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Abstract: Wavelet transform is an important tool in the computational signal processing of terahertz
time-domain spectroscopy (THz-TDS) measurements. Despite its prevalence, the effects of using
different forms of wavelet transforms in THz-TDS studies have not been investigated. In this paper,
we explore the implications of using the maximal overlap discrete wavelet transform (MODWT)
versus the well-known discrete wavelet transform (DWT). We demonstrate that the spectroscopic
features extracted using DWT can vary over different overlapping frequency ranges. On the con-
trary, MODWT is translation-invariant and results in identical features, regardless of the spectral
range used for its implementation.We also demonstrate that the details coefficients obtained by the
multiresolution analysis (MRA) using MODWT are associated with zero-phase filters. In contrast,
DWT details coefficients suffer from misalignments originated from the down- and upsampling
operations in DWT pyramid algorithm. Such misalignments have adverse effects when it is critical to
retain the exact location of the absorption lines. We study the differences of DWT and MODWT both
analytically and experimentally, using reflection THz-TDS measurements of α-lactose monohydrate.
This manuscript can guide the researchers to select the right wavelet analysis tool for their specific
application of the THz spectroscopy.

Keywords: maximal overlap discrete wavelet transform; terahertz time-domain spectroscopy; feature
extraction; material characterization

1. Introduction

Terahertz time-domain spectroscopy (THz-TDS) has emerged as a promising tech-
nique for non-destructive testing applications such as monitoring hidden defects [1–3],
non-contact thickness measurement [4,5], investigation of artworks and historical arti-
facts [6,7], and quantification of polymorphism, crystallinity, and bulk porosity in phar-
maceuticals [8,9]. Many substances, including molecular crystals and polar gases, possess
distinctive spectroscopic fingerprints in the THz range, which allow for non-invasive
material identification, sample characterization, and quality control [10–12]. However,
electromagnetic scattering can significantly alter and obscure these vibrational absorption
features [13–16]. This phenomena in turn can hinder spectroscopic studies and chemical
sensing in the presence of rough surface or volume scattering. Additionally, multiple
Mie scattering can introduce resonance-shaped spectral artifacts into the measured THz
spectra [17]. To address these challenges, signal processing and experimental techniques
have been introduced to retrieve spectroscopic information in the presence of such scatter-
ing effects [14,17–21].

The widespread applications of THz-TDS demand utilizing advanced signal process-
ing techniques to enhance the precision and accuracy in identification of spectroscopic
features [22,23]. Because THz pulses are inherently sparse [24], and they contain localized
features in both time and frequency domains, wavelet transform is particularly advanta-
geous for this purpose. Wavelet transform has been used extensively for denoising time-
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and Fourier-domain THz signals [25–30] in addition to THz images obtained using CCD
cameras [31,32]. Moreover, wavelet shrinkage accompanied by a Fourier-domain Wiener
deconvolution has been proven to be effective in finding the thickness of optically-thin
layers in biological samples [33] and art paintings [34]. THz compressive sensing [35], THz
tomographic imaging [36], and THz feature extraction for differentiation between various
pathological tissues [37,38] are also among the main applications of the wavelet transform
in analyzing THz-TDS measurements.

Recently, in order to enable in-line process control and real-time THz sensing appli-
cations, we have designed and fabricated a fiber-coupled THz spectral imager, named
Portable HAndheld Spectral Reflection (PHASR) Scanner [39]. This device incorporates
the TERA-ASOPS (Asynchronous OPtical Sampling) dual-fiber-laser spectrometer (Menlo
Systems, Inc., Newton, NJ, USA) into a collocated, telecentric imaging configuration, which
utilizes an f-θ lens [40] and a two-axis motorized scanning system [41]. We have conducted
multiple experiments on the utility of the PHASR Scanner for material identification [42]
and biomedical imaging [43] in the presence of electromagnetic scattering. We have shown
that because wavelet transform provides spectral localization at multiple resolution scales,
when applied to THz absorption or reflection coefficients, it can separate the characteristic
resonant signatures from the scattering-induced spectral artifacts [15–17,44]. Furthermore,
the wavelet coefficient levels associated with resonant signatures can be identified using
total variation in reflection spectroscopy [16], or bimodality coefficient [17] and principal
component analysis [45] in the transmission geometry.

