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A B S T R A C T   

Papillary renal cell carcinoma (PRCC) is a highly heterogeneous cancer, and PRCC patients with 
advanced/metastatic subgroup showed obviously shorter survival compared to other kinds of 
renal cell carcinomas. However, the molecular mechanism and prognostic predictors of PRCC 
remain unclear and are worth deep studying. The aim of this study is to identify novel molecular 
classification and construct a reliable prognostic model for PRCC. The expression data were 
retrieved from TCGA, GEO, GTEx and TARGET databases. CRISPR data was obtained from 
Depmap database. The key genes were selected by the intersection of CRISPR-Cas9 screening 
genes, differentially expressed genes, and genes with prognostic capacity in PRCC. The molecular 
classification was identified based on the key genes. Drug sensitivity, tumor microenvironment, 
somatic mutation, and survival were compared among the novel classification. A prognostic 
model utilizing multiple machine learning algorithms based on the key genes was developed and 
tested by independent external validation set. Our study identified three clusters (C1, C2 and C3) 
in PRCC based on 41 key genes. C2 had obviously higher expression of the key genes and lower 
survival than C1 and C3. Significant differences in drug sensitivity, tumor microenvironment, and 
mutation landscape have been observed among the three clusters. By utilizing 21 combinations of 
9 machine learning algorithms, 9 out of 41 genes were chosen to construct a robust prognostic 
signature, which exhibited good prognostic ability. SERPINH1 was identified as a critical gene for 
its strong prognostic ability in PRCC by univariate and multiple Cox regression analyses. Quan-
titative real-time PCR and Western blot demonstrated that SERPINH1 mRNA and protein were 
highly expressed in PRCC cells compared with normal human renal cells. This study exhibited a 
new molecular classification and prognostic signature for PRCC, which may provide a potential 
biomarker and therapy target for PRCC patients.  
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1. Introduction 

Renal cell carcinoma (RCC) is the sixth most commonly diagnosed cancer among men and the tenth most common cancer among 
women. Papillary renal cell carcinoma (PRCC), which makes up 10%–15 % of the RCCs, is the most frequently diagnosed cancer in 
non-clear cell renal cell carcinoma (ccRCC) with an increasing incidence [1,2]. PRCC is a highly heterogeneous cancer and PRCC 
patients with advanced/metastatic subgroup showed obviously shorter survival compared to other kinds of RCCs [3]. The WHO 
classification of tumors of the urinary system in 2016 subclassified PRCCs into two types (type 1 and type 2), however the classification 
may be challenging for the mixture of two-type areas in well-sampled tumors. Recently, specific phenotypes have been defined in the 
2022 WHO classification of tumors of the urinary system instead of type 1 and type 2 [4]. Previous studies showed that PRCC patients 
with partial nephrectomy had lower 10-year RFS (73 %) compared to ccRCC patients (96.1 %), and the prognosis of PRCCs remained to 
be poor in advanced or metastatic tumors [5–7]. 

In recent years, advanced approaches were applied to explore more efficient biomarkers and investigate precision medicine in some 
cancers. A three-gene risk model was established to predict the prognosis in patients with PRCC [8]. And the immune-related bio-
markers were analyzed based on the abundance of different kinds of immune cells in PRCC [9]. However, the effective biomarkers and 
prognostic predictors of PRCC remain unclear and are worth deep studying. The aim of this study is to identify novel molecular 
classification and construct a reliable prognostic model for PRCC. 

Clustered regularly interspaced short palindromic repeats (CRISPR), which is the defense mechanism in many bacteria and 
archaea, has been used as an efficient tool for gene editing [10,11]. The researchers can knockout targeted genes and explore ther-
apeutic strategies by CRISPR [12,13]. In order to systematically explore the potential cancer biomarkers, CRISPR-Cas9 was applied to 
identify the crucial genes for the cancer cells’ proliferation or survival. And cancer dependency map was established, bringing new 
methods for the research on the molecular mechanisms in the development and treatment of cancers [14,15]. Previous studies have 
proved that the crucial genes selected by CRISPR data in several kinds of cancer had the ability to predict the tumor biomarkers and 
survival. For example, the CRISPR data derived from the Depmap database were used to determine the key genes associated with 
hepatocellular carcinoma and ccRCC [16,17]. However, the crucial genes selected by CRISPR data and multiple machine learning in 
PRCC haven’t been reported before. The CRISPR data and multiple machine learning may identify some crucial genes in order to 
establish molecular subtypes and reliable prognostic model for PRCC. 

In this study, the differentially expressed genes (DEGs) and the genes having prognostic predictive capabilities were identified in 
PRCC based on the open data. And crucial genes in PRCC were found by a large-scale CRISPR-Cas9 screening utilizing the Depmap 
database. Then, the key genes were got by the intersection of crucial genes, DEGs, and genes related to the survival of PRCC. Sub-
sequently, clustering analysis based on the TCGA cohort was performed to recognize three clusters with the key genes. We compared 
the tumor microenvironment, expression of immune checkpoint-related genes, mutation frequency, and drug sensitivity among the 
three clusters. A reliable and robust prognostic signature including 9 genes was then developed using multiple machine learning al-
gorithms based on the key genes. SERPINH1, one of 9 genes in the prognostic signature, was selected because of its strong prognostic 
predictive ability. The expression of SERPINH1 in PRCC was investigated and pan-cancer analysis was performed. Our study exhibited 
a new molecular classification and prognostic signature for PRCC, which may offer novel insights into its molecular mechanism and 
provide a potential therapy target for PRCC. 

