing oxidative stress. In normal human
bronchial epithelial cells, overexpression of long intergenic
radiation-responsive RNAs (LIRRs), noncoding RNAs,
increased radiosensitivity through a DNA damage response
(DDR) signaling mechanism that is p53 dependent [280].
Similarly, lnc-RI is a radiation-inducible lncRNA molecule
involved in radiation-induced DDR [283]. In hepatic stellate
cells, 179 circRNAs were found to be upregulated and 630
circRNAs were downregulated after irradiation [281].
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Inhibition of hsa-circ-0071410 has been shown to attenuate
radiation-induced hepatic stellate cell activation [281]. Two
other circRNAs, KIRKOS-73 and KIRKOS-71, are upregu-
lated following radiation exposure and can serve as a diag-
nostic radiotherapy biomarkers [282]. However, the role of
these noncoding RNAs have not been studied in the context
of ROS-mediated development of RIF. We do not know

whether the use of antioxidants influences the expression
of these molecules.

7. Conclusion

Radiation therapy leads to the development of RIF and
decreases the overall quality of life of irradiated cancer
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Figure 2: Changes in expression or activity of chromatin-modifying proteins that are redox sensitive, which lead to epigenetic
reprogramming and transformation of fibroblast cells to myofibroblast cells after radiation. The red arrow indicates the increase or
decrease in expression or activity driving transformation to myofibroblast. The green arrow indicates the increase in expression or activity
preventing transformation to myofibroblast.
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Table 1: Antioxidants/antifibrotic agents used to prevent radiation-induced damage and fibrosis.

Antioxidant/antifibrotic
agents

Region
Radiation

dose/animals
Dose Effects Reference

AEOL 10150 (catalytic
SOD mimic)

Lung 28Gy/rats
10-30mg/kg/day, for

10 weeks
Inhibits TGF-β signaling [291]

Alpha-lipoic acid

Small intestine 15Gy/mice
100mg/kg, 3 days
before radiation

Reduces inflammation and
cell death and reduces

p-NF-κB, MMP9, and MAPK
signaling and facilitates

regeneration of vitamins C
and E and elevates glutathione

levels [292]

[293]

Thyroid 18Gy/rats
100mg/kg, 24 h
before radiation

Inhibits TGF-β signaling [115]

Salivary gland 18Gy/rats
100mg/kg, 24 h
before irradiation

Reduces oxidative stress by
inhibiting gp91 mRNA

expression
[294]

Amifostine (WR-2721)

Head and neck 20–70Gy/humans
200mg/m2 to
400mg/m2

Thiol compound and free
radical scavenger; reduces
oxidative radicals and

prevents xerostomia (dry
mouth) postradiation.

[295, 296]

Heart 22.5Gy/rats
160mg/kg, 15 minutes

before radiation
Reduces cardiac damage [297]

Heart 18Gy/mice
200mg/kg, 30 minutes

before radiation
Prevents vasculitis and

vascular injury
[298]

Kidney 15Gy
200mg/kg, 30 minutes

before radiation

Prevents glomerular and
tubular changes and

interstitial fibrotic lesions
postradiation

[299, 300]

Atorvastatin Kidney 2Gy/mice
50mg/kg/day
for 1 week

Reduces the levels of oxidative
stress biomarkers

[301]

CpG
oligodeoxynucleotide

Lung 15Gy/mice 50 μg CpG-ODN

Prevents radiation-induced
pulmonary fibrosis by shifting
the imbalance of Th1 and Th2

responses

[302]

Curcumin

Lung 18Gy/rats
200mg/kg/day, 1 week

before radiation

Boosts antioxidant defenses by
increasing HO-1, prevents
COX-2 upregulation, and
inhibits proinflammatory
cytokines and NF-κB

signaling

[303]

Lung 13.5Gy/mice 1% or 5% (w/w)

Prevents radiation-induced
pulmonary fibrosis and

reduces LPS-induced TNF-α
production

[304]

Erdosteine Whole body/kidney 5Gy/rats
100mg/kg/day, 1 week
before irradiation by

gastric tube

Inhibits production of
proinflammatory cytokines
TNF-α, IL-1, IFNγ, and IL-6

[305]

Eukarion-189 (catalytic
SOD catalase mimic)

Lung 10 to 20.5Gy/rats
30mg/kg, 30 minutes

before radiation
Inhibits TGF-β signaling [306]

Eukarion-207 (catalytic
SOD catalase mimic)

Lung 12Gy/rats 8mg/kg/day
Reduces oxidative damage,
TGF-β, and NF-κB signaling
and activated macrophages

[307]
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Table 1: Continued.