In all aforementioned studies, two main forms of the wavelet transform have been
utilized. First, the critically-sampled discrete wavelet transform (DWT), and second, an
undecimated form of the DWT, named the maximal overlap DWT (MODWT) [46]. In this
paper, we study the implications of using MODWT and DWT for feature extraction in
THz spectroscopic data. We demonstrate two main advantages of MODWT over DWT,
including MODWT invariance with respect to the frequency range and association of
MODWT multiresolution analysis (MRA) with zero-phase filters. These advantages come
at a slightly higher computational cost, which is affordable for many applications due to the
high efficiency in modern computer processing units. In the following, we first explain the
differences between DWT and MODWT analytically. Then, we describe the experimental
methodology in our study to obtain the THz-TDS measurements. We will show the effects
of using MODWT versus DWT in extracting the resonances of α-lactose over the spectral
region of f = 0.3–1.6 THz. These results elucidate the advantages of MODWT in sensing
applications, where it is critical to retain the exact location of the spectral features, such as a
resonant frequency.

2. Materials and Methods
2.1. Analytical Description
2.1.1. Translation Invariance

The DWT decomposes a signal into a set of wavelet and scaling coefficient vectors.
Each vector describes the localized changes in the signal at a specific variation scale. The
scale is an interval of the signal over which weighted averages of that signal (i.e., the scaling
coefficients) and the differences of those weighted averages (i.e., the wavelet coefficients)
are calculated. The DWT coefficients are obtained using the pyramid algorithm shown in
Figure 1a [46].
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Figure 1. (a) The block diagram of the DWT pyramid algorithm. The input signal x(n) is filtered
recursively by a set of high-pass wavelet and low-pass scaling filters. The output of each filter is
downsampled by a factor of two. (b) The block diagram of the MODWT pyramid algorithm. In
MODWT, the sampling rate is the same at all levels of decomposition. However, the (j + 1)th-level
filters are upsampled by a factor of two with respect to the jth-level filters.

Here, x(n) is the input signal, which can be a THz pulse either in the time or Fourier
domain. The wj(n) is the vector of the jth-level wavelet coefficients of x(n). It is associated
with differences in the weighted averages of x(n) over the scale of τj = δn2j−1, where
δn indicates the sampling period in x(n). Equivalently, wj(n) corresponds to the spectral
content of x(n) in the range of [1/(2j+1δn) : 1/(2jδn)], displaying band- or high-pass
characteristics [46]. The vj(n) is composed of the jth-level scaling coefficients of x(n). It is
associated with the weighted averages of x(n) over the scale of τj+1 = δn2j, or, equivalently,
it corresponds to the spectral content of x(n) in the range of [0 : 1/(2j+1δn)), displaying
low-pass characteristics. The jth-level of the DWT pyramid algorithm is given by [46],

wj(n) =
K−1

∑
k=0

h(k)vj−1((2n + 1− k) mod (N/2j−1)); n = 0, . . . , N/2j − 1, (1)

and

vj(n) =
K−1

∑
k=0

g(k)vj−1((2n + 1− k) mod (N/2j−1)); n = 0, . . . , N/2j − 1, (2)

yielding the wavelet and scaling coefficients, respectively. In Equations (1) and (2), h and
g are the mother wavelet and scaling filters of size K. It should be noted that because of
downsampling by two, the number of DWT wavelet and scaling coefficients at level j is
1
2j -th of the length of x(n), N. This progressively coarser sampling in DWT is advantageous
for applications that rely on compact signal representations, such as signal and image
compression [47,48]. However, it leads DWT coefficients to be critically sensitive to the
range of analysis. According to Equations (1) and (2), wj and vj are formed by discrete,
cyclic convolutions of h and g with vj−1, respectively, and the results are downsampled by
two. The convolution of two discrete functions (e.g., h and vj−1) describes the summation
of the product of two functions after one is reversed (vj−1(−k)) and shifted (vj−1(n− k)),
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over all possible values of shifts (n). In Equations (1) and (2), the product of h and vj−1 or g
and vj−1 depends on which data points in vj−1 are excluded in downsampling.