2. Methods 

2.1. Data collection and processing 

The RNAseq data and corresponding clinical information were obtained from TCGA database (https://www.cancer.gov/tcga). 
Normal tissues were retrieved from GTEx database (https://www.gtexportal.org/home/) [18]. The external validation set was ob-
tained from GSE2748 in the GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2748) [19,20]. And a total 
number of 28 PRCC patients with complete survival data in the GSE2748 dataset were selected to validate the prognostic model. 
Supplementary Table S1 presented the clinical data of the 28 PRCC patients. Depmap database (https://depmap.org/portal/) provided 
information on gene dependency in cancer cell lines. Through the Depmap database, we are able to investigate the gene dependency in 
multiple types of cell lines by the Chronos score generated by the CRISPR-Cas9 technology. In order to recognize the potential mo-
lecular biomarkers of PRCC, the 22Q2 version of the CRISPR file in the Depmap database was downloaded. The genes whose Chronos 
score was less than − 0.6 were defined as crucial genes utilizing the R package “depmap”. The clinical information from TCGA-PRCC 
cohort was sorted out and organized with the online tool Sangerbox [21]. 

2.2. Recognition of key genes in PRCC 

Based on the PRCC samples from TCGA-PRCC cohort and the normal samples from GTEx database, DEGs were identified by using R 
package “limma” [22]. Adjusted P < 0.05 and | Log2 (Fold Change) | > 1 were set to be the threshold. To screen the genes related to 
survival in PRCC, univariate Cox proportional hazards regression and log-rank test were performed to generate the P-value and the 
hazard ratio of the Kaplan-Meier (KM) curves for each gene. P < 0.05 was considered to be statically significant. In order to obtain the 
key genes in PRCC, we make the intersection of crucial genes, DEGs, and genes related to the survival of PRCC with the Venn diagrams 
(https://bioinformatics.psb.ugent.be/webtools/Venn/). KEGG and GO analyses were performed by using the R package 
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“clusterProfiler” [23]. 

2.3. Identification of three clusters in PRCC 

The R package “ConsensusClusterPlus” was used to classify the TCGA-PRCC cohort according to the expression of the key genes 
[24]. The maximum number of clusters was 6, and 80 % of the total samples were drawn 100 times, clusterAlg = “hc”, innerLinkage =
‘ward.D2’. Heatmap was drawn utilizing the R package “pheatmap”. The KM curve of each cluster was generated with the R package 
“survival”. 

2.4. Drug sensitivity analysis 

The R package “oncoPredict” can be utilized for predicting the sensitivity of patients to chemotherapeutic agents [25]. The training 
set data contained with the R package “oncoPredict” was retrieved from GDSC database (https://www.cancerrxgene.org/). We 
calculated the response of 198 kinds of drugs in each patient. Lower score represents higher drug sensitivity and better treatment 
effect. 

2.5. Tumor microenvironment analysis among the three clusters 

The R package “CIBERSORT” predicted the abundance of different kinds of immune cells in PRCC. In order to compare the 
infiltration level of the immune cells among the clusters, the R package “ESTIMATE” was applied to calculate the immune score [26]. 
The expression of immune checkpoint-related genes was compared to investigate the difference of the immune checkpoint blockade 
(ICB) therapy among the clusters. And Tumor Immune Dysfunction and Exclusion (TIDE) algorithm predicted the ICB response of each 
sample [27]. The R package “EPIC” was used to compare 8 kinds of cells recruited to the tumor microenvironment among the three 
clusters [28]. 

2.6. Mutation analysis among the three clusters 

The mutation landscape showed the 15 most frequently mutated genes in PRCC and their mutation frequency in the three clusters. 
The distribution of different variant types was visualized in the cohort summary plot. The altered genes in the abnormal signaling 
pathways were summarized. All the analyses above were finished with the R package “maftools” [29]. 

2.7. Construction of a prognostic signature based on the key genes 

First, the samples from the TCGA-PRCC cohort with information on the survival time were reserved. In order to improve the ac-
curacy of the signature, the samples with a survival time of less than 30 days were removed. The selected samples were then divided 
into a training set and a validation set with a ratio of 7 : 3. The FPKM data retrieved from the TCGA database was normalized to TPM 
data and changed to log2 (TPM+1) format. GSE2748 was defined as a test set for external validation. Next, we separately applied 
standardization with z-score normalization to the training set, validation set, and test set. Multiple machine learning algorithms were 
applied, including RSF, Enet, GBSA, CoxBoost, SuperPC, LASSO, SSVM, plsRcox, and StepCox [30]. The full names of the algorithms 
were shown in Supplementary Table S2. 21 combinations of 9 machine learning algorithms were utilized to construct the signature 
based on the key genes. The mean AUC value of each signature was calculated in the validation set and test set to select the signature 
with the highest predictive capability. 

2.8. Single gene analysis 

According to the genes in the signature, univariate and multivariate Cox regression analyses were performed. P value < 0.01 was 
set to be statistically significant. The R package “forestplot” was utilized to draw the forest plot. 