Antioxidant/antifibrotic
agents

Region
Radiation

dose/animals
Dose Effects Reference

Flaxseed Lung 13.5Gy/mice 10% (w/w)

Reduces expression of lung
injury biomarkers (Bax, p21,
and TGF-β) and contains
omega-3 fatty acids and
lignans with antioxidant

properties

[308]

Follistatin Hindlimb 35Gy/mice

4 μg, 24 hours before, 2
days after radiation,
and then 3/week over

6 months

Inhibits TGF-β signaling [285]

GC4401 Whole body/liver 2 × 2 Gy/mice
2mg/kg before every

fraction

Protects the liver in Sirt3−/−

animals from
radiation-induced injury

[309]

GC4419 Oral cavity 60 to 72Gy/humans

15 to 112mg/day,
60min before

radiation for 3 to
7 weeks

Reduces the frequency and
duration of oral mucositis

[310]

Genistein (isoflavone) Lung 12Gy/rats 50mg/kg/day

Reduces oxidative damage,
TGF-β, and NF-κB signaling
and activated macrophages

and fibrosis

[307]

Ginger extract Kidney 2, 4, and 8Gy/rats
50mg/kg/day for 10

days

Alleviates functional and
structural alterations in the

kidney due to antioxidant and
anti-inflammatory effects

[311]

Gingko biloba

Whole body 8Gy/rats
50mg/kg/day, 15-day

pretreatment

Attenuates
irradiation-induced oxidative
organ injury, by preventing an

increase in LDH and
TNF-alpha levels

[312]

Eye 5Gy/rats
40mg/kg/day, 3 days
pretreatment and up
to 7 days postradiation

Prevents increase in xanthine
oxidase (XO) activity

postradiation
[313]

Whole body 6Gy/rats
50 and 100mg/kg/day

for 7 days

Corrects the metabolic
disturbances induced in the
brain by lowering dopamine,
calcium, and zinc contents

while increasing iron content
and restores the activities of
lactate dehydrogenase and
cholinesterase enzymes

[314]

GTS-21 (α7-nAChR
agonist)

Lung 12Gy/mice 4mg/kg/day

Reduces TNF-α, IL-1β, and
IL-6 production in serum via
inhibition of NF-κB and
downregulates TLR-4 and
HMGB1 expression in the

lungs and reduces ROS levels
and HIF-1α expression along
with inhibition of NOX1 and

NOX2 expression

[315]

Hesperidin Heart 18Gy/rats
100mg/kg/day
for 7 days

Decreases inflammation,
fibrosis, mast cell and

macrophage numbers, and
myocyte necrosis after

radiation

[316]
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Table 1: Continued.

Antioxidant/antifibrotic
agents

Region
Radiation

dose/animals
Dose Effects Reference

JP4-039 (TEMPOL) Skin/leg 35Gy/mice
50 μL of formulation,
0.5, 24, and 48 h after

radiation

Reduces radiation-induced
skin damage

[317]

KL4 surfactant
(21-amino acid peptide)

Lung 13.5Gy/mice 120mg/kg twice daily
Reduces lung inflammation

and oxidative stress
[318]

Matrine (alkaloid) Whole body 6-7Gy/rats

30, 10, and
3mg/kg/day, 3 days

before or after
radiation

Reduces radiation-induced
damage by altering 21

pathways
[319]

Melatonin Lung 18Gy/rats
100mg/kg once 30
minutes before

radiation

Reduces lipid peroxidation
product malondialdehyde

[320]

MnTnHex-2-PyP
(catalytic SOD mimic)

Lung 28Gy/rats
0.05mg/kg/day for 2

weeks, 2 h
postradiation

Decreases HIF-1alpha,
TGF-β, and VEGF A

expression after radiation
[321]

Lung
28Gy/rhesus
monkeys

0.05mg/kg twice daily
for 2 months

Prevents radiation injury in
the lungs

[322]

MnTE-2-PyP Or AEOL
10113 (catalytic SOD
mimic)

Prostate 10Gy/mice
6mg/kg/day, day

1 to 16

Inhibits TGF-β signaling and
protects against decreases in
RBC counts, hemoglobin, and

hematocrit

[323]

Pelvic region 20-30Gy/rats
5mg/kg/week, 1 h
before radiation

Ameliorates both acute and
chronic radiation proctitis

[324]

Pelvic region 37.5Gy/mice

10mg/kg/week, 24 h
before radiation; for
the first two weeks, 3
times/week at a dose of

5mg/kg

Reduces collagen deposition,
inflammation, senescence,

and fibroblast to
myofibroblast differentiation

and upregulates NQO1
expression

[286]

Lung 28Gy/rats
6mg/kg/day, 15min
before radiation

Inhibits TGF-β signaling [325]