Conversely, in the MODWT pyramid algorithm, which is shown by the block diagram
in Figure 1b, the downsampling operation is excluded. In other words, the wavelet and
scaling coefficients at all decomposition levels have the same size as the original signal. We
use the symbol “∼” to differentiate MODWT wavelet and scaling filters and coefficients
(h̃j, g̃j, w̃j, and ṽj) from DWT. The MODWT wavelet and scaling filters, h̃ and g̃, are
related to h and g by h̃ = h/

√
2 and g̃ = g/

√
2, respectively [46]. In the block diagram

of Figure 1b, the MODWT wavelet and scaling filters at level j are upsampled by 2j−1

with respect to h̃ and g̃ to form a multiresolution decomposition. The upsampling by 2j−1

is achieved by inserting 2j−1 − 1 zeros between successive elements of h̃. For example,
if h̃ = [h̃(0), h̃(1), . . . , h̃(K − 1)] is a MODWT wavelet filter with K elements, the second-
level wavelet filter is formed by h̃2 = [h̃(0), 0, h̃(1), 0, . . . , 0, h̃(K− 1)], composed of 2K− 1
elements. Accordingly, the jth-level of the MODWT pyramid algorithm is given by [46],

w̃j(n) =
K−1

∑
k=0

h̃(k)ṽj−1((n− 2j−1k)) mod N); n = 0, . . . , N − 1, (3)

and

ṽj(n) =
K−1

∑
k=0

g̃(k)ṽj−1((n− 2j−1k)) mod N); n = 0, . . . , N − 1. (4)

Importantly, the convolution sums in Equations (3) and (4) include all possible products of
the upsampled h̃ and ṽj−1 or upsampled g̃ and ṽj−1. Therefore, the MODWT wavelet and
scaling coefficients are translation-invariant and do not depend on the range of the analysis.

2.1.2. Zero-Phase Filtering

The phase functions of the DWT and MODWT filters change the position of the
extracted features in the wavelet domain with respect to their locations in the original
signal. If the phase function of a filter is linear, shifting its output coefficients by a certain
number, which is equal to the slope of its phase as a function of frequency, will compensate
the introduced misalignments [15]. However, the phase functions of the orthogonal wavelet
and scaling filters, which are used in DWT and MODWT, are not linear [49]. Moreover,
the recursive filtering of a signal by the filters in the pyramid algorithm makes the non-
linearity of the phase functions more complicated. To address this problem in applications
where retaining the location of the features is important, the cross-correlation of wavelet
and scaling coefficients with their corresponding wavelet and scaling filters can be used to
form a zero-phase multiresolution analysis. In the DWT pyramid algorithm of Figure 1a,
the jth-level wavelet coefficients are formed by j− 1 convolutions between x(n) and g(n)
and a final convolution with h(n). Equivalently, we can build jth-level DWT wavelet and

scaling filters given by hj =

j−1︷ ︸︸ ︷
g ~ g ~ . . . g~h and gj =

j︷ ︸︸ ︷
g ~ g ~ . . . g, respectively, where the

symbol “~′′ indicates a cyclic convolution. Thereafter, wj and vj, which were previously
calculated using Equations (1) and (2), can be directly obtained from x(n) given by [46],

wj(n) =
Kj−1

∑
k=0

hj(k)x((2j(n + 1)− 1− k) mod (N)); n = 0, . . . , N/2j − 1, (5)

and

vj(n) =
Kj−1

∑
k=0

gj(k)x((2j(n + 1)− 1− k) mod (N)); n = 0, . . . , N/2j − 1, (6)
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where Kj = (2j− 1)(K− 1) + 1 is the length of hj and gj. Consequently, the aforementioned
cross-correlation between hj and wj is given by [46],

dj(n) = hj ©? w↑2
j

j (n) =
Kj−1

∑
k=0

hj(k)w
↑2j

j ((n + k) mod N), (7)

where w↑2
j

j is the jth-level wavelet coefficients upsampled by 2j, which is formed by in-

serting 2j − 1 zeros before every element of wj. The symbol “©? ” in Equations (6) and (7)
indicates a cyclic cross-correlation. The dj is composed of the jth-level DWT details coef-
ficients and, similar to wj, it is associated with differences in the weighted averages of x
over the scale of τj = δn2j−1. Assuming that X( f ), Dj( f ), and Hj( f ) are used to represent
the Fourier transform of x(n), dj(n), and hj(n), respectively, according to the convolution
theorem and while ignoring the down- and upsampling operations, Dj( f ) is obtained by