TMB data and MSI data were retrieved from previous researches [31,32]. The correlation between the expression of the single gene 
and MSI or TMB was explored by Spearman’s correlation analysis. In order to investigate the relationship between the expression of the 
single gene and the abundance of different types of immune cells, the immune analysis was performed with the R package “TIMER” 
[33]. The correlation between the expression of SERPINH1 and other characteristics was visualized by utilizing the “ggstatsplot” R 
package. P value < 0.05 was set to be statistically significant. 

2.9. Pan-cancer analysis 

The RNAseq data were from TCGA, GTEx, and TARGET databases. The R package “survival” and log-rank test were used to analyze 
the prognostic ability of the single gene in multiple kinds of tumors. The GEPIA2 database provided visual representations of variations 
in gene expression across different stages of tumors in multiple types of tumors [34]. The immunohistochemical staining of SERPINH1 
protein in normal renal tubules, PRCC and ccRCC tumor tissues were retrieved from HPA database (https://www.proteinatlas.org/). 
SERPINH1 antibody (CAB004441) was applied to detect the expression of SERPINH1. The R package “immunedeconv” including 6 
algorithms was applied to analyze the correlation between the expression of the single gene and the abundance of the immune cells in 
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33 types of tumors [35]. The analysis between the expression of the single gene and TMB or MSI of multiple types of tumors was based 
on the data from previous researches [31,32]. The flow diagram of our research was shown in Fig. 1. 

2.10. Culture of cell lines 

Cell lines HK-2 (normal human renal cell line), 786-O (human ccRCC cell line), and ACHN (human PRCC cell line) were obtained 
from ATCC (Manassas, VA, USA). HK-2, 786-O and ACHN cells were cultured in DMEM, RMPI-1640, and MEM medium with 10 % fetal 
bovine serum (Gibco, Waltham, MA, USA) respectively in a 37 ◦C, 5 % CO2 incubator. The cells was observed and cultured after 
passage every 48–72 h. 

2.11. Quantitative real-time PCR (qRT-PCR) 

TRIzol reagent (Yeasen Biotechnology, Shanghai, China) was used to extract the total RNA of cells. qRT-PCR was conducted on an 
ABI 7300 real-time PCR instrument (ABI, Carlsbad, CA) using Hieff® qPCR SYBR Green Master Mix (Yeasen Biotechnology) according 
to the manufacturer’s methods. The relative gene expression levels were normalized to those of GAPDH and analyzed by using the 
2− ΔΔCT method. SERPINH1: Forward primer 5′-TCAGTGAGCTTCGCTGATGAC -3′, Reverse primer 5′- CATGGCGTTGACTAGCAGGG 
-3’; GAPDH: Forward primer 5′-GGAGCGAGATCCCTCC AA AAT -3′, Reverse primer 5′- GGCTGTTGTCATACTTCTCATGG -3’. 

2.12. Western blot 

The cells were lysed using RIPA lysis buffer (Thermo Scientific, Waltham, MA, USA). The supernatant of the lysis was collected and 
the protein concentration was measured by using the BCA Protein Assay Kit (Thermo Scientific). Proteins from the cells were separated 
by 10 % SDS-PAGE and transferred to PVDF membranes (Millipore, Burlington, MA, USA). The membranes were incubated overnight 
at 4 ◦C with SERPINH1 (1:1000, Cell Signaling Technology, MA, USA) and GAPDH (1:30000, Proteintech, Chicago, USA) antibodies 
diluted in TBST buffer. Then the membranes were incubated for 1 h with HRP-conjugated anti-rabbit and anti-mouse secondary 
antibodies (Beijing Zhongshan Jinqiao Biotechnology, Beijing, China) respectively. Immunoreactive proteins were visualized on a 
Tanon-6300 Multi Image System. The relative expression levels of proteins were quantified with Image J software (v. 1.53, National 
Institutes of Health, USA) and normalized to those of GAPDH. 

2.13. Statistical analysis 

Statistical analysis was performed using R, version 4.2.1, and python 3.11.3. Non-parametric test was used to compare the pre-
dictive drug sensitivity, immune score, and TIDE score between different clusters and the expression of SERPINH1 in normal and tumor 
tissues or different clusters. Spearman’s correlation analysis was utilized to show the association between the expression of SERPINH1 
and the abundance of different kinds of immune cells. The R package “pROC” was performed to calculate the AUC value at 1, 3, and 5 
years. Independent samples t-test was applied to detect differences in the results of qRT-PCR and Western blot. P value < 0.05 was 
considered statistically significant. 

Fig. 1. The flow chart of our study.  
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Fig. 2. Selection and enrichment analysis of the key genes. (A) The volcano plot showed the DEGs. Red points indicated up-regulated genes and blue 
points indicated down-regulated genes. (B) The key genes were found in the Venn diagram. The enriched KEGG signaling pathways (C), GO bio-
logical processes analysis (D), GO cellular components analysis (E), and GO molecular functions analysis (F) were performed based on the key genes. 
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3. Results 

3.1. Selection of the crucial genes in PRCC 

The DEGs were selected based on the tumor samples from the TCGA database and the normal samples from the GTEx database. The 
volcano plot showed 2365 DEGs in PRCC (Fig. 2A). All 2365 DEGs were shown in Supplementary Table S3. According to the CRISPR 
data retrieved from the Depmap database, we collected 2170 genes associated with the development of the PRCC. Subsequently, a total 
of 2347 genes were found to be related to the survival of PRCC patients with univariate Cox regression. 41 genes possessing differential 
expression and prognostic ability, which were got by interaction of CRISPR screening, DEGs and genes related to the survival of PRCC, 
were shown by Venn diagram (Fig. 2B). Table 1 showed the name and other information of 41 key genes with differential expression 
levels. 