Lung 28Gy/rats
6mg/kg/day for

10 weeks

Decreases HIF-1alpha,
TGF-β, and VEGF A

expression after radiation
[326]

MnTnBuOE-2-PyP5 or
BMX-001 (catalytic
SOD mimic)

Brain 5Gy/mice
1.5mg/kg, twice daily,

for 14 days
Protects hippocampal

neurogenesis
[288]

Brain 8Gy/mice
1.6mg/kg, twice daily,
24 h before radiation

Protects the brain from
negative effects of cranial

irradiation
[327, 328]

Colon 2Gy/mice
0.25 μM every 3 days,
for in vitro studies

Prevents activation and
increase in cell size of

fibroblast cells from the colon
[287]

N-Acetyl cysteine
(NAC)

Whole body 18Gy/mice
500mg/kg/day, 3 days
before and up to 3 days

postradiation

Protects the lung and red
blood cells from glutathione

depletion following
irradiation

[329]

Whole body 6Gy/rats
1000mg/kg, 15min
before radiation

Protects rat femoral bone
marrow cells from
radiation-induced

genotoxicity and cytotoxicity

[330]

Abdomen 10Gy/rats 300mg/kg/day

Alleviates the negative effects
of radiotherapy on incisional
wound healing by means of
reducing oxidative stress

markers

[331]
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Table 1: Continued.

Antioxidant/antifibrotic
agents

Region
Radiation

dose/animals
Dose Effects Reference

Abdomen 20Gy/mice
300mg/kg/day,

for 7 days

Prevents gastrointestinal
injury, damage to bone

marrow stromal cells, and
radiation-induced acute death

[326]

Plasminogen activator
inhibitor-1 (PAI-1)
truncated

Lung 30Gy/mice
5.4 μg/kg/day for 18
weeks beginning 2

days before radiation

Prevents RIF with increased
fibrin metabolism, enhanced
matrix metalloproteinase-3
expression, and reduced
senescence in type 2

pneumocytes

[332]

Pirfenidone

Lung 16Gy/mice
300mg/kg/day for

four weeks
Inhibits TGF-β signaling

[333]

Intestine 20Gy/mice
200 and

400mg/kg/day for
12 weeks

[334]

Head and neck 60-72Gy/humans
800mg three
times/day

— [335]

Podophyllotoxin and
rutin combination
(G-003M)

Lung 11Gy/mice 5mg/kg once
Reduces radiation-induced
oxidative and inflammatory

stress
[336]

Polydatin Lung 15Gy/mice 100mg/kg/day

Exerts anti-inflammation and
antioxidative properties

through Nrf2 signaling and
Sirt3 upregulation

[213]

Quercetin
Intestine 13Gy/mice

100mg/kg/day for 6
days before and after

radiation Inhibits TGF-β signaling
[337]

Skin/hind leg
35Gy and
10Gy/mice

Quercetin-formulated
chow (1% by weight)

[338]

Resveratrol

Intestine 7Gy/mice
40mg/kg/day, 1-day
pretreatment and up

to day 5

Prevents intestine damage via
the activation of Sirt1,
improves intestinal

morphology, decreases
apoptosis of crypt cells,

maintained cell regeneration,
ameliorated SOD2 expression
and activity, regulates Sirt1,
and acetylated p53 expression

that is perturbed by
irradiation

[339]

Whole body 3Gy/mice
100mg/kg/day, 2 days
pretreatment and up

to 30 days

Reduces radiation-induced
chromosome aberration

frequencies
[340]

Salivary gland 15Gy/mice 20mg/kg/day

Inhibits TGF-β signaling and
protects the salivary glands
against the negative effects of

irradiation

[341]

Ovary 21Gy/rats
25mg/kg/day for 2

weeks

Counteracts the effect of
radiation and upregulates the
gene expression of PPAR-γ

and Sirt1, leading to inhibition
of NF-κB-provoked

inflammatory cytokines

[191, 342]
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Table 1: Continued.