Dj( f ) = X( f )Hj( f )H∗j ( f ) = X( f )|Hj( f )|2, (8)

where |Hj( f )|2 has a zero phase function. Therefore, it only modifies the magnitude spec-
trum of X( f ), while its phase spectrum remains intact. Thus, there will be no misalignments
between dj and x caused by the filters’ phase functions. However, it should be noted that
the downsampling of DWT wavelet coefficients in Equation (1) and their subsequent up-
sampling in Equation (7) can still introduce mismatches between the location of the features
in dj and x.

Similar to DWT, MODWT details coefficients are obtained by a cross-correlation
between h̃j and W̃j given by [46],

d̃j(n) = h̃j ©? w̃j(n) =
Kj−1

∑
k=0

h̃j(k)w̃j((n + k) mod N), (9)

or, equivalently in the Fourier domain,

D̃j( f ) = X( f )H̃j( f )H̃∗j ( f ) = X( f )|H̃j( f )|2. (10)

Therefore, d̃j is also formed by zero-phase filtering of X( f ) with |H̃j( f )|2. Moreover,
because the MODWT wavelet coefficients are neither down- nor upsampled, there will be
no misalignments between d̃j and x.

2.2. Measurement Setup

The THz–TDS measurements are obtained using a TERA-ASOPS (ASynchronous OP-
tical Sampling) high-speed THz time-domain spectrometer (Menlo Systems, Inc., Newton,
NJ, USA). The ASOPS system is composed of two 1560 nm mode-locked femtosecond
lasers, which are slightly detuned in their repetition rates by a fixed value of ∆ f = 100 Hz.
The difference in the repetition rate results in pulses from the two lasers that are emitted at
t0 to be separated at detector by ∆t given by,

∆t = | 1
fprobe

− 1
fpump

| = ∆ f
fprobe. fpump

, (11)

where fpump = 100 MHz in our experiments. This ∆t enables the probe pulse to linearly
sample the THz pulse generated by the pump pulse. Figure 2a shows a schematic of the
measurement setup. The femtosecond pump and probe pulses are guided by optical fibers
to the emitter and detector photoconductive antennae (PCA), generating THz radiation
with an effective bandwidth of f = 0.3–1.6 THz. Two TPX50 lenses (Menlo Systems, Inc.,
Newton, NJ, USA) collimate and focus the generated beams on the sample surface at
an angle of incidence of θi = 35◦ and a focal spot size of approximately 1.2 mm at the
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peak frequency of the THz emissions. Similar lenses collimate and refocus the specular
reflections on the detector antenna.

TPX50

Spot size = 1.2 mm

Pellet

E D

(a)

(b)

(c)

(d)

Figure 2. (a) The schematic of the measurement setup. The specular reflections are measured at
θi = θr = 35◦. (b) An example THz pulse reflected from an α-lactose pellet. (c) The spectral amplitude
(SA) of α-lactose over the frequency range of f = 0.3–1.13 THz. A red arrow marks the zero-crossing
at 0.53 THz, which is a characteristic resonance mode of α-lactose. (d) The vertically-offset fourth-level
DWT wavelet coefficients of SA, applied in the frequency domain. Each line in (d) is composed of the
wavelet coefficients calculated from a different spectral range, i.e., f = 0.30–1.10 THz in the purple
trace, f = 0.31− 1.11 THz in the red trace, f = 0.32–1.12 THz in the blue trace, and f = 0.33–1.13 THz
in the green trace. The lower bound of the frequency ranges are emphasized using vertical lines at the
beginning of each trace. Each inset box shaded with the same color shows the overlap between the
wavelet filter and the resonant signature at 0.53 THz in the corresponding reflection spectra. In each
case, it can be noted that whether the resonance at 0.53 THz is resolved in T−3W4 depends on the
overlap between the spectral feature and the DWT wavelet filter.