Then KEGG and GO analyses were performed based on the key genes. KEGG analysis showed that the key genes were mainly 
associated with pathways in cancers and ribosomes (Fig. 2C). And GO analysis revealed that the key genes were also associated with 
cell cycle, chromosome, and kinase binding (Fig. 2D–F). 

3.2. Identification of three clusters in PRCC based on the key genes and drug sensitivity analysis 

On the basis of expression of key genes in tumor samples, the consensus clustering analysis was conducted. The three clusters (C1, 
C2, and C3) were identified in the TCGA-PRCC cohort, which showed distinguishing survival and discrepant expression patterns of the 
key genes (Fig. 3A–D). The heatmap visualized the expression of 41 key genes among the three clusters. And C2 displayed higher 
expression of the key genes and lower survival than C1 and C3 (Fig. 3E). Table 2 displayed the clinical characteristics of the three 
clusters and cluster C2 presented the shortest survival and the youngest median age at initial pathologic diagnosis. 

Table 1 
The selected 41 key genes.  

Gene Symbol Ensembl ID Log2 (Fold Change) Adjusted P value 

KLHL13 ENSG00000003096 − 1.512876218 1.01461E-08 
PTPRH ENSG00000080031 1.051454285 3.52617E-06 
FST ENSG00000134363 − 1.378058717 7.31869E-12 
CD93 ENSG00000125810 − 1.884196804 4.11957E-17 
CCNA2 ENSG00000145386 1.114144084 5.95662E-11 
BGN ENSG00000182492 − 1.124466644 0.001089224 
CENPW ENSG00000203760 1.124699812 1.70404E-13 
ROBO4 ENSG00000154133 − 2.447506181 3.28918E-43 
CDC45 ENSG00000093009 1.117860484 1.18572E-12 
TRPM3 ENSG00000083067 − 1.08735926 1.12693E-09 
LPL ENSG00000175445 − 2.675475405 1.23627E-25 
CRYL1 ENSG00000165475 − 1.220672831 1.03368E-12 
RPL38 ENSG00000172809 1.175647986 5.1007E-19 
TRIP13 ENSG00000071539 1.130164006 3.78154E-11 
PIMREG ENSG00000129195 1.059680497 8.82699E-11 
RRM2 ENSG00000171848 1.008074491 5.84167E-07 
TOP2A ENSG00000131747 1.725432858 2.88432E-10 
RPS19 ENSG00000105372 1.236225978 1.66444E-16 
OTOGL ENSG00000165899 − 1.07298278 1.30069E-29 
NOTCH3 ENSG00000074181 − 2.367724235 2.79129E-15 
TPX2 ENSG00000088325 1.564032755 4.15148E-11 
BIRC5 ENSG00000089685 1.396591084 2.44409E-10 
BAMBI ENSG00000095739 1.222115395 8.3771E-06 
AURKB ENSG00000178999 1.39516125 1.99056E-12 
SYT7 ENSG00000011347 − 3.237053542 1.88221E-59 
TCF7L1 ENSG00000152284 − 1.802196192 1.50265E-23 
HOXD10 ENSG00000128710 − 3.61208281 1.02695E-34 
PALM3 ENSG00000187867 − 1.805283261 4.93822E-11 
PCDH17 ENSG00000118946 − 1.281681258 3.54558E-15 
SLC7A1 ENSG00000139514 − 1.148094619 1.0776E-07 
GINS2 ENSG00000131153 1.535605246 4.41115E-19 
DONSON ENSG00000159147 1.028615593 1.24042E-12 
KCTD15 ENSG00000153885 − 1.58788661 1.39165E-11 
MYBL2 ENSG00000101057 1.873844864 3.55362E-14 
RPL22L1 ENSG00000163584 1.713533521 6.06719E-21 
TFRC ENSG00000072274 − 1.148714269 5.28267E-07 
LHX1 ENSG00000273706 − 2.630357275 1.34491E-25 
SERPINH1 ENSG00000149257 1.098599498 2.86939E-13 
HADH ENSG00000138796 − 1.54661165 2.82557E-31 
DTL ENSG00000143476 1.075928307 1.38673E-08 
KIF20A ENSG00000112984 1.06628196 2.66604E-07  
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Subsequently, the predictive drug sensitivity of the tumor samples was investigated in different clusters. As reported in previous 
researches, Sorafenib, Cisplatin, and Axitinib, which were generally used in the treatment of RCC, were applied to detect the drug 
sensitivity of the clusters [36–38]. A higher sensitivity score indicated a higher level of IC50 and lower efficiency. C3 exhibited greater 
sensitivity to Sorafenib compared to C2 and higher sensitivity to Cisplatin compared to C1 (Fig. 3F and G). Conversely, Axitinib showed 
a greater effect in C1 and C2 as compared to C3 (Fig. 3H). 