Antioxidant/antifibrotic
agents

Region
Radiation

dose/animals
Dose Effects Reference

Whole
body/hematopoietic

stem cell
6Gy/mice

20mg/kg/day for 7
days before and then

up to 30 days
postradiation

Protects from
radiation-induced injury, in
part, via activation of Sirt1

[343]

Skin 35Gy/mice 1% by weight Inhibits TGF-β signaling [338]

Lung 13Gy/mice
100mg/kg/day for

7 days

Prevents lung injury by
reducing inflammation and

fibrosis
[344]

rhNRG-1β Heart 20Gy/rats
15 μg/kg, 3 days before

and 7 days after
radiation

Prevents fibrosis and
preserves cardiac function via

the ErbB2-ERK-Sirt1
signaling pathway

[345]

Silibinin Breast 46.8-50.4Gy/humans 400 IU for 6 months

Vitamin E may be clinically
useful in preventing fibrosis
after radiation in high-risk

patients

[346]

SOD gliadin Hind leg/skin 25Gy/mice
10000 units/kg/day for

8 days
Reduces dermal thickness and

fibrosis after irradiation
[347]

Soy isoflavones

Prostate
73.8 to

77.5 Gy/humans

200mg tablet
containing 50mg soy
isoflavones (genistein,
daidzein, and glycitein
at a ratio of 1.1 : 1 : 0.2)

Reduces the urinary,
intestinal, and sexual adverse

effects in patients with
prostate cancer receiving

radiation therapy

[348]

Lung 12Gy/mice
50mg/kg/day, 3 days
before and up to 4

months after radiation

Mitigates inflammatory
infiltrates and

radiation-induced lung injury
[349]

Lung 10Gy
250mg/kg/day, 3-day

pretreatment

Inhibits the infiltration and
activation of macrophages and

neutrophils induced by
radiation in the lungs

[350]

Lung 12Gy/mice

250mg/kg/day, 3-day
pretreatment and up
to 4 months after

radiation

Inhibits the infiltration and
activation of macrophages and

neutrophils induced by
radiation in the lungs

[349]

Taurine

Lung 14Gy/mice 32mg/kg/day

Inhibits TGF-β signaling;
taurine essential amino acid is
involved in osmoregulation,
antioxidation, detoxification,
membrane stabilization,
neuromodulation, cardiac

function, and central nervous
system development

[351]

Brain 6Gy/rats
2 oral doses of

500mg/kg/day for
2 weeks

Taurine has antioxidant,
anti-inflammatory, and
antiapoptotic effects

[352]

Sperm cells
8Gy/mice

spermatocytes (GC-2
cells)

40mM
Activates Nrf2/HO-1

signaling
[353]

Vitamin E

Lung & heart 20Gy/rats

2.5% of diet 2 weeks
before radiation or
150mg injected 4 h
before radiation

Protects lungs and heart
tissues from radiation damage

[354]

L4ung 14Gy/rats
1.1mg/day dissolved
in 0.1mL olive oil

injected

Protects against the
development of RIF

[355]
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patients. ROS is one of the main drivers of epigenetic repro-
gramming of myofibroblasts, and targeting ROS could pre-
vent many of the changes associated with fibrosis, as
shown in Figure 2. To treat and prevent RIF, there are sev-
eral strategies that can be used including inhibition of epige-
netic modulators, inhibition of the TGF-β signaling pathway
[284, 285], or inhibition of ROS, using antioxidants as
shown in Table 1. Targeting the TGF-β signaling pathway
or targeting the epigenetic modifications directly can prevent
the epigenetic reprogramming of fibroblast cells and RIF.
However, the main problem with these strategies is that
there are side effects due to lack of specificity. Globally
reducing epigenetic factors or TGF-β signaling can result
in damage to other cells or organs not affected by RIF. How-
ever, increasing the antioxidant capacity of cells to physio-
logically relevant levels during and after radiation therapy
is an ideal strategy to prevent RIF with minimal side effects.
As discussed above, antioxidants also prevent the activation
of the TGF-β signaling pathway and/or epigenetic modifica-
tions observed after radiation exposure. Therefore, removing
or scavenging ROS by natural antioxidant compounds
and/or mimics of antioxidant enzymes that are safe and well
tolerated for clinical use may have significant potential to
prevent RIF safely in patients.

Several different types of antioxidants and antifibrotic
agents have demonstrated efficacy in preventing radiation
damage and inhibiting acute molecular changes that drive
the fibrotic phenotype in a variety of RIF animal models
(see Table 1). Recent studies using small molecule
antioxidants that mimic SOD activity, MnTE-2-PyP or
MnTnBuOE-2-PyP, protect from acute and chronic fibrosis
by preventing fibroblast activation and underlying repro-
gramming into activated myofibroblasts [286, 287]. For this
reason, MnTnBuOE-2-PyP is currently in clinical trials as a
radioprotector for several kinds of cancer [288–290]. In
addition, another SOD mimic, GC4419, has also been shown
to be an effective radioprotector and is in clinical trials for
head and neck cancers. Given that these molecules do not
protect tumors from radiation damage, these SOD mimics
are a very promising therapy for the prevention of RIF. We
predict that in the near future, these compounds will be
available for patients to protect from RIF and potentially

treat other fibrotic disorders by mitigating the epigenetic
changes that drive fibrosis.
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