2.3. Sample Preparation

We prepared sample disks made from α-lactose monohydrate powders (Spectrum
Chemical Mfg. Corp., Gardena, CA, USA) with resonant frequencies at 0.53, 1.2, and
1.4 THz [50,51]. To create the sample disks, we mixed the α-lactose powders with ultra-fine
high-density polyethylene (HDPE) (1:1 ratio), and pressed the mixture under 3000 PSI load
for about 30 min, yielding pellets with approximately 4 mm thickness and 50 mm diameter.
Therefore, each sample was thick enough to avoid any overlaps between the front- and
back-reflections.

2.4. Signal Conditioning

The main pulse in the measured time-domain electric field is windowed to exclude a
second Fabry Perot reflection pulse. To avoid creation of an artificial step in the signal, we
apply a tapering Hann window to the data points before the cut-off location. To account
for the spatial heterogeneity in the samples, the average amplitude spectrum of ten disjoint
measurements over the sample surface is used. Additionally, the sample measurements
are deconvolved in the Fourier domain by the reflections from a reference mirror placed
at the location of the sample surface. The amplitude spectrum of a sample with a smooth
surface exhibits a linear trend with a close-to-zero slope. The effect of this trend in each
amplitude spectrum is removed using linear curve fitting. Following this step, tapering
Hann windows are applied at the boundary points in the frequency-domain to smooth the
transition into the baseline. The spectral window range is chosen such that it does not affect
the signal within the useful bandwidth. For a DWT with J levels of decomposition, the size
of the signal N should be an integer-multiple of 2J . Therefore, we zero-pad the signals to



Sensors 2022, 22, 2305 7 of 12

d N
2J e2J for a DWT with J = 8 levels of decomposition. Subsequently, the DWT and MODWT

wavelet and details coefficients are calculated using Equations (1), (3), (7), and (9). We use
the MATLAB software (Mathworks, Natick, MA, USA) for analyzing the data and creating
the figures.

3. Results

Figure 2b shows an example specular reflection measured from an α-lactose pellet.
Figure 2c shows the spectral amplitude (SA) of α-lactose over the frequency range of
f = 0.3–1.13 THz. As described in the “signal conditioning” section, to obtain the SA,
the sample measurement is deconvolved in the Fourier domain using a reference mea-
surement, and the result is detrended using linear curve-fitting. The zero-crossing of the
resonant signature in the SA signal, which is delineated using a red arrow in Figure 2c, is
positioned at 0.53 THz. Figure 2d shows the vertically-offset fourth-level DWT wavelet coef-
ficients of the SA signal. The wavelet coefficients are calculated using the least asymmetric
mother wavelet with four vanishing moments, i.e., the LA(8) or sym4 wavelet filter [49].
Each trace in Figure 2d is composed of the wavelet coefficients calculated over different
overlapping spectral ranges of SA. These ranges include f = 0.30–1.10 THz (purple line),
f = 0.31–1.11 THz (red line), f = 0.32–1.12 THz (blue line), and f = 0.33–1.13 THz (green
line). The beginning frequency of each trace is delineated using a vertical line. It can be
seen that the features extracted by DWT wavelet coefficients depend on the spectral range
used for calculation of the wavelet coefficient. In particular, with the beginning frequency
at f = 0.30 and f = 0.32 THz in the purple and red traces, the wavelet coefficients do
not extract the resonance of α-lactose. On the contrary, the same resonant feature can
be captured by the red and green traces with the beginning frequency at f = 0.31 and
f = 0.33 THz, respectively. In Figure 2d, each box with the same color as the corresponding
trace shows the overlap between the wavelet filter (dashed line) and the resonant signature
(solid line) at 0.53 THz. It can be observed that, because of the downsampling operation
in Equation (1), the wavelet filter and the resonant signature overlap in neither of the
purple and blue boxes. However, there is a perfect overlap between the wavelet filter
and the resonant signature in both of the red and green boxes, leading to the capturing of
the resonance.