Fig. 3. Consensus cluster analysis and drug sensitivity analysis. (A, B) CDF and relative change in the area under the CDF curve (CDF Delta area). 
(C) The KM curves of the clusters. (D) Heatmap described the consensus clustering solution when k = 3. (E) The expression of the key genes in the 
three clusters. Red color represented high expression, and blue color represented low expression. The predictive drug sensitivity of the three clusters 
to Sorafenib (F), Cisplatin (G), and Axitinib (H). (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). 
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3.3. Immune analysis among the clusters 

The tumor microenvironment has been proved to play important roles in the development and treatment of all kinds of tumors. 
Fig. 4A summarized the infiltration of 22 kinds of immune cells in PRCC. ESTIMATE analysis revealed that a higher immune score was 
observed in C3, indicating more immune cells infiltrating the tumor tissue (Fig. 4B). Then, the immune check-point-related gene 
expression was investigated among the clusters. C2 showed significantly higher expression of LAG3, PDCD1, and PDCD1LG2 and lower 
expression of HAVCR2 (Fig. 4C). And C3 exhibited a lower rate of predicted response to ICB therapy as compared to C1 and C2 
(Fig. 4D). In addition, the heatmap described the discrepant infiltration level of different kinds of immune cells in the tumor micro-
environment among the three clusters (Fig. 4E). The significant decrease in the abundance of endothelial cells, B cells, and CD8+ T cells 
in C3 may serve as a plausible explanation for the observed lower rate of predicted response to ICB therapy. 

3.4. Somatic mutation analysis among the clusters 

As shown in Fig. 5A, the mutation landscape of TCGA-PRCC cohort presented the top 15 mutated genes. The cohort summary plot 
showed different kinds of mutant variant types in C1, C2, and C3 (Fig. 5B–D). Missense mutation was the most frequent type of 
mutation in all the clusters. And the median value of the variants per sample in C2 was lower than the other two clusters. The mutation 
frequency in nine major oncogenic pathways were then investigated among the three clusters (Fig. 5E–G). RTK-RAS3 pathway 
exhibited the highest fraction of samples affected. Interestingly, the mutations in the NOTCH pathway were rarely detected in C3 but 
frequently detected in C1 and C2. 

3.5. Development of a prognostic signature based on multiple machine learning algorithms 

Considering that the key genes-based clusters were associated with vital characteristics in PRCC, 21 combinations of 9 machine 
learning algorithms were applied to build a prognostic signature. The AUC values of the prognostic signatures developed by different 
algorithms were shown in Fig. 6A. According to the average AUC values of the validation set and test set, RSF provided the best result 

Table 2 
Clinical characteristics among the three clusters in PRCC.  

Characteristics C1 C2 C3 Total P value 

n 118 48 124 290  
Gender     <0.001 
FEMALE 33 (11.38 %) 22 (7.59 %) 21 (7.24 %) 76 (26.21 %)  
MALE 85 (29.31 %) 26 (8.97 %) 103 (35.52 %) 214 (73.79 %)  
Age at initial pathologic diagnosis 
Mean ± SD 60.08 ± 12.01 57.17 ± 13.92 64.33 ± 10.59 61.42 ± 12.03  
Median [min-max] 60.00 [28.00,84.00] 59.00 [28.00,85.00] 64.00 [40.00,88.00] 61.00 [28.00,88.00]  
Stage     <0.001 
Stage I 82 (30.15 %) 8 (2.94 %) 89 (32.72 %) 179 (65.81 %)  
Stage II 8 (2.94 %) 4 (1.47 %) 13 (4.78 %) 25 (9.19 %)  
Stage III 19 (6.99 %) 23 (8.46 %) 10 (3.68 %) 52 (19.12 %)  
Stage IV 4 (1.47 %) 9 (3.31 %) 3 (1.10 %) 16 (5.88 %)  
pathologic_T     <0.001 
T1 21 (7.24 %) 8 (2.76 %) 24 (8.28 %) 53 (18.28 %)  
T1a 48 (16.55 %) 4 (1.38 %) 49 (16.90 %) 101 (34.83 %)  
T1b 17 (5.86 %) 4 (1.38 %) 24 (8.28 %) 45 (15.52 %)  
T2 8 (2.76 %) 5 (1.72 %) 9 (3.10 %) 22 (7.59 %)  
T2a 0 (0.0e+0 %) 2 (0.69 %) 5 (1.72 %) 7 (2.41 %)  
T2b 4 (1.38 %) 0 (0.0e+0 %) 4 (1.38 %) 8 (2.76 %)  
T3 2 (0.69 %) 5 (1.72 %) 0 (0.0e+0 %) 7 (2.41 %)  
T3a 13 (4.48 %) 17 (5.86 %) 6 (2.07 %) 36 (12.41 %)  
T3b 2 (0.69 %) 1 (0.34 %) 1 (0.34 %) 4 (1.38 %)  
T3c 1 (0.34 %) 0 (0.0e+0 %) 0 (0.0e+0 %) 1 (0.34 %)  
T4 1 (0.34 %) 1 (0.34 %) 0 (0.0e+0 %) 2 (0.69 %)  
TX 1 (0.34 %) 1 (0.34 %) 2 (0.69 %) 4 (1.38 %)  
pathologic_N     <0.001 
N0 60 (20.69 %) 19 (6.55 %) 66 (22.76 %) 145 (50.00 %)  
N1 6 (2.07 %) 16 (5.52 %) 2 (0.69 %) 24 (8.28 %)  
N2 1 (0.34 %) 2 (0.69 %) 0 (0.0e+0 %) 3 (1.03 %)  
NX 51 (17.59 %) 11 (3.79 %) 56 (19.31 %) 118 (40.69 %)  
pathologic_M     0.03 
M0 89 (30.69 %) 33 (11.38 %) 83 (28.62 %) 205 (70.69 %)  
M1 2 (0.69 %) 5 (1.72 %) 3 (1.03 %) 10 (3.45 %)  
MX 27 (9.31 %) 10 (3.45 %) 38 (13.10 %) 75 (25.86 %)  
Status     <0.001 
Alive 110 (38.06 %) 25 (8.65 %) 110 (38.06 %) 245 (84.78 %)  
Dead 8 (2.77 %) 23 (7.96 %) 13 (4.50 %) 44 (15.22 %)   
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(AUC value = 0.890) and 9 out of 41 genes were chosen to build the signature, including BIRC5, CENPW, KIF20A, MYBL2, RRM2, 
SERPINH1, TOP2A, TPX2, and TRIP13. And the optimal parameter combinantions of the RSF algorithm was: random_state = 7, 
n_estimators = 77, min_samples_split = 6, min_samples_leaf = 10, and max_depth = 2. The prognostic model was uploaded to the 
Github repository (https://github.com/YangYangRes/RSF_PRCC). In order to further validate the signature, the TCGA-PRCC cohort 
and GSE2748 cohort were divided into high risk group and low risk group based on the median of risk score. The overall survival of the 
high risk group was markedly lower than that of the low risk group (Fig. 6B and C). 

3.6. Identification of SERPINH1 as a critical gene in PRCC 

Univariate and multiple Cox regression analyses were performed using the genes included in the prognostic signature (Fig. 6D and 
E). All the genes included in the signature were associated with unfavorable overall survival, indicating the correctness of the prog-
nostic signature. SERPINH1 exhibited high hazard ratio value and significant P value (P value < 0.0001) in both univariate and 
multiple Cox regression analyses. Hence, additional analyses were carried out to investigate the expression of a single gene, namely 
SERPINH1. 

Fig. 4. Key genes-based clusters were associated with tumor microenvironment and ICB therapy. (A) CIBERSORT analysis showed the abundance of 
the immune cells in PRCC. Different colors represented different kinds of immune cells. (B) The immune score of the clusters. (C) The expression of 
the immune checkpoint-related genes exhibited significant differences among the clusters. (D) The predictive ICB therapy response. (E) The 
abundance of the immune cells in three clusters was shown through the heatmap. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). 
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Fig. 7A showed that SERPINH1 expression was higher in the PRCC tumor tissues than in the normal renal tissues. C2 had signif-
icantly higher expression of SERPINH1 compared to the other two clusters (Fig. 7B). No relationship was found between the expression 
of SERPINH1 and TMB score or MSI score (Fig. 7C). Subsequently, the relationship between SERPINH1 expression and the abundance 

Fig. 5. Somatic mutation in the clusters. (A) The mutant landscape and the top 15 mutant genes in PRCC. The cohort summary plots showed 
different variant types in C1 (B), C2 (C), and C3 (D). The mutation frequency was visualized in nine common oncogenic pathways in C1 (E), C2 (F), 
and C3 (G). 
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of immune cells were investigated (Fig. 7D–I). The abundance of B cells, CD4+ T cells, CD8+ T cells, neutrophils, and myeloid dendritic 
cells were significantly positively associated with the expression of SERPINH1, suggesting that SERPINH1 may play a role in the tumor 
microenvironment in PRCC. 

Fig. 6. A robust prognostic signature was developed based on the key genes. (A) 21 combinations of 9 machine learning algorithms were applied to 
develop the prognostic signature. The AUC values of each model at 1, 3, and 5 years in the validation set and test set were shown and the prognostic 
signature based on RSF was selected. The corresponding KM curves for high and low groups in TCGA-PRCC cohort (B) and GSE2748 cohort (C) were 
visualized. The univariate Cox regression analysis (D) and multiple Cox regression analysis (E) were performed based on the genes included in the 
prognostic signature. 
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3.7. Pan-cancer analysis for SERPINH1 

The prognostic ability of SERPINH1 was evaluated in 33 types of tumors. The full names of the tumors were shown in Supple-
mentary Table S4. The result showed that SERPINH1 was a strong predictor for poor prognosis in 13 types of tumors including GBM, 
LIHC, PAAD, ACC, CESC, HNSC, ccRCC, PRCC, LGG, LUAD, MESO, SARC, SKCM (P value < 0.01) (Fig. 8A). Subsequently, the cor-
relation between tumor stages and gene expression levels of SERPINH1 was explored among 13 types of tumors, out of which 3 types of 
tumors exhibited a significant association between the expression of SERPINH1 and tumor stages including PRCC, ACC, and ccRCC 
(Fig. 8B–D). Immunohistochemistry from HPA database confirmed that compared with normal renal tubules (Fig. 8E), SERPINH1 
protein was highly expressed in PRCC and ccRCC tumor tissues (Fig. 8F and G). 