Figure 3 compares the SA of α-lactose as the control sample in Figure 3a with the
vertically-offset fourth-level MODWT wavelet coefficients in Figure 3b. Similar to Figure 2d,
each trace in Figure 3b is composed of the wavelet coefficients calculated over a different
frequency range, including f = 0.30–1.10 THz in the purple trace, f = 0.31–1.11 THz in the
red trace, f = 0.32–1.12 THz in the blue trace, and f = 0.33–1.13 THz in the green trace.
It can be observed that, unlike DWT, all MODWT wavelet coefficients, regardless of their
frequency range, can extract the resonant signature. In Figure 3b, each box is shaded with
the same color as the corresponding wavelet coefficient trace. The inset boxes display the
overlap between the MODWT wavelet filter and the resonant signature at 0.53 THz. It can
be seen that the wavelet filter and the resonant signature overlap in all the boxes, leading
to the extraction of the resonant feature by their corresponding traces.

It should be noted that to align the wavelet coefficients in Figures 2d and 3b with
the SA signal, wavelet coefficients are circularly shifted, following the phase function
correction approach described in [15]. The number of these circular shifts is given by
the power of T in Figures 2d and 3b, i.e., T−3W4 and T−53W̃4, where a negative sign
indicates that the circular shifts are to the left. On the contrary, as we explain in the “zero-
phase filtering” section, details vectors are inherently associated with zero-phase filters,
while they have the same band- or high-pass characteristics as the wavelet coefficients.
Therefore, they do not require the phase corrections for the purpose of aligning the features.
Figure 3c compares the fourth-level DWT and MODWT wavelet and details coefficients. To
better demonstrate the impact of the phase function on alignment of the features, wavelet
coefficients in Figure 3c are not circularly shifted. It can be observed that W4 and W̃4 do not
align at the resonant frequency, which is delineated using a vertical dashed line. In contrast,
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the resonant features extracted by details coefficients are aligned at 0.53 THz without
requiring any phase correction. Furthermore, to validate the superiority of MODWT over
DWT details, Figure 3d–f compare the third-level DWT and MODWT details coefficients
of the α-lactose’s SA. In Figure 3d, the SA signal is shown over the entire measurement
bandwidth of f = 0.3–1.6 THz. The resonances of α-lactose at 0.53, 1.2, and 1.4 THz are
delineated using vertical dashed lines. Although the details coefficients in Figure 3e do not
require any circular shifts, zooming in at the details coefficients around 1.4 THz, which
are shown in Figure 3e, reveals that DWT details are slightly misaligned with respect
to the resonant frequency. This misalignment arises from the down- and upsampling
operations used in calculating the DWT details coefficients. Therefore, in spectroscopic
applications where retaining the exact location of features is critical, MODWT details
are preferable over DWT. In our previous papers, we have also demonstrated that the
resonant signatures of different characteristics, such as spectral height and width, can be
identified using wavelet coefficients at different decomposition levels [16,17]. We have
presented two computational techniques, i.e., the total variation of second-order derivatives
of the reflection coefficient [16] or the bimodality coefficient spectrum of the absorption
coefficient [17], to identify the decomposition levels associated with each resonant feature.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. (a) The SA of α-lactose over the frequency range of f = 0.3–1.13 THz as the control
sample. (b) The vertically-offset fourth-level MODWT wavelet coefficients of the SA signal, applied
in the frequency domain. Each line in (b) is calculated over a different frequency range, including
f = 0.30–1.10 THz in the purple line, f = 0.31–1.11 THz in the red line, f = 0.32–1.12 THz in the
blue line, and f = 0.33–1.13 THz in the green line. The lower bound of the frequency ranges are
emphasized using vertical lines at the beginning of each trace. Each inset box, shaded with the
same color, shows the overlap between the wavelet filter (dashed line) and the resonant signature
(solid line) at 0.53 THz in the corresponding reflection spectra. (c) The vertically-offset fourth-level
DWT and MODWT wavelet and details coefficients of the SA signal. Panel (d) shows the SA of
α-lactose over the entire measurement bandwidth of f = 0.3–1.6 THz. In (e) are the vertically-offset
third-level DWT and MODWT details vectors of the SA signal in (d). Panel (f) zooms into the details
coefficients around 1.4 THz, revealing that the DWT details vector (blue line) is slightly misaligned
with respect to the resonant frequency, while MODWT details vector (red line) maintains the exact
spectral location. The vertical dashed lines in (a–f) delineate the resonances of α-lactose.
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Figure 4a,b compares the translation-invariance property between the DWT and
MODWT details coefficients. Similar to Figures 2d and 3b, each trace in Figure 4a,b is
calculated over a different frequency range. It can be seen that DWT details calculated over
f = 0.30–1.10 THz (purple trace) and f = 0.32–1.12 THz (blue trace) do not contain the
α-lactose’s resonance. In contrast, all MODWT details coefficients, regardless of their fre-
quency range, can extract the resonant signature. Finally, Figure 4c–f show the amplitude of
the DWT and MODWT details vectors calculated over two different, overlapping frequency
ranges down to four levels of decomposition. The horizontal white dashed lines separate
the levels of decomposition. The details coefficients at each panel are min–max-normalized
between zero and one. Figure 4c,d compare the DWT details coefficients calculated over
f = 0.3–1 THz and f = 0.4–1.1 THz, respectively. It can be seen that the DWT coefficients
over the two regions are not alike. Moreover, the resonant lines at 0.53 THz are not clearly
distinguishable from the other lines surrounding them. Similarly, Figure 4e,f compare
the MODWT details coefficients calculated over the same frequency ranges as Figure 4c,d.
The MODWT details coefficients calculated over the two different regions are identical,
indicating the translation-invariance of MODWT at all levels of decomposition. Moreover,
the resonant lines at both frequency regions are clearly distinct from the other coefficients.