3.8. The high expression of SERPINH1 in PRCC and ccRCC cells 

The expression levels of SERPINH1 mRNA in ACHN PRCC cells, 786-O ccRCC cells and normal HK-2 cells were detected by qRT- 
PCR. As shown in Fig. 8H, the expression levels of SERPINH1 mRNA were significantly higher in ACHN and 786-O cells than those in 
normal HK-2 cells. Western blot analysis showed that the relative expression levels of SERPINH1 protein were markedly increased in 
ACHN and 786-O cells compared to normal HK-2 cells (Fig. 8I and J). These results suggest that SERPINH1 mRNA and protein are 

Fig. 7. The expression of SERPINH1 in PRCC. (A–B) The expression of SERPINH1 in the tumor tissues, normal tissues and three clusters. The 
relationship between SERPINH1 expression and TMB score or MSI score (C). (D–I) The association between the expression of SERPINH1 and the 
abundance of immune cells. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). 
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Fig. 8. Pan-cancer analysis for SERPINH1, and SERPINH1 expression in PRCC and ccRCC cells. (A) The prognostic ability of SERPINH1 was 
evaluated in 33 types of tumors. SERPINH1 expression was associated with the tumor stages in PRCC (B), ACC (C), and ccRCC (D). Immunohis-
tochemistry showed that compared with normal renal tubules (E), SERPINH1 protein was highly expressed in PRCC (F) and ccRCC (G) tumor tissues. 
(H) Quantitative real-time PCR showed that the expression levels of SERPINH1 mRNA were significantly higher in ACHN PRCC cells and 786-O 
ccRCC cells than those in normal HK-2 cells. (I–J) Western blot analysis indicated that the relative expression levels of SERPINH1 protein were 
markedly upregulated in ACHN and 786-O cells compared to normal HK-2 cells. The relative expression levels of proteins were quantified with 
Image J software and normalized to those of GAPDH. The uncropped figures of SERPINH1 and GAPDH in Western blot were shown in Supple-
mentary Figs. S1 and S2. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). 
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upregulated in PRCC and ccRCC cells. 

3.9. The relationship between the expression of SERPINH1 and tumor microenvironment, TMB, or MSI 

The potential relationship between SERPINH1 and the tumor microenvironment was examined in 33 types of tumors (Fig. 9A). The 
analysis revealed that SERPINH1 expression was significantly associated with the abundance of CD8+ T cells, CD4+ T cells, macro-
phages, and endothelial cells in more than half of the tumor types. Notably, the expression of SERPINH1 showed a positive correlation 
with the abundance of CD8+ T cells and a negative correlation with that of macrophages. Next, the correlation between SERPINH1 and 
MSI or TMB was analyzed in the tumors (Fig. 9B and C). The expression of SERPINH1 demonstrated a significant association with the 
TMB score of THYM, ACC, and GBM+LGG, as well as the MSI score of TGCT, and GBM+LGG. 

4. Discussion 

RCC ranks 13th among the most common types of malignant tumors worldwide and PRCC is the second most prevalent subtype of 
RCC with an increasing incidence rate [39]. Due to its heterogeneity, PRCC was considered a challenging cancer to treat in clinical 
practice. Patients with PRCC had limited options in terms of biomarkers and targeted therapies [40]. And lack of clear understanding of 
the molecular mechanism was thought to be the reason for the unsuccessful treatment of PRCC [41]. Therefore, there is an urgent need 
to explore the molecular mechanisms and effective biomarkers for PRCC. 

The identification of a correlation between gene function and tumor progression can provide crucial information for screening 
potential biomarkers for targeted therapies in tumors [42]. Oncogenes and tumor suppressor genes play critical roles in both pro-
moting and inhibiting tumor development, respectively, which make them become essential components of the tumor molecular 
mechanism [43,44]. Therefore, systematically recognizing these genes in malignant tumors, which were defined as crucial genes, may 

Fig. 9. The relationship between the expression of SERPINH1 and tumor microenvironment, TMB, or MSI in multiple types of tumors. (A) EPIC 
analysis revealed the relationship between the expression of SERPINH1 and the abundance of immune cells in 33 types of tumors. The expression of 
SERPINH1 was related with TMB score (B) and MSI score (C) in multiple types of tumors. 
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provide new insights into the process of tumor development [45]. Depmap database was established utilizing CRISPR-Cas9 technology 
to conduct genome-wide gene function inactivation screening across multiple cell lines, which enabled us to use the cancer de-
pendencies of the genes to identify the crucial genes [15]. 

In the current study, we recognized 41 key genes based on the CRISPR data, differential expression, and prognostic ability in PRCC. 
Based on the expression of the key genes, three clusters were identified and the results also showed distinct survival, drug sensitivity, 
clinical characteristics, tumor microenvironment, and mutation landscape among the clusters. Moreover, a reliable prognostic 
signature was developed utilizing multiple combinations of machine learning algorithms based on the key genes. The signature was 
tested by an external independent verification set and exhibited good prognostic ability. SERPINH1 was selected from the signature for 
its strong prognostic ability, and its expressions in PRCC and pan-cancers were also analyzed. 

First, three distinct clusters (C1, C2 and C3) were identified in the TCGA-PRCC cohort by consensus cluster analysis based on 41 key 
genes. C2 had obviously higher expression of the key genes and lower survival than C1 and C3, indicating the key genes as poor 
prognostic factors for PRCC. Axitinib has been demonstrated to have encouraging efficiency in treating PRCC patients, especially in 
type 2 PRCC patients [38]. The drug sensitivity analysis suggested that Axitinib may be a potential drug for treating patients in C2. 