(c) (d)

(e) (f)

(a)

(b)

Figure 4. The vertically-offset fourth-level DWT details coefficients, (a), are compared to the the same
vertically-offset fourth-level MODWT details coefficients in (b). Each trace in (a,b) is calculated over
a different frequency range, including f = 0.30–1.10 THz in the purple traces, f = 0.31–1.11 THz
in the red traces, f = 0.32–1.12 THz in the blue traces, and f = 0.33–1.13 THz in the green traces.
In (c,d) the amplitude of all DWT details coefficients are calculated over f = 0.3–1 THz, (c), and
f = 0.4–1.1 THz, (b) for a decomposition level of J = 4. In (e,f), the amplitude of all MODWT details
coefficients are calculated over f = 0.3–1 THz and f = 0.4–1.1 THz, respectively, for a decomposition
level of J = 4. The horizontal white dashed lines separate the levels of decomposition. The details
coefficients at each panel are min–max-normalized between zero and one.

4. Conclusions

In this paper, we studied the main advantages of MODWT over DWT for the extraction
of characteristic resonances using broadband terahertz spectroscopy technique. The first
advantage is the invariance property of MODWT with respect to the spectral range of
analysis. We showed that by changing the frequency range in the DWT analysis of the
reflection spectral amplitudes of α-lactose, the wavelet coefficients calculated over different
ranges are not alike. Therefore, the characteristic resonances do not appear in the DWT
wavelet and details coefficients of all frequency ranges. In particular, we showed that the
α-lactose’s resonance at 0.53 THz is not captured by the DWT wavelet and details coeffi-
cients over the overlapping spectral ranges of f = 0.30–1.10 THz and f = 0.32–1.12 THz.
However, in MODWT, there is no dependency on the the frequency range, and all wavelet
and details coefficients can extract the resonant signature. The second advantage is the
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zero-phase filtering inherent in calculating the MODWT details coefficients, which results
in a perfect alignment between the spectroscopic features in detail coefficients and the
original signal. We demonstrated that although DWT details coefficients are also associ-
ated with zero-phase filters, because of the down- and upsampling operations used in
their calculation, slight mismatches still appear between the details coefficients and the
original signal. Our experimental results show that DWT details coefficients associated
with α-lactose’s resonant signature at 1.40 THz do not align with the original signal at the
resonant frequency, whereas there is a perfect alignment between MODWT details vector
and the original spectrum. Due to these advantages, MODWT is a more reliable analytical
tool for spectroscopic applications that rely on the extraction and the exact spectral location
of the characteristic absorption lines.
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