In this study, we utilized CIBERSORT analysis to evaluate the infiltration of the immune cells in tumor microenvironment. Previous 
research suggested that PRCC, especially for type 2 PRCC, had the highest expression level of macrophages among renal cancer 
histological types [46]. Macrophages were critical regulation of tumor with the function of helping stimulate proliferation, metastasis, 
and angiogenesis, and were possibly related to poor survival [47]. Our results showed that the abundance of macrophages was higher 
in C3 than in C1 and C2, which had the highest immune score. The abundance of B cells and CD8+ T cells in C1 and C2 was higher than 
that in C3, which may explain why C1 and C2 had higher predictive ICB therapy response rate. Scholars have also proved the vital role 
of B cells and CD8+ T cells in immune therapy [33,34]. 

Previous studies showed that the alteration of the MET gene was observed in 81 % of the type 1 PRCC, and efficient drug targeting 
the MET/VEGFR2 pathways has been tested [48,49]. Our study revealed the top 15 mutated genes in the TCGA-PRCC cohort and the 
top 10 mutant genes in three clusters. Based on the mutation landscape, MET was identified as the fourth most frequently mutant gene 
in the cohort and the second most mutant gene in C1, suggesting its potential as a treatment target for PRCC. Moreover, the mutation 
frequency of the NOTCH pathway was significantly higher in C1 and C2 when compared with C3. Prior investigations reported that 
proximal tubules forming with reduced NOTCH signaling have been implicated in the formation of cyst formation, and a few 
microadenomas contained in the proximal tubules resembling precursors of PRCC [50]. 

Considering the difficulty in the treatment of advanced PRCC, an accurate prognostic model for PRCC was urgently needed. Ac-
curate prognostic models enable clinicians to make decisions more efficiently [51]. Nomograms are commonly used to predict the 
prognosis of the patients with tumors with user friendly digital interfaces. They are widely used in multiple types of tumors [52,53]. 
However, nomograms with good performance may lack clinical practicability [54]. Researchers also developed special models to 
predict molecular features. For example, m1Ascore was constructed to evaluate the m1A modification pattern of individual patient 
[55]. Machine learning algorithms have unique advantages in cancer prognosis [56]. But the existing models rarely used machine 
learning algorithms or the external validation set in PRCC [57,58]. In our study, we developed the prognostic signature utilizing 21 
combinations of 9 machine learning algorithms. The external validation set was used to help select the most precise and reliable al-
gorithm. As a result, RSF was selected and applied to develop the signature. Compared to the previous prognostic signature [59,60], 
this prognostic signature possessed a higher AUC level in the validation set and was more accurate and reliable. 

Among the genes included in the prognostic signature, SERPINH1 was selected for its prognostic ability through univariate and 
multiple Cox regression analysis. SERPINH1 has been found to be involved in the initiation and development of cancer, and regulate 
cell protease homeostasis as chaperone protein [61]. Previous studies found that SERPINH1 was a predictor for unfavorable prognosis 
in other types of renal carcinomas [62]. However, the expression and role of SERPINH1 in PRCC still remains unclear. In this research, 
C2 exhibited the highest expression level of SERPINH1, indicating its contribution to the development of the tumor. And the expression 
of SERPINH1 presented a significant correlation with the abundance of immune cells. Furthermore, the expression of SERPINH1 was 
related to the stages, tumor microenvironment, TMB, and MSI across multiple tumors, suggesting its potential as a drug target. And the 
results of qRT-PCR and Western blot showed that SERPINH1 mRNA and protein were highly expressed in PRCC cells compared with 
normal human renal cells. Overall, our findings suggested that SERPINH1 may be an important biomarker as well as a potential 
therapeutic target for PRCC patients. 

5. Limitations 

Although our study provided valuable insights into PRCC, it also has some limitations that need to be mentioned. A larger number 
of samples are needed to enhance the accuracy of our prognostic signature. Differences in the patient cohort and experimental cohort 
may reduce the comparability of the external independent set [63]. And further experimental validation in vitro and in vivo will next 
be conducted to test the correctness of the molecular classification and prognostic signature. 

6. Conclusions 

In summary, our research identified three clusters in PRCC based on 41 key genes which were obtained from the intersection of 
CRISPR screening, DEGs, and genes related to the survival of PRCC. Significant differences in drug sensitivity, tumor microenviron-
ment, and mutation landscape have been observed among the three clusters. By utilizing 21 combinations of 9 machine learning 
algorithms, 9 out of 41 genes were chosen to build a robust prognostic signature, including BIRC5, CENPW, KIF20A, MYBL2, RRM2, 
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SERPINH1, TOP2A, TPX2, and TRIP13. The signature was tested by an external independent verification set and exhibited good 
prognostic ability. SERPINH1 was identified as a critical gene for its strong prognostic ability in PRCC by univariate and multiple Cox 
regression analyses. And the experiments in vitro at cell level were performed to validate the high expression of SERPINH1 mRNA and 
protein in PRCC cells. This study exhibited a new molecular classification and prognostic signature for PRCC, which may provide a 
potential biomarker and therapy target for PRCC patients. However, further experiments in vitro and in vivo are needed to explore the 
role of SERPINH1 in tumor progression, metastasis, and potential therapeutic targeting for PRCC patients in the forthcoming research. 
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